STAG: Smart Tools and Apps in computer Graphics (2016)
Giovanni Pintore and Filippo Stanco (Editors)

Surface Reconstruction from Range Images

G. Mariosa 1, N. Fioraiol, A. Franchil, L. Di Stefano?

! Datalogic Automation, Bologna, Italy
2DISI, University of Bologna, Italy

Abstract

In this work we propose an algorithm for fast and detailed surface reconstruction from range images. Our method extends the
well-known Ball Pivoting Algorithm (BPA) so to exploit the inherent structure of range images, outperforming the state-of-the-
art both in terms of reconstruction quality and computation time. Moreover, we have investigated on automatic estimation of
the algorithm’s parameters and, in particular, we propose a novel robust approach to estimate the sequence of radii required
by BPA, thus demanding less effort by the user compared to existing solutions.

1. Introduction

Reconstruction of 3D objects is one of the most challenging prob-
lems in computer vision research. Traditionally, 3D measurements
are collected from a sequence of acquisitions through Lidar/Ladar
systems or reconstructed from multiple views [AFS*11]. Then, a
mesh is built by connecting the 3D points with triangles. Over
the years, many advanced techniques have been proposed for esti-
mating a surface from a Delaunay triangulation [EM94, BMR*99,
AB98, ACDL00, ACKO1], such as Alpha-shapes, Ball Pivoting Al-
gorithm, Crust and its variants. Most of these methods make few
assumptions on the data source and thus often require minutes or
hours to reconstruct a scene at high details.

Recently, the increasing availability of low-cost 3D cameras,
such as passive stereo heads, structured light systems and Time-
of-Flight cameras, has facilitated acquisition of 3D point clouds.
These systems often runs at the rate of 15Hz or more and re-
turn 3D scans in the form of range images, i.e., point clouds
organized on a 2D lattice. However, a few surface reconstruc-
tion approaches are designed to exploit such inherent organiza-
tion and they are either fast but inaccurate [ZRB09] or high qual-
ity but slow [ABK98, BMR*99]. In this work we investigate on
how to produce a high quality mesh from a single range im-
age at a fraction of the time required by state-of-the-art meth-
ods [BMR*99, Dig14, ZRB09, ACDL00, ACKO1]. Purposely, we
extended the well-know Ball Pivoting algorithm [BMR*99, Dig14]
to support fast windowed-based computation on range maps. More-
over, we propose a novel hyper-parameter setting to compute the
best algorithm setup by specifying the level of detail of the mesh
instead of requiring the user to input known metric values.

The rest of the paper is organized as follows: in Sec. 2 we dis-
cuss related work on surface reconstruction, in Sec. 3 we describe
the original BPA algorithm and our novel contribution, then exper-

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

DOI: 10.2312/stag.20161371

imental results are given in the Sec. 4, while in Sec. 5 we analyze
open issues and highlight future directions of work.

2. Related Work

Generally speaking, surface reconstruction has been addressed ac-
cording to two main approaches: the combinatorial approach and
the models fitting approach. The former is based on the theoret-
ical foundations of computational geometry and it works by es-
tablishing adjacency relations between input points. The latter, in-
stead, finds the best fitting of a given model into the given point
cloud. One of the most important class of algorithms deploying
the combinatorial approach is the Delaunay-based group. Indeed,
a facet subset of the 3D Delaunay triangulation is a good approxi-
mation of the sampled surface [Boi84]. Based on this concept and
extending the 2D alpha-shapes definition [EDR83], Edelsbrunner
and Miicke [EM94] introduced a formal geometric notion of the
shape of a point set in the three-dimensional space. Alpha-shapes
are a generalization of the convex hull and a sub-complex of the De-
launay triangulation. Given a triangulation of the input point cloud,
a real parameter, alpha, controls the level of detail through alpha-
balls. Similarly, the Ball Pivoting Algorithm [BMR*99] builds a
triangular mesh starting from a seed triangle and extending the tri-
angulation insofar as possible. Finally, the Crust algorithm and its
variants [AB98, ABK98, ACDL00, ACK01] combines Voronoi di-
agrams and Delaunay triangulation by using Voronoi vertices to
remove triangles from the Delunay triangulation.

