STAG: Smart Tools and Apps in computer Graphics (2016)
Giovanni Pintore and Filippo Stanco (Editors)

Kernel-Reflection Sequences

Lész16 Szécsi!

Zoltan Bendefy2 Agota Kacs6!

1Budapest University of Technology and Economics
2NNG Llc.

Figure 1: Scenes modeled with Kernel-Reflection Sequences and ray-traced in real time

Abstract

Complex geometries, like those of plants, rocks, terrain, or even clouds are challenging to model in a way that allows for
real-time rendering but does not make concessions in terms of visible detail. In this paper we propose a procedural modeling
approach, called KRS, or kernel-reflection sequences, inspired by iterated function systems. The model is composed of kernel
geometries defined by signed distance functions, and reflection transformations that multiply them. We show that a global
distance function can be evaluated over this structure without recursion, allowing for the implementation of real-time sphere
tracing on parallel hardware. We also show how the algorithm readily delivers continuous level-of-detail and minification
filtering. We propose several techniques to enhance modeling freedom and avoid conspicuous symmetries. Most importantly,
we extend sphere tracing to conformally transformed geometries. We also propose a GPU load balancing scheme for best
utilization of computing power. To prove that the model can be used to realize various natural phenomena in uncompromising
detail and extents, without obvious clues of symmetry, we render aquatic and terrestrial surface formations and vegetation in
real-time.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and

Realism —Fractals

1. Introduction

Geometries occurring in nature typically feature intricate detail and
great extents at the same time. They pose challenges throughout
both the modeling and the rendering pipeline, from content cre-
ation to final visualization. The usual approach of modeling trian-
gle meshes and rendering them through incremental rasterization
fails at both stages. First, every leaf in a forest cannot be modeled
manually. Creation has to be scripted, thus already requiring a pro-
cedural description of the geometry, and a way of expanding that
description to a visualizable representation. Second, the resulting
geometry can be too complex to be rendered in real-time by trian-

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

DOI: 10.2312/stag.20161364

gle rasterization. That gives emergence to level of detail techniques,
which all need to address the issue of transition between different
triangle mesh representations.

Ray tracing point clouds or procedural models could be a strong
alternative to triangle rasterization, but it requires recursive traver-
sal of hierarchical space subdivision structures. On GPUs, this re-
sults in divergent control flow and data access, meaning suboptimal
utilization of available computing power. Thus, in this paper, we
aim to propose a geometrical construct that can be ray-traced with-
out conditional branching and divergent data access, and explore its
capabilities for modeling.

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/stag.20161364

54 Szécsi et al. / Kernel-Reflection Sequences

Our proposed solution uses sphere tracing on geometries com-
posed of reflected primitive instances, resulting in a formally lim-
ited, but practically versatile procedural modeling approach. We
show that distance functions for the defined models can be evalu-
ated without recursion, and thus ray tracing of the procedural ge-
ometry can be done in real-time. As the computational complexity
is superior to rasterization, rendering vastly outperforms incremen-
tal rasterization for sufficiently complex geometries.

We also extend sphere tracing to conformally mapped geome-
tries, allowing our modeling approach to produce non-symmetric
features.

2. Related work

IFSs, or iterated function systems [Hut79] describe a piece of self-
similar geometry as the union of several transformed instances of
itself, by specifying the set of transformations used. IFSs are ca-
pable of generating geometries of fractal dimensions, occasionally
resembling natural phenomena, but usually with an easily discern-
able pattern. Our approach both restricts IFS to avoid recursion in
visualization, and extends them to accommodate a wider class of
natural features.

CSG, or constructive solid geometry defines geometries as re-
sults of regular set operations on primitives. These primitives
are often given as implicit surfaces. Self-similar, natural geome-
tries can be generated by introducing circles in the construction
graph, leading to cyclic object-instantiation graphs, or CSG-PL-
Systems [GT96]. Efficient ray tracing can be performed by gen-
erating bounding objects for self-similar components [TG79]. Our
KRS can be considered a special case of CSG-PL-Systems, and
thus it supports the expansion of the procedural model by primi-
tive instantiation. Such algorithms for L-systems [PL90] and split
grammars have been discussed by Sowers [SMM*08]. This is an
option for visualizing the models we propose in this paper, but our
main goal is to render images efficiently without geometry instan-
tiation, and without an explicit choice of level of detail.

F-rep [PASS95] defines objects as sets of points for which a
function is non-negative. It supports set operations and recursion. A
special case is that of signed distance functions, where the function
gives the exact distance from the object surface. In our solution, we
use such a representation for kernel objects, which are the atomic
building blocks of our models.

Sphere tracing was proposed by Hart [Har96]. It is an iterative
technique for ray intersection against a geometry for which a dis-
tance function is known. This distance function must return a tight
underestimation for the distance of a point and the ray-traced geom-
etry, or, in other words, the radius of an unbounding sphere [HS89]
centered at the point. The algorithm progresses by repeatedly ad-
vancing a point along the ray with this distance, to the surface of
the unbounding sphere, eventually converging to the point of in-
tersection. Keinert et al. proposed several enhancements to sphere
tracing [KSK* 14], including over-relaxation, the idea of which we
exploit in this paper for rendering symmetric geometries under con-
formal transformations.

