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Abstract

In recent years, fabrication technologies developed at a very fast pace. However, some limitations on shape and dimension still
apply both to additive and subtractive manufacturing, and one way to bypass them could be the subdivision of the object to build.
We present here a simple algorithm, based on the polycube representation of the original shape, able to decompose any model
into simpler portions that are better fabricable. The shape is first mapped in a polycube and, then, split to take advantage of the
simple polycube subdivision, thus having, quite easily, a partition of the model at hand. The main aim of this work is to study
and analyse pros and cons of this simple subdivision scheme for fabrication, in view of using both the additive and subtractive
pipelines. The proposed subdivision scheme is computationally light and it produces quite good results, especially when it is
applied to models that can be easily decomposed in a small collection of cuboids. The obtained subdivisions are suitable for 3D

printing.
CCS Concepts

eComputing methodologies — Mesh geometry models; eHardware — Design for manufacturability;

1. Introduction

The introduction of cheap and small 3D printers has boosted the
research in the field of digital model representation for fabrication.
Novel algorithms and techniques have been developed to make 3D
printing a possibility to reliably fabricate resistant, accurate and
cheap objects. As a consequence of this explosion, many manufac-
turers have started selling low-price entry-level 3D printers, leading
to a good diffusion between hobbyists. Those kind of 3D printers
have, of course, less functionalities and features compared to the
high-level ones. One of the most noticeable difference is the di-
mension of the printing chamber (the maximum volume that can
be printed). The only possibility to print big objects is to decom-
pose them into multiple portions, print them separately and later
reassemble the object.

Beside 3D printing, that we can call Additive Manufacturing,
a different approach of fabricating digital shapes, usually called
Machining or Subtractive Manufacturing, has a large diffusion in
the field of mechanical engineering. This latter approach makes use
of CNC milling machines and is routinely used since decades, in the
industry, to fabricate parts out of metals blocks or, sometimes, other
materials like wood or foam. As with 3D printing, the dimension
of the object can be a constraining factor, that can be addressed
with the same techniques. In machining, other important constraints
apply to the shape of the object, and a way to bypass them is to
subdivide the object into pieces that satisfy the required features.

An interesting and low cost approach for the subdivision of the
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3D model (required in some of the fabrication processes), can be
realized via its polycube parametrization [THCMO4]. Indeed, poly-
cubes offer a compact and simplified representation of the model,
through a set of connected cuboids. Our work aims to subdivide
a 3D model by using the computationally lightweight subdivision
of its polycube, and to analyse the obtained subdivision explicitly
addressing both Additive and Subtractive Manufacturing.

2. State of the art

Our work and analysis are related to different research topics in
computer graphics that we cover in the following sections.

2.1. Polycube maps

Polycube maps (or just polycubes) are simple polyhedra composed
only by orthogonal faces. This compact representation of a mesh
has been proposed by Tarini et al. [THCMO04], in order to obtain a
seamless texturing. Polycubes have to respect three main constraints:
axis-aligned faces, only 90 degree dihedral angle and planar faces.
These constraints cause the polycubes to be a simplified representa-
tion of the original mesh. As a consequence, polycubes can be useful
in some manipulation and analysis. They offer a good compromise
among a simplification of the model, the respect of the original
shape and its topology.

Polycubes are created to have a one-to-one mapping with the
original models, so every vertex and triangle of the model is mapped
on the polycube. As a consequence, it is possible to manipulate
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the polycube’s elements, and trivially map the manipulation to the
original model. The main advantage is that polycube’s elements can
be manipulated in their axis-aligned version. Multiple studies have
exploited this characteristic in different research fields. The first
application is seamless texture-mapping, proposed in [THCMO04].
The surface of the polycube is used as the texture-domain, and it
can be used in multiple resolution models without any additional
computation. Provided the polycubes offer a low distortion mapping,
this technique is efficient and has almost no drawbacks.

Other application fields are trivariate spline fitting, volumetric
texturing and hexahedral meshing. Indeed, any polycube can be
trivially gridded, obtaining a completely regular hexmesh [LMPS16].
Assuming the polycube mapping is volumetric, it is possible to map
this hexmesh to the original shape. The obtained hexmesh is highly
regular (the topology is computed on the polycube parametric space),
and its quality depends on the polycube mapping, as every corner in
the polycube is mapped to the hexmesh as a singularity.