As for the model-fitting approach, most methods try to fit a
global or local surface model on the 3D points by reducing the
gap between the model and the data [Sall0]. Typically, the model
is defined through the implicit form of a specific basis function.
A prominent member of this group is the Marching Cubes algo-
rithm [LC87], which extracts an iso-surface from an implicit repre-
sentation of the data as a distance function. The algorithm locates

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/stag.20161371

120 G. Mariosa & N. Fioraio & A. Franchi & L. Di Stefano / Surface Reconstruction from Range Images

list of radii

NEXT RADIUS

GET FRONT EDGE

FRONT EDGE
FOUND ?

TRIANGULATION
EXPANSION

SEARCH SEED
TRIANGLE

Figure 1: Flow chart of the Ball Pivoting Algorithm.

the iso-surface in a voxel grid and finds through linear interpolation
how the surface intersects each voxels. The Poisson Surface Recon-
struction algorithm [KBHO6], rather, is based on a basis function
belonging to the indicator functions family. Given a set of oriented
input points, such a function is valued one inside the object and
zero outside. The algorithm starts by computing as accurately as
possible the indicator function from the input points. Then it recon-
structs a triangular mesh by approximating the indicator function of
the model and extracting the iso-surface.

In this paper we consider the Ball Pivoting Algorithm (BPA) for
its efficiency and robustness: given a sufficiently dense point cloud,
the algorithm is guaranteed to reconstruct a surface as close as pos-
sible to the original one. Furthermore, it is based on sound theo-
retical foundations, as it is linked to Alpha shape. Indeed, the BPA
computes a mesh containing triangles that are a subset of the 2-
skeleton of the 3D Delaunay triangulation of the input point cloud.
This important feature is key to our purposes.

3. BPA for Range Images

Many surface reconstruction methods, like the original BPA and its
implementation [Dig14], do not make assumptions on the structure
of point cloud data. As such, they use three-dimensional data struc-
tures to make the search for neighbor points faster. In such struc-
tures, the 3D space is split into a regular grid of cubic cells. Each
cubic cell has a reference to the point subset located in that spe-
cific space portion. Differently, other algorithms, such as our BPA
extension (hereinafter Range BPA or RBPA), exploit the inherent
structure of range images to find quickly neighbor points.

BPA builds the mesh incrementally by pivoting a ball of fixed

radius on the input point cloud. It starts from a seed triangle and
then tries to expand the triangulation. This process continues un-
til all input points have been considered, taking advantage also of
point normals to handle cases of missing or noisy data. As shown
in Fig. 1, the reconstruction workflow follows two main steps: the
first runs a seed triangle search by looking for three orphan ver-
texes such that a ball of a given user-specified radius r touches them
without including any other point; the second step runs an expan-
sion of the triangulation front by adding one triangle at a time to
the mesh by pivoting a ball around front edges. When the front is
empty a new seed triangle searching is needed.

Therefore, BPA requires fast lookup of the neighborhood of a
given 3D point. The original approach [BMR*99, Dig14] imple-
ments spatial queries using a regular voxel grid. The user defines
as input parameters a single radius or a list of increasing radii that
the algorithm will then use to perform the reconstruction. If more
than one radius is provided, the algorithm runs one iteration, i.e.,
Finding seed triangle and Expanding triangulation, for each radius.
Indeed, using multiple radii is useful to fill holes in non-uniform
point clouds and to reconstruct a scene at different levels of details.

The BPA implementation proposed in [Dig14] assumes that in-
put point clouds are already endowed with point normals. It uses
an octree data structure containing vertexes (a 3D point and its nor-
mal) to run neighborhood queries. Therefore, the 3D space is split
into cells with size defined starting from the minimum input radius.
More precisely, neighborhood queries are implemented through /o-
cational codes that return the path, starting from the octree root,
to a specific leaf cell containing a given point. During our tests
we have noticed two main limitations of the BPA implementation.
Firstly, a time and computational overhead dependent on the octree
depth, due to the traversing of the octree index for each neighbor-
hood query. Secondly, the difficult choice of a suitable radius value,
since a small radius tends to generate more holes in the final mesh,
whereas a large radius may cause losing fine details. Therefore, our
contribution aims at extending the original BPA implementation so
as obtain:

e a fast BPA implementation for range images by exploiting adja-
cencies on the image plane;
e an automatic and robust estimation of the radius.