This paper extends on preliminarily results published by
Szécsi [SzE€14].

RiK;

u;
plane of
reflection

Tay
K;

Figure 2: The distance of the closest point and its reflected image.

3. Kernel-reflection sequences

Let us consider a simple piece of geometry (the first kernel) repeat-
edly doubled by a sequence of planar reflections. After every dou-
bling, we add a new piece of geometry (a different kernel), which
also undergoes all the remaining reflections. This is what we call
a kernel-reflection sequence or KRS. If all kernels are defined by
their distance functions, the distance function of the entire KRS
can be evaluated efficiently by a fixed operation count, logarithmic
time algorithm. This allows fast GPU sphere tracing.

For the formal discussion, let us first consider a single kernel K
and a finite sequence of reflection operators R;, withi € {0,...,n—
1}. The sequence of expansion level geometries is as simple as:

A1 =AiURA;, Aog = Kp.

For sphere tracing, the kernel set must be defined by the signed
distance function ko(x), which gives the geometric distance be-
tween point x and kernel set K. For tracing the KRS, we need an
underestimation /; | (x) for the distance between point x and A; 1.
If A; is entirely on the negative side of the mirror plane or R; (fig-
ure 2), then the geometry will be composed of two disjoint parts on
the two sides, which are reflected images of each other. A simple
test can tell which part is at less distance to point x. We just need
to determine if the point is behind the mirror plane, or in front of
it. The closest point of the geometry must be on the same side, be-
cause any candidate point on the other side would have a reflected
image that is even closer. Note that if A; is not entirely on the nega-
tive side, but intersected by the mirror plane, we can still apply the
same formula. Doing so is equivalent to discarding the part of the
geometry on the positive side. We obtain an underestimation for the
distance to the mirrored geometry, which is still suitable for sphere
tracing.

This construction allows only for reflection-multiplied instances
of the same, unscaled kernel geometry. While this might be enough
to model some natural phenomena, hierarchies (like branches of
a tree) and non-symmetric parts are not covered. In order to rem-
edy this, let us add a new kernel set K; at each iteration. These
are defined by a sequence of possibly all different k;(x) distance
functions, where i € {0,...,n}. These also form a finite sequence,

where L;; | is recursively defined as:
Liy1 =K ULIURL;, Lo=Ko.

Thus, an expansion level consists of two symmetric instances of the
previous level, and an additional kernel set (figure 3).

Formally, a KRS is an ordered pair of two finite sequences, one
consisting of kernel sets, and another of reflection operators:

KRS = (K(),...,K,1;RQ,...,R,,,1).

© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

Szécsi et al. / Kernel-Reflection Sequences 55

u RoLo . LI
Ko 1
i Ly K, N RiLy
I
Lo =Ko
K>
L =K ULyURoLy

L, =KULIUR{L;

Figure 3: A KRS expansion level is composed of reflected instances
of the previous level, and a new kernel.

K> k2 (x)

d<—ky (X)

d + min(d,k; (x))

d + min(d,ko(x))

Figure 4: The three iterations required to find distance to a three-
level KRS. The distance d gathers the minimum of the kernel-space
distances. The world-space point X is mapped to the next kernel
space either through the identity or a reflection. Colored circles
show the unbounding sphere with respect to the corresponding ker-
nel. Dashed circles are their world space equivalents.

The distance function for a KRS is:

liv1(x) = min (ky 1(x),5(x),i(Rix)), lo(x) = ko(x).

We do not have to compute all the terms to evaluate the formula.
As L; and R;L; are known to be mirrored images, we can decide
which distance is going to be smaller by finding on which side of
the mirror plane X is.

i1 (%) = min (k1 1(x),l;(x)) ifu;-x—w; <0,
HFEY T min(kiy (x),45(Rix)) ifw-x—w; >0,

where u; - x —w; = 0 is the equation of the reflection plane. The
iterative algorithm to evaluate the distance is given in Algorithm 1,
and Figure 4 illustrates the process.

Algorithm 1 Returns distance to the KRS at xy,.
1: function DISTANCE(xy)

2 X ¢ Xy > point in world space
3 d < kn(x) > distance to top level kernel
4 for i <— n—1 downto 0 do > for all levels
5: if x-u; —w; >0 then > if behind mirror
6: X +— Rix > transform to next level
7 d < min(d, k;(x)) > keep dist to nearest kernel
8 return d

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

£ = N 4 R

Figure 5: A school of fish modeled using unaligned mirrors (left)
reveals less symmetry then with aligned mirrors (right).

4. Ray-tracing

KRSs can be considered as unions of finite realizations of modified
IFSs, where the transformations are limited to identities and re-
flections, but different iterations can use different transformations.
These are not contractions, and the sequence is divergent, but for
finite recursion depth this is only a matter of a scaling factor.