In the past years, multiple algorithms have been proposed to cre-
ate polycubes, each one addressing specific characteristics. The first
algorithm has been proposed in 2008 by Lin et al. [LJFWO08]. In
2009 He et al. [HWFQO09] proposed an alternative method, based on
the principle of Divide et Impera. Gregson et al. in 2011 [GSZ11]
analysed the problem of computing hexmeshes using the polycube
parametrization. In order to do so, they developed a Deformation
based approach to create polycubes. In 2013 Livesu et al. [LVS*13]
proposed an approach based on the use of a graph-cut classification
of the triangles of the mesh, followed by an hill-climbing optimiza-
tion of the boundaries; this proposal offers a fidelity vs compactness
use of parameters that allows for several possible polycubes map-
ping. Another approach is proposed bu Huang et al. in [HIS* 14],
and it obtains polycubes with low distortion and low corner count.

As well as polycubes generation algorithms, other relevant works
on polycubes have been done. A shape optimizator, very useful for
this analysis, have been proposed by Cherchi et al. [CLS16] in 2016.
In this work, an algorithm to align polycubes’ singularities has been
proposed. While the aim of that work is not the creation of polycubes,
having a "good-quality" polycube, with a low number of corners
and a good singularities alignment, is very helpful. Polycubes with
these characteristics proved to be useful in our work.

2.2. Fabrication

Fabrication is an emerging field in computer graphics research. It
includes all the processes and techniques that can be used to produce
real objects from digital models. The most relevant technology
are, but are not limited to, 3D printers and CNC milling machines.
These represents two different approaches to fabrication, usually
referenced as additive and subtractive fabrication.

Researches in the fabrication field are typically related to addi-
tive manufacturing, while a very few works addresses subtractive
manufacturing. We will briefly review some works regarding both
of them.

2.2.1. Additive manufacturing

Additive manufacturing (or additive fabrication) makes use of ma-
chines that build layer by layer the final object. These machines

are commonly referenced as 3D printers, and they can use multiple
materials. The most common printers use thermoplastic polymers,
and deposit the fused filament to build the layer. However, other
technologies are available to use other materials, such as liquid
resins, metals and various powders.

This kind of manufacturing does not really impose any kind of
constraints on the model’s shape. However some models requires
external support structures, as 3D printers can not directly print
steep overhangs or islands. Those structures have to be manually
removed after the printing, and in an industrial context they represent
a significant waste of material and time. To avoid this waste Hu et
al. proposed in [HLZCO14] an algorithm to subdivide the model
in approximate pyramidal shape, which can be printed without
supports. Herholz et al. in [HMA15] propose a similar approach, by
exploiting the surface deformation to reduce the number of pieces.
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Figure 1: Isiands and overhangs need external support structures.

The hard constraint imposed by 3D printers regards the dimen-
sion of the object, as it is obviously impossible to print anything
bigger than the printing chamber. The solution to this problem
is to subdivide the model into smaller portions, print them, and
reassemble them back. Many works that face this problem have
been proposed in the last years, and the most remarkable ones are
in [LBRM12], [SFLF15] and [HFW11]. The algorithm proposed
by Song et al. in [SFLF15] creates self-interlocking structures, to
avoid the use of glue or connectors, and it obtains a strong struc-
ture that can be disassembled and reassembled multiple times. The
algorithm proposed by Hao et al. in [HFW11] tries to minimize
the aesthetic impact of seams. Lastly, the algorithm proposed by
Luo et al. in [LBRM12] optimizes six objective function, to give
the designer the ability to obtain the desired result. An extensive
discussion on pros and cons of additive fabrication, subdivision and
related issues can be found in the survey of Livesu et al. [LEM*17].

2.2.2. Subtractive manufacturing

Subtractive manufacturing, also known as machining or subtractive
fabrication, consists in removing material from a starting block
until the desired shape is achieved. The diffusion of CNC milling
machines has made this technology very diffused to fabricate regular
objects out of wood and metals blocks.