Normal Computation As above-stated, the algorithm requires a
normal at each 3D point. To this aim, we performed the Princi-
pal Component Analysis (PCA) of the covariance matrix computed
at each point neighborhood. Then, we assign to the point normal
the eigenvector of the covariance matrix corresponding to the mini-
mum eigenvalue. Moreover, for a more robust estimation we calcu-
late, for each point neighborhood, the median distance m between
the central point and its neighbors. Then, to compute the covariance
matrix, we consider only the subsets of neighbors whose distance
to the central point is less or equal than a multiple of m.

Radii Estimation The BPA implementation [Digl4] deploys a
heuristic rule to estimate the radius value:

r:\/%S (1)

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

G. Mariosa & N. Fioraio & A. Franchi & L. Di Stefano / Surface Reconstruction from Range Images 121

100% — _— —

90% /

80%

70%

60% +——

50%

Perc. Triangles

40%

30%

20%

10%

0%

1 2 3 4 5 6 7 8 9 10
Number of iterations

Figure 2: Percentage of mesh triangles vs number of iterations for
different point clouds. Each colored curve corresponds to a differ-
ent mesh. All meshes reach 90% of triangles after one iteration and
above 99% after seven iterations.

where 20 is the number of points per range neigborhoods, heuris-
tically estimated on a subset of point clouds, N is the number of
points and S is the size of the point cloud bounding box. Instead,
we propose a more robust and automatic estimation of the radius.
First, we measure the minimum and maximum distances between
each input point and its neighbors within a defined squared image
window. Then, we generate a radius list starting from the global
minimum distance found on the whole range image and iteratively
adding a radius step until we get a value less than or equal to the
global maximum distance. We use the global minimum distance
value as radius step as well. However, such distances should be
computed between points lying on the same surface, i.e., points
that likely will be eventually triangulated. Therefore, we measure
such distances only on the planar regions of the point cloud. To this
aim, we compute a score based on the eigenvalues of the covari-
ance matrix of the current point’s neighborhood, calculated during
the normal computation, and sort these scores for each point in the
point cloud. Then, only the points yielding the highest scores are
considered for radius estimation. As highlighted in Fig. 2, promis-
ing tests on automatic radius estimation suggest the possibility to
know in advance the number of radii needed to achieve a given
level of detail. Thus, it is possible to define an upper bound on the
number of the radii, corresponding to the number of iterations of
the algorithm. Above this upper bound we are confident that fur-
ther iterations would not significantly increase the quality of the
mesh.

Neighborhood Queries The octree data structure used in the orig-
inal BPA resolves neighborhood queries in the 3D space. Instead
of building and traversing an octree, we exploit the range image
structure by deploying a sliding window approach. Therefore, when
looking for new triangles, for each point we select only the neigh-
bor points falling within a squared window centered at such point.
Accordingly, we always focus on the subset of points that most
likely will form triangles. Instead, the original BPA would always
traverse the whole octree index. In practice, we create a matrix of
vertexes of the same size as the range image and we use it as data
structure to slide our window. Moreover, each vertex stores its rel-
ative image coordinates on the range image plane.

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

Camera Projection Model Since the algorithm works with range
images, we have to consider the mapping between a 3D point and
its projection onto the range image plane, i.e. we have to take into
account the projection model adopted by the camera for the im-
age formation process. There are two cases where this issue arises,
that is, (a) accessing the neighborhood of an edge midpoint, dur-
ing the front expansion step, and (b) accessing the neighborhood
of a given triangle circumcenter, before passing to the next radius
when trying to add new front edges. Indeed, in both cases we do
not have a direct relationship between a 3D point and a location
onto the range image, so that we have to find their corresponding
image coordinates to get a suitable reference point on the range im-
age. Generally speaking, we can find the image coordinates of a 3D
point by applying perspective or orthogonal projection.