Thus, there are multiple options for the GPU visualization of a
KRS, as practically any IFS visualization method could be general-
ized. Most prominently, all kernel instance transformations can be
computed, and then kernel geometries instanced with those for ren-
dering. However, the main motivation behind the construction of
KRSs is that they can be ray-traced with an iterative, non-recursive
algorithm, requiring only a few registers of read-write memory, in-
dependent of the number of levels. Thus, in this paper, we focus on
visualization with ray-tracing, finding the intersection points with
sphere tracing.

Sphere tracing advances iteratively, evaluating the distance func-
tion, which, in our case, is performed as an iteration itself. The
search is terminated when the ray has passed through the scene or
when the computed distance falls below an error threshold level.
This value is inversely proportional to the camera depth, and is
set to assure that the final unbounding sphere, projected onto the
viewport, is smaller than a pixel. A higher threshold level makes,
in practice, the kernel geometries appear thicker, as points in close
proximity are considered to be members. Therefore, geometries at
a large distance merge into smoother formations, loosing sub-pixel
details. This, combined with the smooth shading and texturing tech-
niques we describe in sections 8.1 and 8.2, eliminates aliasing and
achieves automatic, continuous level-of-detail.

5. Techniques to hide symmetry

There are two features of a KRS that strain its credibility as a natu-
ral occurrence: symmetry might be visible and identical motifs are
repeating. One countermeasure is that non-symmetric kernel ele-
ments are added on every iteration. Planes of reflection should be
selected randomly enough so that the eye can only be near to a few
of them at the same time. If the eye is not near to the mirror plane,
the symmetry of the 3D object is not perceived in a 2D image. The
undesirable symmetry effects are eliminated on the global scale.
Figure 5 offers a comparison.

Fighting symmetry on the local scale is more challenging. There
is always a viewpoint from where two subsets are visibly the re-
flected images of each other. This can only be handled if the sym-
metry is indeed broken.

56 Szécsi et al. / Kernel-Reflection Sequences

Figure 6: A tree under twisting distortion (left) avoids the conspic-
uous symmetries of isometric construction (right).

5.1. Combination of multiple KRSs

Where a single KRS cannot produce the desired effect of natural
disorder, the union of multiple KRSs can. When, in a forest, there
are three completely different trees between the two that are mirror
images of each other, symmetry is undetected. Sphere tracing mul-
tiple KRSs can be efficiently implemented by maintaining the free
distance along the ray for all components, always choosing the min-
imal one, and advancing it with the radius of the unbounding sphere
of the respective component. The search ends when the step size for
the minimal component meets the error threshold. Compared to the
single KRS case, there is a slight overhead of maintaining a small
sorted index of free distances for minimum selection. Otherwise,
performance does not depend on the number of KRS components,
but rather on the number of sphere tracing steps required. Tracing a
single KRS or a compound KRS of similar complexity takes similar
effort.

Procedural or projective texturing can also be considered as a
way of combining features that exhibit periodicity at different fre-
quencies. We detail techniques in section 8.2.

5.2. Distance distortion

The Lipschitz constant of KRS transformation functions is unity,
resulting in exact values for the distance evaluation. By sacrificing
some performance, we can handle any Lipschitz transformation of
the KRS geometry as described by Hart [Har96]. The resulting ge-
ometry does not have to be symmetric any more (figure 6).

6. Sphere tracing conformally transformed geometry

Conformal transformations, which include geometric inversion,
map spheres and planes to spheres and planes. If symmetric ge-
ometry is subjected to such a transformation, mirror planes are
mapped to spheres, eliminating symmetry. An unbounding sphere
of the symmetric geometry is mapped to an unbounding sphere of
the transformed geometry. This makes it possible to find unbound-
ing spheres for a conformally transformed KRS, even if different
KRS levels are subject to different transformations. For that rea-
son, sphere tracing geometries defined by signed distance functions
under conformal transformations are of interest.

We call the space in which the signed distance function is de-
fined the kernel space. The conformally distorted space in which
ray tracing must be performed is the world space. An unbounding
sphere containing a world-space point can be found by transform-
ing the point into kernel space, and then transforming the unbound-
ing sphere back. Note that the center of the world-space sphere is
not necessarily at the original world-space point, but sphere tracing
could still be performed by advancing the current point on the ray to
the point of intersection with the unbounding sphere. For the sake
of completeness, Appendix B provides the formula for ray—sphere
intersection within the mathematical framework of conformation
transformations we introduce in section 6.2.

This approach, however, does not work with the KRS scheme
if we introduce a conformal transformation after every reflection.
A point can only be transformed to kernel space if the mirror
tests can be evaluated. As the transformed world space point is no
longer the center of the unbounding sphere, it cannot be used in
the mirror-side test. The actual center of the unbounding sphere,
however, depends on its radius, which cannot be obtained from the
kernel distance function without the kernel space position. This
can be resolved if we use the idea of sphere tracing with over-
relaxation [KSK*14], speculating on the unbounding sphere ra-
dius.

6.1. Binary sphere tracing

Given a world space probing sphere, we can verify if it is an un-
bounding sphere simply by transforming it to kernel space, by al-
ways taking the mirror test decision on the sphere center (which is
known now), and checking the radius against the distance. Note that
this relaxes the requirement on kernel geometries that they have to
be defined by distance functions, as it is enough to merely support
a binary intersection test with a sphere.

