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Abstract
In this paper we propose a method for segmenting blood vessels in retinal images based on the shearlet transform. Shearlets
are a relatively new directional multi-scale framework for signal analysis, which have been shown effective to enhance signal
discontinuities such as edges and corners at multiple scales. The algorithm we propose builds on the idea of enhancing ridge-
like structures at different scales by computing the shearlet transform with an appropriate mother function, the mexican hat
wavelet. This allows us to detect precisely structures of different widths. We provide an experimental analysis of our approach
on a benchmark dataset and we show very good performances in comparison with other multi-resolution methods from the state
of the art.

1. Introduction

The segmentation of blood vessels from a retinal image plays a
key role in assessing the vessels morphological properties such as
length, width, tortuosity and/or branching pattern and angles. These
properties are wildly used for the diagnosis, treatment, and evalua-
tion of various cardiovascular and opthalmologic diseases such as
diabetes, hypertension, arteriosclerosis among others [KB11].

In a nutshell, the process of blood vessel segmentation consists
in generating a binary mask in which pixels are labeled as vessel
or background. The goal is to capture as much detail (fine vessels)
as possible, simultaneously avoiding false positives and, ideally,
preserving the vessel connectivity.

Many approaches for automated vessel segmentation have been
reported in the literature over the years. In a recent survey
[FRH∗12], those methods have been divided into six main cate-
gories; (i) pattern recognition techniques, (ii) matched filtering, (iii)
vessel tracking/tracing, (iv) mathematical morphology, (v) multi-
scale approaches, (vi) model based approaches and (vii) paral-
lel/hardware based approaches. Of our special interest are multi-
scale image representations, where the idea is to better extract
blood vessels having varying width at different scales [MPHS∗99,
MPHT∗07, MPHTP07, ABPS08, FHK∗08, VD10].

In this work, we address the problem of detecting and segment-
ing the blood vessel in a retinal image by using the fast finite
shearlet transform [HS14]. Contrary to the traditional wavelets,
shearlets are capable to efficiently capture the anisotropic infor-
mation in multivariate problem classes. They have been shown ef-
fective to enhance signal discontinuities such as edges [YLEK09,
DPODV15a], corners [DPODV15b] and also isotropic features like
blobs [DPNODV16] at multiple scales. The vessel segmentation

algorithm we propose builds on the idea of enhancing ridge-like
structures in the image at multiple scales. We define a ridgeness
measure R associated with each pixel at a given scale and nor-
malized with respect to each scale considered. Then we obtain a
binary map of vessel/background points by means of a hystere-
sis thresholding. Notice that we also exploit the sparseness prop-
erty of the shearlet transform in a first noise removal phase. Our
algorithm is elegant and effective, and produces accurate segmen-
tations. We experimentally assess it on the DRIVE dataset where
we show very good performances in comparison with other multi-
resolution methods.

The remainder of this paper is organized as follows: in Section
2 we review the fast finite shearlet transform. Section 3 propose
the blood vessel segmentation method based on shearlets. Section
4 reports the experimental results of the proposed method on the
DRIVE dataset. Section 5 is left to a final discussion.

2. The Fast Finite Shearlet Transform

The shearlet transform can be computed by different implemen-
tations [YLEK09, KSZ12, KL12, KKL12, KLZ12, EL12]. Motived
by previous results for edge and corner detection [DPODV15a], we
use the Fast Finite Shearlet Transform (FFST) introduced in [HS14]
whose definition we briefly recall.

Let I be an image of size N1×N2, where (0,0) (0,N2− 1) and
(N1 − 1,0) denote left-bottom, left-top and right-bottom corners,
respectively. The FFST of I (with j0 scales) is defined as

SH(I)( j,k,m) =


〈I,ψh

j,k,m〉
〈I,ψv

j,k,m〉
〈I,φm〉

(1)

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/stag.20161375

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/stag.20161375


F. Levet, M.A. Duval-Poo, E. De Vito & F. Odone / Retinal Image Analysis with Shearlets

where j = 0, . . . , j0−1 labels the (coarse-to-fine) scales, the index
k =−b2 j/2c, . . . ,b2 j/2c parametrizes the shearing transforms, and
m = (m1,m2) is associated with translations, m1 ∈ {0, . . . ,N1−1},
m2 ∈ {0, . . . ,N2− 1}. In the right side of Eq. (1) 〈·, ·〉 denotes the
Euclidean scalar product in RN1×N2 , the filters ψ

h,v
j,k,m are the hori-

zontal and vertical shearlets

ψ
h,v
j,k,m(n1,n2) = 2−3 j/4

ψ
h,v(x1,x2) (2)

x1 = 2 j (n1−m1)/N1 + k 2 j/2(n2−m2)/N2

x2 = 2 j/2 (n2−m2)/N2

with n1 = 0, . . . ,N1−1, n2 = 0, . . . ,N2−1 (see Fig. 1 showing the
behavior in the Fourier domain). Note that, in space, a shearing k
leaves the horizontal lines invariant, whereas vertical lines are ro-
tated around the intersection with the x-axis to have direction (k,1).
Hence the shearing parameter k labels the orientations and, in the
following, we refer to k as the orientation direction.