The perspective projection is defined by two equations mapping
scene points into image points:

uzxg—i-cx
, @
v=y£+cy

(x,y,7) denoting the 3D point coordinates, (u,v) the corresponding
image coordinates, f the camera focal lenght and (cy, cy) the prin-
cipal point. In case (a) mentioned above, we wish to find the image
point M,p, corresponding to the 3D midpoint M3p, of an edge. We
know that the 3D edge midpoint is given by:

Xm % (xt +Xs)
Mzp = | ym | =< 5 (i +ys) (3)
m % (zr +2z5)

where (xs,ys,zs) and (xz,yr,z) are the 3D coordinates of the edge
source and target, respectively. We also know the corresponding
image coordinates of such endpoints, i.e. (us,vs) and (u,v;). From

(2) we get:
x=(u—cx)%
(=0 @
y=v—cy) 7
By replacing (4) in the two first equations of (3)
XX
Xm = =75
o)
{ym —)f;y.\
the corresponding projection M;p can be found as follows:
. UsZys —L')'Zé‘z’;:h o —Cx%t + Cx
Mm:(m): ©6)
Vim VeZs —CyZsHViZ —Cy
o TO

Similarly, in case (b) we want to find the image point, C,p, cor-
responding to the 3D circumcenter, C3p, of a generic triangle. We
know that the 3D barycentric coordinates of the circumcenter of a
generic triangle ABC, with edge lengths a, b and c are:

Xe oy + B +yx3
Csp = | ye | =4 oy +PBy2+ 13 @)
Ze oz) + Bz + V23

122 G. Mariosa & N. Fioraio & A. Franchi & L. Di Stefano / Surface Reconstruction from Range Images

where
oa=ad> <b2 +P— a2>
B:b203+f2—bﬁ ®)
y=c (a2+b2 _Cz)
and (x1,y1,21), (¥2,¥2,22), (x3,y3,23) are the 3D coordinates of the
triangle vertexes. We also know the image coordinates correspond-

ing to such vertexes, i.e. (ia,va), (up,Vp), (the,ve). By replacing (4)
in the first two equations of (7)

xe = ooy + B +7x3 ©)
Ye = 0y1 +By2 +vy3
the corresponding projection C;p can be found as follows:
(e U —cy)z1 +B(u;,;cx)zz+y(uc—cx)zz Fex
C2D - Ve - (x(vu*Cy)Zl+B(Vb;C,V)ZZ+Y(Vr7C,\')Z3 + ¢ (10)

Perspective effects may be not so evident, this occurring when-
ever the acquired object is much thinner than the distance from the
camera. In these cases, perspective projection can be approximated

by orthogonal projection:
{”_X an
v=y

Accordingly, in case (a), the midpoint image coordinates, (um,vm),
are equal to the corresponding (x;;,ym) coordinates of the 3D edge

midpoint:
u XX
_ (Um) _ 2
Map = (Vm) = (12)

Similarly, in case (b) the image coordinates of the triangle circum-
center, (uc,ve), are equal to the corresponding (x¢,yc) coordinates
of the 3D circumcenter:

Cop = <uc) _ Joxi+Bxo 41 (13)
ve oy +By2 +vy3

4. Experimental Results

We compared our proposal against the original BPA implementa-
tion, the BPA proposed by MeshLab tool [Cig] and Organized Fast
Mesh (OFM) [HB14], a fast meshing algorithm for range images
available in the Point Cloud Library [RC11]. As for the data, we
used a publicly available dataset acquired with a Kinect RGB-D
sensor [PDS15]. We deployed a 11x11 sliding window to search
point neighbors and orthogonal projection formulas to solve the
3D-2D mapping problem. It should be recalled that, for all tests,
the RBPA pre-processing time comprises the point normal com-
putation. The BPA time, instead, includes the octree initialization
time. We ran three different tests on the same dataset composed of
82 point clouds:

1. first, we compared the BPA and RBPA algorithms using our pro-
posed estimation of the sequence of radii;

2. then, we triangulate again the data using the radius estimated as
in [Digl4];

RBPA | BPA
82 point clouds

Dataset cardinality
Average num. pts. 24859 points
Average Preproc. Time | 3.9s. | 3.9+009s.
Average Reconstruction Time | 0.32s. 0.94 s.
Max Reconstruction Time | 0.98 s. 2.52s.
Average Number of triangles | 48620 48603

Table 1: BPA and RBPA statistics using our automatic radius es-
timation.