The sphere tracing process becomes a trial-and-error search find-
ing unbounding spheres, not entirely unlike numerical root finding
methods employing binary search. Therefore, we call this algo-
rithm binary sphere tracing. It can be seen as an extreme version
of sphere tracing with over-relaxation [KSK*14], with no option
to revert to classical sphere tracing near surfaces, and without the
possibility to accept an unbounding sphere that is larger than what
we speculated on. These restrictions are necessary for admitting
conformally transformed geometry.

Algorithm 2 Binary sphere tracing.

1: function BINARYTRACE(ray origin T, direction ®)
2: s+ 1 > initial probe radius

3: while s > € do > until converged

4: if ISUNBOUNDING(T+ ®-s,s) then © probe sphere

5: s < 5 Eponus > be bolder

6: T+ T4+ 2s > advance with diameter

7: else

8: 8 <= 5 Epenalty > try smaller probe
return T

Algorithm 2 formalizes the process. Note that the probing sphere
does not have to be centered around the last known free ray position
anymore, it only has to touch it. Function ISUNBOUNDING returns

© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

Szécsi et al. / Kernel-Reflection Sequences 57

true if the probe, given by its center and radius, is indeed an un-
bounding sphere. In this case, the ray origin is advanced by the
sphere diameter, and the radius for the next probe is increased by
factor Eponus, in order to transverse empty areas faster. Should the
probe fail, the radius is reduced by factor ﬁpena]ty, and a new itera-
tion can start. When the radius decreases below an error threshold,
the process is converged and an intersection is found. We found that
the algorithm performance is not strongly dependant on the values
of &ponus and Epenary- We used 2.0 and 0.3, respectively.

In general, we can expect more iterations until convergence than
regular sphere tracing, as suboptimal unbounding spheres and re-
jected probes must occur. This is somewhat mitigated by the fact
that successful probes advance the ray by twice their distance. In
order to implement function ISUNBOUNDING for non-symmetric
KRSs, we need a formalism for conformal transformations (sec-
tion 6.2), and the formula for inverse transforming spheres (sec-
tion 6.3).

6.2. Quaternion Mobius transformations

Conformal transformations of the three-dimensional space can be
formalized as quaternion Mobius transformations (quaternionic,
fractional, linear transformations) generated by translations, rota-
tions, dilations, reflections and geometric inversions [BG09]. We
use the usual embedding of R into quaternions as pure imaginary
quaternions, with zero real part. We denote the set of quaternions
with H, and the set of purely imaginary quaternions with Hy. As
Bisi and Gentili [BG09] show, quaternionic fractional linear trans-
formations form a group homomorphic to that of 2 X 2 quaternionic
matrices with the mapping

S M = R A A)

where ¢,a,b,c,d € H, and Lg(q) is the transformation represented
by matrix H. Mobius transformations are a special class of quater-
nionic fractional linear transformations. The composition of two
Mobius transformations is also a Mobius transformation, the coef-
ficients of which are obtainable as a matrix product. The matrices
representing elemental transformations are given in Table 1. With
these, any conformal transformation can be built.

6.3. Inverse transforming spheres

The implicit equation of a sphere or plane using quaternions has
the form

o(qq)+PBg+ap+y=0,)

where g € H is the free variable, and coefficients are o,y € R and
B € Hy. For a sphere of radius p € R, centered at k € H), the coef-
ficients can be found as o = 1, p = &, and y = |k|* — p>.

Let o, B, and y be the coefficients of a sphere obtained by the
transformation Lg. We need to find the coefficients o, B’, and Y
of the original sphere. As derived in Appendix A, the formulas are:

o/ = oa+2ReéPa+ee,
B’ = aba+ dPa+ bpc+vdc,

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

Ly
/\ e intersecting
Ly - I
\\7 %

<L~ ﬁgj/ .\(

K Lr

K Lg

Figure 7: M6KRS construction by conformally distorting expan-
sion levels (left), and free distance evaluation by repeatedly trans-
forming a probing sphere (right).

Y = obb+2RedPb+Ydd.

With these, it is possible to transform a world-space sphere to
kernel space, then verify if it is unbounding against the kernel dis-
tance function.

7. Mobius kernel-reflection sequences

We would like to eliminate symmetries on all levels of a KRS.
Thus, we redefine an expansion level to be the conformally trans-
formed union of a kernel set and reflected instances of the previous
expansion level. Thus, we specify a Mobius transformation L, for
every KRS expansion level, changing the iteration formula to

Liv1 = L, (Kiy1 UL U LR(Ly)) -

The reflection R; has been replaced with Lg, a Mobius transfor-
mation with the matrix

which is the reflection across the x = 0 plane. This is without loss
of generality, as any translation or rotation can be included in the
Mobius transformation of the previous expansion level. We call this
construct the Mdbius kernel-reflection sequence or MOKRS. Fig-
ure 7 shows both its construction and free distance evaluation for
sphere tracing.