Figure 1: Support of the shearlets ψ̂
h
j,k,m (in the frequency domain)

for different values of j and k.

The generating function ψ
h ∈ L2(R2) factorizes in the Fourier

domain as

ψ̂
h(ω1,ω2) =

{
ψ̂1(ω1)ψ̂2

(
ω2
ω1

)
|ω2/ω1| ≤ 1, |ω1| ≥ 1

0 otherwise,

where the function ψ̂1 is a 1D-dimensional wavelet and ψ̂2 is a 1D
bump function, see Fig. 2. The specific choice of ψ1 and ψ2 influ-
ences the class of local features that are enhanced by the shearlet
transform (see Sect. 3.1). The function ψ

v is defined in a similar
way by interchanging ω1 and ω2. The filters φm (with m ranging as
above) are generated by translation of a suitable scaling function φ,

φ̂m(ω1,ω2) = φ̂(ω1,ω2)e−2πi( ω1m1
N1

+
ω2m2

N2
)

and they provide a coarse scale system associated with the low fre-
quency region. The fast finite shearlet transform can be efficiently
computed by applying the 2D fast Fourier transform (fft) and
its inverse (ifft). With respect to the original implementation
in [HS14] we use a dyadic scale 2− j instead of 4− j to reduce the
gap between consecutive scales.
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Figure 2: The Mexican hat wavelet ψ̂1 and the bump function ψ̂2
in the Fourier domain.

3. Blood Vessel Segmentation with Shearlets

Blood vessels (arteries and veins) appear in a retinal image as elon-
gated features in a wide range of widths (see Fig. 3). Arteries trans-
port blood rich in oxygen therefore they appear brighter in the im-
age, while veins are visualized barker since they transport the blood
at a low oxygen level. The central reflex (the light reflex of the inner
parts of the vessels) is wider in arteries and smaller in veins.

Due to their characteristic, blood vessels can be detected as ridge
features. In image processing ridges are points for which the main
principal curvature assumes a maximum (minimum) in the main
principal curvature direction [Har83].

Figure 3: Classification of blood vessels in a retinal image. Veins
(1) and Arteries (2).

As we can observe in Fig. 3, the width of a vessel decreases
gradually as it travels outward from the optic disk. Thus, the use
of a multi-scale representation of the image seems natural for the
blood vessels detection.

3.1. Scale Selection with Shearlets

Multi-scale frameworks, like scale-space, wavelets and shearlets,
represent image structures at multiple scales and are thus appropri-
ate for detecting structures or features with different spatial extent.

Lindeberg showed in his seminal works [Lin98b, Lin98a] that
the detection of local maxima over scales of normalized differen-
tial entities provides a consistent framework for generating hypoth-
esis about local appropriate scales for detecting image features such
as blobs, corners, edges and ridges. Furthermore, that ridges have

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

152



F. Levet, M.A. Duval-Poo, E. De Vito & F. Odone / Retinal Image Analysis with Shearlets

the characteristic property that the selected scales on a scale-space
ridge reflect the width of the ridge.

In this section, we show how shearlet coefficients can detect the
correct scale of ridge features while providing directional informa-
tion. We stress that the choice of ψ̂1 and ψ̂2 influences the type of
local features that are enhanced by the shearlet transform. Thus, in
this work we made the same choice as in [DPNODV16] where ψ̂1
is the Mexican hat wavelet and ψ̂2 is a smooth function with com-
pact support (see Fig. 2). With this selection, the authors in [DPN-
ODV16] derived a measure which is very effective for blob-like
features detection and that is closely related to the Laplacian of
Gaussian. They also demonstrated that the measure satisfies the
perfect scale invariance property in the continuous case.

In our work we use the same measure for detect ridge features
of a retinal image at multiple scales. Formally, the R measure (as
is going to be called in this work) is the scale-normalized sum of
the fast finite shearlet transform coefficients across the shearing pa-
rameter,

R( j,m) = 2
5 j
4 ∑

k
SH(I)( j,k,m), (3)

where j,k,m are the scaling, shearing and translation parameters.
Fig. 4 shows theR measure of a retinal image at different scales.

Notice that this measure will serve our purposes of segmenting
the ridge features, since at their appropriate scales, ridges can be
approximated by the second derivative of a Gaussian without taken
into account the central reflex of the blood vessel and thus obtain a
complete enhancement of the blood vessel.