»

Reconstruction Time (sec)

Py soaled
b A a g Wt
AN A N aagtd eaag e we? Y

PO S i anadd

135 7 91113151719 2123 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81
Number of input points

+—RBPA BPA

Figure 3: BPA and RBPA reconstruction time using our radius es-
timation. The range images (x-axis) are sorted by increasing num-
ber of points.

3. then, we compared our RBPA and BPA proposed by MeshLab;
4. finally, we compute the meshes through Organized Fast Mesh
[HB14]

As for the first test, we set the number of iterations to seven in
order to get a reconstruction percentage above 99% (cfr. Fig. 2).
Tab. 1 and Fig. 3 highlight a lower processing time for our approach
compared to BPA, while Fig. 8 shows the meshes reconstructed by
RBPA and BPA using our radius estimation algorithm. The level of
detail is preserved by our method, though at a reduced computation
cost.

Tab. 2 and Fig. 4 refer to the second test session. As shown, the
BPA reconstruction time is much larger than RBPA’s. This is due to
the estimated sequence of radii, which starts from a value greater
than the one estimated by our approach, so affecting the octree cell

1000

g

N R “,..ou“.u" aytee
\ o 0d T2 LA e e
= ,.“x“',“‘(’“ estesategetoty ot oty

vod
PIV N s ahdiiad

Reconstruction Time (sec)
s

Number of input points

+—RBPA BPA

Figure 4: BPA and RBPA reconstruction time using the radius es-
timation proposed in [Digl4]. The range images (x-axis) are sorted
by increasing number of points.

© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

G. Mariosa & N. Fioraio & A. Franchi & L. Di Stefano / Surface Reconstruction from Range Images 123

A reoasgegtiereteer’
TN N, WO e W o

N MW“"’N

Reconstruction Time (sec)

Figure 5: RBPA and Organized Fast Mesh (OFM) [HB14] recon-
struction time. The range images (x-axis) are sorted by increasing
number of points.

RBPA | BPA
82 point clouds

Dataset cardinality
Average num. pts. 24859 points
Average Preproc. Time | 3.9s. | 3.9+09s.
Average Reconstruction Time | 1.18s. 41.5s.
Max Reconstruction Time | 2.92s. 540.0 s.
Average Number of triangles | 41782 41286

Table 2: BPA and RBPA statistics using the radius estimation pro-
posed in [Digl4].

size. As shown in Fig. 9, the radius estimation affects the final mesh
quality as well, which lose finer details compared to the mesh we
got using our proposed radius estimation algorithm, both for RBPA
and BPA.

As for the third test, we compared RBPA against the BPA imple-
mentation provided by MeshLab [Cig]. This algorithm implemen-
tation allows both to specify a radius value and to estimate its value
through an autoguessing method. Furthermore, it is possible to de-
fine a clustering radius, as a percentage of the ball radius, in order
to avoid the creation of too small triangles: if a vertex is found too
close to a previous one it is merged with it. We compared RBPA
against MeshLab BPA using the radius autoguessing both without
clustering and with clustering radius fixed to the default value (20%
of ball radius). It is important to mention that the computational
time of MeshLab BPA includes an overhead due to I/O operations.
Therefore, we tested RBPA in the same conditions by including the
1/0 operation time. Tab. 3 and Fig. 6 show that MeshLab BPA, with
radius autoguessing and clustering, is a little bit faster than RBPA.
Tab. 4 and Fig. 7, instead, show that MeshLab BPA without radius

RBPA | MeshLab BPA
Dataset cardinality 82 point clouds
Average num. pts. 24859 points
Average Preproc. Time | 3.9s. 39s.
Average Reconstruction Time | 0.81 s. 0.72s.
Max Reconstruction Time | 1.75s. 1.69 s.
Average Number of triangles | 48620 40644

Table 3: RBPA and MeshLab BPA (with clustering) satistics. The
reconstruction time includes the 1/0 overhead.