To ray-trace this geometry, speculative sphere tracing for con-
formally mapped geometries is used, as formalized in Algorithm 3.
For every expansion level, the current ray point is transformed with
Lg, to the space of symmetry, and then to kernel space with ei-
ther the identity or LR, as dictated by the mirror side test. Function
TRANSFORMSPHERE evaluates the formula detailed in Appendix
A.

58

Szécsi et al. / Kernel-Reflection Sequences

identity dilation translation rotation reflection across x = 0 inversion
1 0 s 0 1 v r 0 —-i 0 0 1
ool b b [P I
Lg)=q L(g)=sq L(g)=q+v L(g)=rqr L(q) = —iqi Lig)=q""
seR v € Hy reH,|rl=1
Table 1: Elementary Mobius transformations.
Algorithm 3 Check is sphere is unbounding for MOKRS.
1: function [ISUNBOUNDING(center Ky, radius pw)
2: a1 > sphere ...
3: B+ xw >...equation ...
4: v+ B> —p2 > ... coeffs 2
5: for i < n— 1 downto 0 do > for all levels -
6: o, B,y + TRANSFORMSPHERE(q, 3,7, G;) ({
7: if Re(if) < O then >x<0 |
8: B+ Lr(B) > reflect across x = 0
9: K+ B/y > kernel space sphere center
10: p—]k —y > kernel space sphere radius
11: if k;j(x) <pVo <0 then > intersecting or inside-out
12: return false > not unbounding
13: return true > unbounding

8. Combination with other real-time techniques

KRS ray-casting can only be a viable alternative to procedurally
generated triangle mesh geometries if it supports all the incremental
image synthesis techniques contributing to realism.

8.1. Local shading

KRS kernels are solids with surface normals defined by the gradient
of their distance functions. The gradient can be used as a shading
normal for surface points obtained by sphere tracing. Lighting com-
putation can either be performed in world space or kernel space. In
the former case, the transformation matrix for the complete chain
must be maintained throughout the iteration, so that we can trans-
form kernel gradients to world space. The formula for transforming
the kernel gradient to world space can be found in Appendix C.

When kernels and reflections are not selected so that kernel sep-
aration is upheld, there is likely to be a visible discontinuity of
surface normals where the plane of reflection intersects the mir-
rored geometry. These can be smoothed by interpolating between
the kernel-to-world-space matrices on the two sides of a mirror,
when the shaded point is found near a mirror plane during the iter-
ation. This technique allows the generation of smooth surfaces from
a kernel as simple as an infinite plane. Figure 8 compares flat and
smooth shading of surfaces composed of simple planar and spher-
ical kernels. The shading algorithm runs only once, after sphere
tracing has found the intersection point.

8.2. Texturing

The kernel solids are usually simple objects (e.g. torus segments)
that lend themselves to easy u,v parametrization. There are two

Figure 8: Rock composed of planar and spherical kernels with flat
and smooth shading.

Figure 9: Texturing with kernel parametrization on coral branches,
leaves, and triplanar projection on rock.

cases when this solution is not feasible: first, if we use kernels
where such a parametrization is not trivial; second, if the kernels are
simplistic, like infinite planes, where even the smallest details of the
KRS geometry are determined by the reflection transformations. In
this second case, texturing all kernel instances with the same coor-
dinates would produce an extremely repetitive pattern, emphasizing
symmetries undesirably. Procedural 3D or triplanar [Gei07] textur-
ing is applicable with convincing results (figure 9). Procedural ge-
ometry and procedural or wrapped textures combine to eliminate
the observable repetitiveness of each other.

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

Szécsi et al. / Kernel-Reflection Sequences 59

Figure 10: Sponge with ambient occlusion, and a groove of trees.

8.3. Depth composition

A ray-cast KRS can easily be integrated into scenes rendered in-
crementally. The depth buffer can be used for early termination of
rays. The ray casting shader can also output depth if it is neces-
sary, e.g. if transparent geometry is to be rendered afterwards, or if
shading is deferred.

8.4. Collision and destructibility

Based on the distance function and surface normal computation,
a KRS can be integrated into any collision detection and response
scheme.

A KRS is not locally controllable. However, it is possible to cre-
ate empty zones by specifying unbounding spheres over subsets.
The regions of these spheres should be skipped during sphere trac-
ing. The subset of the KRS within these empty zones can be sub-
stituted with instances of kernel geometry rendered incrementally.
These solid instances can then be subjects of any kind of physical
simulation. E.g. when a branch of a tree in a forest should break,
the complete tree is covered with an empty sphere, and an identi-
cal tree of rigid body branches and leaves is built. This can then be
manipulated independently.

8.5. Global shading

Beyond sheer triangle throughput, KRS geometry has another key
advantage over incrementally rendered geometry. Not only can
sphere tracing be performed for eye rays, but also for secondary
rays. Shadows, reflections, ambient occlusion (figure 10), or any
global illumination techniques based on ray tracing can be im-
plemented. An additional benefit of evaluating shadow rays with
ray tracing is that convincing, albeit non-physical, soft shadows
can be rendered by deriving an occlusion value from the radius of
the smallest unbounding sphere when tracing the shadow ray (fig-
ure 11).