Finally, blood vessels can be simply identified as those points m
in the intensity image that assumes a maximum over scales on the
theR measure,

S(m) = max jR( j,m). (4)

3.2. The Shearlet Blood Vessel Segmentation Method

We now describe the proposed Shearlet Blood Vessel Segmentation
(SBVS) method. The input of our method is a color retinal image,
also known as fundus image, which is acquired by making pho-
tographs of the back of the eye. And the output is a binary image
that represents the retinal vessel map.

The proposed method is composed of three main parts: (a) pre-
processing (b) shearlet multi-scale analysis and (c) segmentation
and post-processing.

Pre-processing. The first step is to convert the input color im-
age to a intensity image. However, instead merging all the chan-
nels, a common practice in blood vessel segmentations methods is
to select only the green channel since it exhibits the best vessel-
background contrast.

Next the CLAHE (Contrast Limited Adaptive Histogram Equal-
ization) operator is used to produce local contrast enhancement and
also can reduce the undesired noise amplification of the retinal im-
age [PAA∗87].

Shearlet multi-scale analysis. We begin by computing the shear-
let transform, Eq. (1), of the pre-possessed input image and then
remove the noise from the image signal.

(a) max jR (b) max jR after hard thesholding

Figure 5: Example of noise removal using shearlets on a retinal
image.

It is well known that sparse representations are very useful in
decorrelating the image signal from the noise. This notion has been
formalized in the classical wavelet shrinkage approach [DJ94],
and has lead to the development of successful denoising methods.
Shearlets have been shown to be highly effective in denoising im-
ages [ELL08, ELC09]. Compared to classical wavelets, shearlets
have the advantage to also perform the thresholding on the direc-
tional decomposition of the image and thus preserve the main di-
rection of the features.

Therefore, in our method we remove the image noise by hard
thresholding the shearlet coefficients at every position, scale and
direction [ELL08],

SH(I)( j,k,m) =

{
SH(I)( j,k,m) |SH(I)( j,k,m)| ≥ τ j,k,m

0 |SH(I)( j,k,m)|< τ j,k,m
(5)

The threshold is given by τ j,k,m = σ
2
η j,k/σ

2
j,k,m, where σ

2
η j,k is the

noise variance at scale j and shear k and σ
2
j,k,m is the variance of

the m-th coefficient at scale j and shear k. The variances σ
2
η j,k are

estimated by using a Monte-Carlo technique in which the variances
are computed for several normalized noise images and then the es-
timates are averaged. Fig. 5 shows an example of noise removal
using shearlets on a retinal image.

Once the shearlets coefficients are noise free, we compute the
R measure (Eq. 3) and then we select the pixels values that are
maximum over the scale dimension (Eq. 4).

Segmentation and post-processing. For segmenting the enhanced
blood vessels from the rest of the image we binarize the obtained
intensity image using hysteresis threshold [Can86]. This is a bi-
threshold procedure typically used for two class object-background
pixel segmentation. The blood vessel pixels with a value below the
lower threshold or above the upper threshold are definitely removed
or kept respectively. The other blood vessel pixels will be kept if
they are next to those that have already been selected.

Finally, once he obtained the binary segmented image, we re-
move all small connected components that usually belongs to un-
removed noise or some retina pathologies. The proposed method is
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(a) j = 2 (b) j = 3 (c) j = 4 (d) j = 5

Figure 4: TheR measure of a retinal image at different scales j.

Figure 6: Qualitative result of our method on a retinal image.

Algorithm 1 Shearlet Blood Vessel Segmentation (SBVS).
Input I: retinal color image, j0: number of scales.
Output S: segmented binary image.

procedure SBVS(I, j0)
/* pre-processing */
IG = get_green_channel(I);
IG = clahe(IG);
/* shearlet multi-scale analysis */
SH = ffst(IG); . /* Eq. 1 */
SH = remove_noise(SH); . /* Eq. 5 */
for j = 0, . . . , j0−1 do
R( j,m) = 2

5 j
4 ∑kSH( j,k,m), ∀m ∈ IG

end for
S = max j(R( j,m)), ∀m ∈ IG
/* segmentation and post-processing */
S = hysthresh(S);
S = remove_cc(S);
return S;

end procedure

summarized in Alg. 1, while Fig. 6 shows a qualitative result of our
method on a retinal image.

4. Experimental Results

In this section we preset the experimental results obtained by using
the proposed method on the well known DRIVE dataset [SAN∗04].