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

=

»
«
g
P4
‘Kt

>

3
,
¥
4
«
»
o
b

L]
1
E
3
T
51 + . -+ + ¥
H
g
g
&

e o
B3

52227

Meshlab BPA Clustered

Figure 6: RBPA (with our radius estimation) and MeshLab BPA
(with radius autoguessing and clustering) reconstruction time. The
range images (x-axis) are sorted by increasing number of points.

RBPA | MeshLab BPA
Dataset cardinality 82 point clouds
Average num. pts. 24859 points
Average Preproc. Time | 3.9s. 39s.
Average Reconstruction Time | 0.81 s. 7.17 s.
Max Reconstruction Time | 1.75s. 34.2s.
Average Number of triangles | 48620 48446

Table 4: RBPA and MeshLab BPA (without clustering) satistics.
The reconstruction time includes the I/O overhead.

clustering is much slower than RBPA. Fig. 11 shows reconstructed
meshes by MeshLab BPA.

Finally, we compared our method to Organized Fast Mesh
[HB14], which tries to build the best triangle for each point in the
range image by considering only its adjacent points. Tab. 5 and
Fig. 5 show a faster runtime for Organized Fast Mesh, mainly due
to the simpler workflow and the much smaller neighborhood size.
However, our approach is able to link points even if they are sepa-
rated by a few invalid range measurements and to cope with clear
outliers, as shown in Fig. 10.

Reconstruction Time (sec.)
& 8 B 8

5

Figure 7: RBPA (with our radius estimation) and MeshLab BPA
(with radius autoguessing and without clustering) reconstruction
time. The range images (x-axis) are sorted by increasing number of
points.

124 G. Mariosa & N. Fioraio & A. Franchi & L. Di Stefano / Surface Reconstruction from Range Images

']
A

Figure 8: BPA (left) and RBPA (right) reconstruction using our radius estimation. Note the equivalent level of detail.

RBPA | Fast Org. Mesh

Dataset cardinality 82 point clouds
Average num. pts. 24859 points
Average Preproc. Time | 3.9s. -
Average Reconstruction Time | 0.32s. 0.018 s.
Max Reconstruction Time | 0.92s. 0.06 s.
Average Number of triangles | 48577 47320

Table 5: RBPA and Organized Fast Mesh [HB14].

5. Conclusions

In this work we have investigated a novel BPA implementation
suited for range images. We have shown that by exploiting pixel
adjacencies on the range image and by considering a constant
number of neighbors, our RBPA builds meshes in much less
processing time than BPA, while generating a comparable or
higher number of triangles. Moreover, our robust and automatic
radius estimation algorithm allows for finding the best sequence
of radius values only by specifying the number of iterations of

the reconstruction algorithm. This allows to prevent to specify a
user-defined metric radius value as input parameter. One limitation
of our approach is the computational time overhead in case of very
large range images since the sliding window scans the image with
one pixel step. We fixed the sliding window size in an heuristically
manner.

The guidelines for future work should be estimating the best
sliding window size. Eventually, we noticed slight differences
between meshes reconstructed by orthogonal projection and those
yielded by perspective projection. Therefore, another direction for
future work concerns assessing and analyzing the mesh differences
both quantitatively and qualitatively.

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

G. Mariosa & N. Fioraio & A. Franchi & L. Di Stefano / Surface Reconstruction from Range Images 125
Figure 9: BPA (left) and RBPA (right) reconstruction using the radius estimation proposed in [Digl4]. Note the lower quality compared to

Fig. 8.

Figure 10: Reconstruction through Organized Fast Mesh [HB14] reconstruction. On the left, the algorithm fails by linking points to a clear
outlier. On the right, the reconstruction quality is quite low, especially on the nose, the right hand and the hat.

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

126 G. Mariosa & N. Fioraio & A. Franchi & L. Di Stefano / Surface Reconstruction from Range Images

Figure 11: MeshLab BPA using radius autoguessing with clustering (right) and without clustering (left). Note, although the level of detail
is similar to the RBPA reconstructions of Fig. 8, the meshes at the bottom for which MeshLab can’t reconstruct part of the original surface

(right arm).