9. Modeling

KRSs appear to be limited at what can be modeled with them. At
an iteration count and scale large enough for the individual kernels
not to be distinguishable, the geometry tends to resemble the 3D
equivalent of a Lévy C-curve [Lev59]. However, a forest from the

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

Figure 11: Harder and softer shadows rendered using the minimum
unbounding sphere radii encountered when sphere tracing shadow
rays.

air, a cloud in the sky, a hilly landscape, or a battered rock look
exactly like that, from far enough. In this section we are going to
present a few examples of application.

9.1. Coral, terrain and rock

Those natural features that are traditionally well modeled by IFS
are good candidates for KRS. The variation in scale that is lost be-
cause we only use isometries is compensated by additional kernels
and, in the MOKRS case, by conformal distortions. When modeling
these geometries, the choice of kernel sets is also less important:
spheres or infinite planes are sufficient. The separation of kernels is
neither desirable nor always possible. Even the smallest details are
defined by the transformations. Smooth shading and procedural or
triplanar texturing greatly enhance the visual quality.

9.2. Tree and forest

A tree is a classic hierarchical structure, where the kernel sets added
at each iteration become crucial. The first few kernels and reflec-
tions define the leaf geometry and the thinnest twig. Then, every
new expansion level doubles this geometry, with a reflection placed
so that the two main branches start from the same point. A new,
thicker branch that ends at the junction is added as the next kernel.
For kernels acting as branches, we used foroidal capsules, com-
posed of a torus segment and two capping spheres. The coefficients
of the distance functions are computed from intuitive modeling pa-
rameters. First, forking positions along one route from the trunk to
a twig end must be given. Branches along this route are the ker-
nels. Then, a control point on every such branch can be moved to
set curvature. Two forking positions and a control point define the
generating circle of the torus. Branch width gives the section ra-
dius. Planes of reflection must be placed at forking positions, with
editable normals. A forest can be generated by adding more reflec-
tions (identical to those of the terrain, if it is also present) with
empty extra kernel sets.

10. GPU scheduling

While distance evaluation is a fully unconditional iteration process,
the number of steps it takes for sphere tracing to converge varies
heavily for different rays. If all threads would evaluate an entire ray,
thread block execution time would be determined by the most ex-
pensive ray. Therefore, evaluation of rays must be broken into fasks.

60 Szécsi et al. / Kernel-Reflection Sequences

A task evaluates just a few sphere tracing iterations, and stores the
point of intersection, if converged. If not converged yet, it inserts
the remaining ray segment into a task buffer for the next turn. The
process is repeated until all rays are converged, and then shading
for all intersection points is performed in a deferred manner. Shad-
ows are added easily by creating shadow ray tasks.

This scheme also works well with compound KRS models de-
scribed in section 5.1, where component models are likely to use
different code for kernel distance evaluation, thus requiring differ-
ent GPU programs. We maintain multiple task buffers, one for ev-
ery component type. We also maintain the per-component free dis-
tances for every ray, and a small sorted index for faster minimum
selection. Before every turn, for every ray, the component with the
minimal free distance is chosen, and either a task is inserted into
the respective buffer, or, if the ray has already converged, the point
of intersection is stored for shading. Then, one after the other, all
task buffers are processed. When a task is finished, the free distance
and the index are updated.

For primary rays, the coherence can be exploited by performing
the first few steps of sphere tracing at a lower resolution. The cur-
rent point on the ray can only be advanced as far as the frustum of
the low-res pixel is entirely covered by the unbounding sphere.

11. Results

We measured performance on an nVidia GeForce Titan X video
card, on full-screen 1920 x 1200 resolution. Frame rates heavily
depend on the camera view, with significantly shorter frame times
when there are empty zones in the image. We compared the follow-
ing cases:

1. single KRS, sphere traced in the pixel shader of a full-screen
quad,

2. single KRS, binary sphere traced in the pixel shader of a full-
screen quad,

3. single MOKRS, binary sphere traced in the pixel shader of a
full-screen quad,

4. single KRS, sphere traced with compute shaders, with low-
resolution acceleration phase,

5. compound of eight KRSs, using different models, sphere traced
with compute shaders, with low-resolution acceleration phase
and GPU load balancing.

Figure 12 plots the shader execution times versus the number of
expansion levels considered in the KRS models. The most impor-
tant observation is that even though the geometry expands expo-
nentially, the rendering times only increase linearly. Direct sphere
tracing of linear KRS geometries is able to maintain 15 FPS up to
28 expansion levels, which corresponds to half a billion toroidal
primitives, which could be rendered by rasterizing hundreds of bil-
lions of triangles.

Binary sphere tracing performed poorly in comparison, as ap-
proximately twice as many iterations were required, and a mere 14
expansion levels fit into 15 FPS. This is not only due to the trial-
and-error nature of binary tracing, but also the ray termination error
threshold has to be set much lower to avoid artifacts. Sphere tracing
a continuous distance function does not introduce surface discon-
tinuities even with a high error threshold, it only makes surfaces

120 T T T T

T
sphere tracing
binary sphere tracing

MOKRS ———

accelerated
composition of 8

100 -

80 -

60 -

40|

frame rendering time (ms)

20 -

0 5 10 15 20 25 30

expansion levels

Figure 12: Shader execution times versus the number of expansion
levels.