DRIVE (Digital Retinal Images for Vessel Extraction) is
a publicly dataset (available at http://www.isi.uu.nl/
Research/Databases/DRIVE/) that consists of a total of 40
color JPEG compressed fundus images. The images were obtained
from a diabetic retinopathy screening program in the Netherlands.
The screening population consisted of 453 subjects between 31 and
86 years of age. Each image is captured using 8 bits per color plane
at 768×584 pixels. The field of view (FOV) of each image is circu-
lar with a diameter of approximately 540 pixels. The images of the
dataset have been cropped around the FOV. For each image, a mask
image is provided that delineates the FOV. The set of 40 images
was divided into a training and test set both containing 20 images.
For the training images, a single manual segmentation of the blood
vessels is available. For the test cases, two manual segmentations
are available; one is used as a gold standard, the other one can be
used to compare computer generated segmentations with those of
an independent human observer. All human observers that manu-
ally segmented the blood vessels were instructed and trained by an
experienced ophthalmologist. Fig. 7 shows the first retinal image of
the DRIVE dataset.

The evaluation of blood vessel segmentation methods in reti-
nal images is a pixel-based classification result, where any pixel
of the segmented image is classified either as blood vessel or a sur-
rounding tissue. There are four possibilities; two classifications and
two misclassifications. The classifications are the true positive (TP)
where a pixel is identified as a blood vessel in both the ground truth
and segmented image, and the true negative (TN) where a pixel is
classified as a non-vessel in the ground truth and the segmented im-
age. The two misclassifications are the false negative (FN) where a
pixel is classified as non-vessel in the output image but as a blood
vessel pixel in the ground truth image, and the false positive (FP)
where a pixel is marked as blood vessel in the segmented image but
non-vessel in the ground truth image. In addition, the true positive
rate (TPR) represents the fraction of pixels correctly detected as
blood vessel pixels. The false positive rate (FPR) is the fraction of
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(a) Fundus image (b) Image mask (c) Manual segmentation

Figure 7: The first retinal image of the DRIVE dataset.

Method SEN SPE ACC AUC
Martinez et al. [MPHS∗99] 0.639 - 0.918 -
Martinez et al. [MPHT∗07] 0.725 0.965 0.934 -
Martinez et al. [MPHTP07] 0.660 0.961 0.922 -
Anzalone et al. [ABPS08] - - 0.942 -
Vlachos et al. [VD10] 0.747 0.955 0.929 -
SBVS (our approach) 0.728 0.971 0.940 0.932

Table 1: Comparison of multi-scale approaches for blood vessel
segmentation on the DRIVE dataset.

pixels erroneously detected as blood vessel pixels. The commonly
used performance metrics are the followings:

• Accuracy (ACC). It is the ratio of the total number of correctly
classified pixels (TP + TN) to the number of pixels in the image
FOV.

• Sensitivity (SEN). Reflects the ability of the algorithm to detect
the vessel pixels: TP/(TP + FN).

• Specificity (SPE). Reflects the ability to detect non-vessel pixels:
TN/(TN + FP).

Another common way of evaluate the segmentation method perfor-
mance is by plotting the Receiver Operating Characteristic (ROC)
curve. This curve plots the fraction of blood vessel pixels correctly
classified, namely the TPR, versus the fraction of non-vessel pixels
wrongly classified as blood vessel, namely the FPR. The closer the
curve approaches the top left corner, the better is the performance
of the method. Figure 8 reports the ROC curve obtained by our
algorithm on the DRIVE dataset. A frequently used performance
measure extracted from the ROC curve is the value of the Area Un-
der the Curve (AUC) which is 1 for an optimal method. Notice that
for retinal images, the TPR and FPR are computed considering only
pixels inside the FOV.

The proposed method SBVS is compared with other multi-scale
algorithms. The results can be observed in Tab. 1. As we can ob-
serve our method obtain comparable, in occasions better, results
with respect to other multi-scale blood vessel segmentation ap-
proaches.

0 0.2 0.4 0.6 0.8 1

False Positive Rate (1-Specificity)

0

0.2

0.4

0.6

0.8

1

T
ru

e 
P

o
si

ti
v

e 
R

at
e 

(S
en

si
ti

v
it

y
)

Figure 8: ROC curve of the proposed method for the DRIVE
dataset.

5. Conclusions

We presented a method for retinal image analysis based on the
shearlet transform. The method performs vessel segmentation in
three main steps: preprocessing, multi-scale analysis, hysteresis
thresholding. In the multi-scale analysis step, we compute the
shearlet transform of an image, relying on the mexican hat wavelet
which allows us to enhance ridge structures. We first exploit the
spareness of the transform to perform noise removal. Then we com-
pute, for each scale a map enhancing ridges, which we then merge
in a final global map. Thanks to a hysteresis thresholding proce-
dure we associate each pixel with a vessel / background label. Our
method is elegant and effective and has the potential to provide
further descriptive elements of the detected vessels to be used in
future analysis tasks, such as measures of tortuosity or estimates of
the vessel width; this will be the goal of future research.
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