References

[AB98] AMENTA N., BERN M.: Surface reconstruction by voronoi fil-
tering. In Proceedings of the Fourteenth Annual Symposium on Compu-
tational Geometry (New York, NY, USA, 1998), SCG *98, ACM, pp. 39—
48. 1

[ABK98] AMENTA N., BERN M., KAMVYSSELIS M.: A new voronoi-
based surface reconstruction algorithm. In Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1998), SIGGRAPH 98, ACM, pp. 415-421. 1

[ACDL00] AMENTA N., CHOI S., DEY T. K., LEEKHA N.: A sim-
ple algorithm for homeomorphic surface reconstruction. In Proceedings
of the Sixteenth Annual Symposium on Computational Geometry (New
York, NY, USA, 2000), SCG 00, ACM, pp. 213-222. 1

[ACKO1] AMENTA N., CHOI S., KOLLURI R. K.: The power crust. In
Proceedings of the Sixth ACM Symposium on Solid Modeling and Ap-
plications (New York, NY, USA, 2001), SMA ’01, ACM, pp. 249-266.
1

[AFS*11] AGARWAL S., FURUKAWA Y., SNAVELY N., SIMON 1., CUR-
LESS B., SEITZ S. M., SZELISKI R.: Building rome in a day. Commun.
ACM 54,10 (Oct. 2011), 105-112. 1

[BMR*99] BERNARDINI F., MITTLEMAN J., RUSHMEIER H., SILVA
C., TAUBIN G.: The ball-pivoting algorithm for surface reconstruction.
IEEE Transactions on Visualization and Computer Graphics 5, 4 (Oct.
1999), 349-359. 1,2

[Boi84] BOISSONNAT J.-D.: Geometric structures for three-dimensional
shape representation. ACM Trans. Graph. 3, 4 (Oct. 1984), 266-286. 1

[Cig] CIGNONI P.: MeshLab. URL: http://meshlab.
sourceforge.net/. 4,5

[Digl4] DIGNE J.: An Analysis and Implementation of a Parallel Ball
Pivoting Algorithm. Image Processing On Line 4 (2014), 149-168. 1, 2,
4,5,8

[EDR83] EDELSBRUNNER H., DAVID K., RAIMUND S.: On the shape
of a set of points in the plane. IEEE Transactions on information theory
29, 4 (July 1983), 551-559. 1

[EM94] EDELSBRUNNER H., MUCKE E. P.: Three-dimensional alpha
shapes. ACM Trans. Graph. 13,1 (Jan. 1994), 43-72. 1

[HB14] HoLz D., BEHNKE S.: Approximate triangulation and region
growing for efficient segmentation and smoothing of range images.
Robot. Auton. Syst. 62,9 (Sept. 2014), 1282-1293. 4,5,7, 8

[KBHO6] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface re-
construction. In Proceedings of the Fourth Eurographics Symposium
on Geometry Processing (Aire-1a-Ville, Switzerland, Switzerland, 2006),
SGP ’06, Eurographics Association, pp. 61-70. 2

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high res-
olution 3d surface construction algorithm. In Proceedings of the 14th
Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1987), SIGGRAPH ’87, ACM, pp. 163-169. 1

[PDS15] PETRELLI A., DI STEFANO L.: Pairwise registration by local
orientation cues. Computer Graphics Forum (2015). 4

[RC11] Rusu R. B., CoUSINS S.: 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation
(ICRA) (Shanghai, China, May 9-13 2011). 4

[Sall0] SALMAN N.: From 3D point clouds to feature preserving meshes.
Theses, Université Nice Sophia Antipolis, Dec. 2010. 1

[ZRB09] ZoOLTAN C. M., RADU B. R., BEETZ M.: On Fast Surface
Reconstruction Methods for Large and Noisy Datasets. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA)
(Kobe, Japan, May 12-17 2009). 1

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

http://meshlab.sourceforge.net/
http://meshlab.sourceforge.net/