Figure 13: Number of iterations plotted for a palm leaf MOKRS,
traced straightforwardly without low-res optimization or GPU
scheduling, with binary sphere tracing. White and black correspond
to 0 and 70 iterations, respectively.

appear slightly inflated. Conversely, binary tracing produces dis-
continuities where unbounding sphere decisions diverge. Figure 13
depicts the distribution of iterations steps in image space.

Mobius transformations do not impose significant further
penalty, but as they require binary sphere tracing, rendering them
is much more demanding than linear KRSs. So while it is true that
MO6KRS systems offer more freedom in modeling and still scale lin-
early with expansion levels, with today’s top hardware they are not
yet fully competitive with rasterization in terms of triangle through-
put. We believe this will inevitably change in a few generations of
graphics accelerators, as MOKRS rendering performance will in-
crease exponentially against rasterization throughput.

Our low-resolution acceleration phase offers a speedup of 30-
50% over straightforward per-pixel ray tracing. Rendering a com-
pound KRS of eight components has negligible overhead compared
to rendering a single KRS of similar kernel count. However, our im-
plementation relies on a highly optimized component sorting rou-

© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

Szécsi et al. / Kernel-Reflection Sequences 61

tine which packs three-bit component indices and component ter-
mination flags into a single 32-bit integer register. Thus, combining
a higher number of KRS models may be more expensive. However,
just eight components are completely sufficient to create a coral
reef scene with seabed terrain, rock formations, coral, and fish.

None of our measurements included shadows, ambient occlu-
sion, or Lipschitz distortion. We could render soft shadows at
quarter-resolution for 25% of the cost of the primary ray casting.
Ambient occlusion is equivalent in cost to computing one addi-
tional expansion level. Cost impact of Lipschitz distortions may
vary, the same considerations as for original sphere tracing apply.

12. Conclusions

KRS rendering can be used together with incremental image syn-
thesis in real-time applications. It is capable of modeling a wide
range of natural geometries, without the possibility of local control,
but with fine details and large extent at the same time. Features that
could only be represented by billions of triangles, like grasslands
or forests, can be rendered in real time. Thus, KRS can add the de-
sired natural richness of detail to virtual worlds without the need
for customized level-of-detail techniques.

Animation of KRS geometries is left for future work. While an-
imation of the model parameters is unlikely to produce credible
motion, subtle changes to low-index transformations might be ac-
ceptable. Time-dependent Lipschitz transformations appear more
promising.

We did not do extensive analysis on the choice of constants
§Penalty and &popys in the binary sphere tracing algorithm. It may
be interesting to explore what factors could influence where their
optimum is. While we proposed an intutive editing scheme for tree-
like branching models, implementing similar methods for other va-
rieties of KRSs requires more work.

Acknowledgments

This work has been supported by OTKA PD-104710 and OTKA
K-104476.

References

[BG09] BisI C., GENTILI G.: Mobius transformations and the Poincaré
distance in the quaternionic setting. Indiana Univ. Math. J. 58 (2009),
2729-2764. 5

[Dzal2] DZAGNIDZE O.: On the differentiability of quaternion func-
tions. arXiv preprint arXiv:1203.5619 (2012). 10

[Gei07] GEISS R.: Generating complex terrains using the GPU.
Addison-Wesley Professional, 2007, ch. 1, pp. 7-37. 6

[GT96] GERVAUTZ M., TRAXLER C.: Representation and realistic ren-
dering of natural phenomena with cyclic CSG graphs. The Visual Com-
puter 12,2 (1996), 62-74. 2

[Har96] HART J.: Sphere tracing: a geometric method for the antialiased
ray tracing of implicit surfaces. The Visual Computer 12, 10 (1996),
527-545. 2,4

[HS89] HART J., SANDIN D.: Louis H Kauffman t. Ray Tracing Deter-
ministic 3D Fractals. Computer Graphics 23,3 (1989). 2

[Hut79] HUTCHINSON J. E.: Fractals and self similarity. University of
Melbourne.[Department of Mathematics], 1979. 2

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

[KSK*14] KEINERT B., SCHADFER H., KORNDAURFER J., GANSE
U., STAMMINGER M.: Enhanced Sphere Tracing. In Smart Tools and
Apps for Graphics - Eurographics Italian Chapter Conference (2014),
Giachetti A., (Ed.), The Eurographics Association. doi:10.2312/
stag.20141233. 2,4

[Lev59] LEVY E.: Complex-curve fitting. Automatic Control, IRE Trans-
actions on, 1 (1959), 37-43. 7

[PASS95] PASKO A., ADZHIEV V., SOURIN A., SAVCHENKO V.: Func-
tion representation in geometric modeling: concepts, implementation
and applications. The Visual Computer 11, 8 (1995), 429-446. 2

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The algorithmic beauty
of plants. Springer-Verlag New York, Inc. New York, NY, USA, 1990. 2

[SMM*08] SOWERS B., MENZIES T., MCGRAW T., ROSS A., MOR-
GANTOWN W.: Increasing the Performance and Realism of Procedurally
Generated Buildings. ProQuest, 2008. 2

[Szé14] SzEcsi L.: A geometry model for logarithmic-time rendering.
In Seventh Hungarian Conference on Computer Graphics and Geometry
(2014), Szirmay-Kalos L., Renner G., (Eds.), John von Neumann Com-
puter Society. 2

[TG79] TRAXLER C., GERVAUTZ M.: Efficient ray tracing of complex
natural scenes. Proceedings Fractals 97 (1979). 2

Appendices
Appendix A: Inverse Mdbius transformation of spheres

Let o, B, and 7y be the coefficients of a sphere obtained by the trans-
formation £, and let us find the coefficients o, [3/, and V of the
original sphere.

From Equation 2 it is true that

o (L(a)L(a)) +BL(g) + L(g)B+7=0,

and substituting the definition of the Mobius transformation (Equa-
tion 1) we get

o ((ag+b)(cg+d) " Tag+b)(cq+d))
+B(ag+Db)(cqg+d) ™"
+(ag+b)(cqg+d)~1B

+y=0.
Using the identities pg = gp and q_] = qqq we can write
(x(aq+b)(cq+d)(cq+d) (aq+b)
(cq+d)(cq+d)
Plag+b)(cq+d)
(cq+d)(cq+d)
(cq+d)(ag +b)p
(cq+d)(cq+d)
+y=0.

Now let us multiply with (cq+d) from the left and (cqg + d) from
the right. We get

o(aqg +b)(ag+b)
+ (cq+d)Blag+b
+ (ag+b)B(cq +d
+Y(cq+d)(cqg+d) = 0.

)
)

http://dx.doi.org/10.2312/stag.20141233
http://dx.doi.org/10.2312/stag.20141233

62 Szécsi et al. / Kernel-Reflection Sequences

Further expansion gives
o (adqq + bag + gab + bb)
+ (gePaq+ qePb + dPag+ dpb)
+ (gaPeq+ gaPc + bBcq + bpd)
+ Y (céqq+dcq+Ged +dd) =0
Let us notice that dBb + bpd = 2RedPb, and similarly gePag +
gaPcq = qg2RecPa. Then we can rearrange to get
qqG (0ad +2RecPa+yee)
+ (otba + dPa+ bpc+ Ydc) q
+ G (@b + cBb + apd +yed)
+ (obb+2RedBb+ydd) =0,

which is the equation of the original sphere. Thus, the coefficients
are:

o = olad +2Re&Pa + Ycé,
B’ = oba + dBa+ bpc +ydc,
Y = abb +2RedPb+vdd.

Appendix B: Ray-sphere intersection
Let the equation of the sphere or plane be:
0w (94) +Bwg +GBw +1w =0,
and the equation of the ray embedded in quaternions is:
q(t) =1+ wr,
with T,® € H being the ray origin and direction, and ¢t € R the
ray parameter. Substituting the ray equation in the sphere equation
gives:
Olw TT + Olw ITO + Olw T + ocwtzaﬁ
+ BwT+1Pwo
+ TBw + rOPw
+Yw =0.
This can be simplified to:
0w TT + 200w Re T0 + Ot
+ 2RePBwt+2tRePww
+Yw =0.
This can be arranged into a quadratic equation for #:
Olw 2
+ (200w Ret® +2Re Bwm) ¢
+ owTT+2RePwT+yw =0.

This can be solved for 7 to obtain the ray parameters of the inter-
sections.

Appendix C: Mobius transformation of gradients

Let g € Hl be the gradient at point ¢ of a distance field, and £ a
M obius transformation. Let us find gradient gw of the transformed

distance field at point gw = L£(g). The gradient gw can be for-
mulated as differential change of gw in response to a differential
change of ¢ along g.

dL(q+ge)
Ew= — — -
de e—0

There exist several definitions of differentiation over quater-
nions [Dzal2]. In our simple case, however, it is sufficient to state
that non-commutative linearity, the product rule, and the chain rule
apply, with the reciprocal rule being

df ') df(x)

Lo),

Let us expand L as defined in Equation 1:

_ da(g+ge)+bl[c(g+ge) +d]”
W de

e=0

We now apply the product rule, and immediately substitute € =0
into the derivatives. We obtain:

d[c(an(g'S)er]_1

8w = ag(cq—i—d)_l + (ag+b) 5

e=0
With the reciprocal rule this becomes:

gw=ag(cq+d) " = (aqg+b)(cq+d) "cgleqg+d) "
Now g(cq+d) ™" can be factored to the right:
gw = |a—(ag+b)(cq+d) "] gleg+a) ™.

If both ¢ and gw are known, then this can be written in a simpler
form:

gw = (a—qwe)gleg+d)™" 3)

Note that normalization is required to get a unit length pure quater-
nion.

If £ transforms from kernel space to world space, and kernel-
space position g has been obtained by inverse transforming world-
space position gw (or a small sphere that contains it), then the
world-space gradient gw can be obtained from the gradient g de-
fined by kernel geometry using the formula 3.

© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