The most diffused and simple milling machines can move their
tool on the three axes of the cartesian system and, thus, they have
three degrees of freedom. This greatly limits the class of objects they
can produce. Indeed, shapes to be milled can be only height-fields,
in other words, each line parallel to the z axis can cross the shape
only once, as it is shown in Figure 2. In order to produce shapes
that are no height-fields, in [HMA15], Herholz et al. proposes an
algorithm to subdivide the object. Their subdivision aims to create
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millable molds which can be used to make the parts of the final

model.

base not flat

g
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Figure 2: The model on the left is millable (it is an height-field);
the model in the middle is not millable (it is not an height field and,
thus, it has undercuts), the model on the right is not millable even if
it is an height field because its base is not flat.

More complex machines have higher degrees of freedom, typi-
cally moving the tools over 4 and 5 axes. These machines impose
looser constraints over the shape to be produced, but, at the same
time, they are more expensive that the 3-axis ones. However, it is
possible to add accessories to a 3-axis machine to add a 4th degree
of freedom as an axis around which the part can rotate. This is quite
useful, as a 4-axis machine can produce any model that, given a
rotation axis, exposes every point of the surface in at least one rota-
tion. This constraint is weaker than the one imposed by the 3-axis
machines.

3. Problem overview

The goal of our work is to decompose complex models into simpler
parts that better suit limitations in current fabrication processes, both
additive and subtractive. In order to do so, we want to exploit the
polycube structure and reflect this subdivision in the original model.
This allows us to have a set of simplified shapes to manage, each
one of them with proper features and rotation.

As well stated in [LEM™17], when planning the production of an
object in additive manufacturing, it is possible to decide to subdivide
the object in multiple pieces. This can be due to multiple reasons
but one of the most common situation is when the object is bigger
than the printing chamber. An important work on this subject is
the one of Luo et al. in [LBRM12]. In subtractive manufacturing
the subdivision can be useful if the model violates the constraints
imposed by the used technology. Applying a convenient subdivision
can possibly lead to pieces that respect the given constraints (height-
field condition).

Our work does not aim to solve the problem by proposing a better
solution than the ones proposed in literature. Our goal is to study
and analyse the subdivision inducted on a shape by its polycube
map, in a smart and efficient way. Indeed, while [LBRM12]
optimizes a model with six objective functions, giving the designer
the ability to obtain multiple different subdivisions, we exploit the
unique (and minimal) decomposition of the polycube. Furthermore,
we want to study this subdivision addressing both additive and
subtractive manufacturing. These technologies impose different
constrains, and an explicit differentiation is necessary.

Our proposed production pipeline can be summarized as follows:
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1. We start from a 3D input shape

2. We build its polycube representation

3. We subdivide the polycube in cuboids

4. We build a model subdivision induced by the polycube subdivi-
sion

The third and the fourth steps of this pipeline are the main focus
of this work, as they are the basis for our analysis. A simplified 2D
representation of the pipeline is depicted in Figure 3.

We approach the third step of the pipeline creating a perfectly
regular hexahedral mesh that correspond to the volume of the poly-
cube. This allows us to perform the decomposition without handling
the irregularities of triangles and tetrahedra of the original polycube.
This hexmesh is then decomposed with a very simple sweep line
algorithm, described in the next section.

The fourth step consists in mapping the cuboids found in the pre-
vious step to portions of the original model. Once again, we exploit
the hexahedral mesh computed in the previous step, generating a
quadrilateral mesh for each polycube’s portion.
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Figure 3: 2D representation of the proposed pipeline.

4. Polycube subdivision

In the next sections we will refer to the high level representation
of a polycube, as shown in the in-
set, and we will ignore its triangle
mesh structure. Basically, a corner . g
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The main step of our pipeline is the Polycube’s cuboids decompo-
sition. We follow the idea that every concave edge in the polycube
defines a partial decomposition of the model. Each edge is axis-align,
hence it lies on two orthogonal planes. The intersections between
those planes and the polycube is the aforementioned partial decom-
position. Combining the decompositions derived by all the edges
we obtain a decomposition in simple cuboids of the polycube.
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The first step is to round each corner coordinates to integer values.
In this way, by gridding the polycube into an integer lattice, we cre-
ate a uniform integer grid inside the polycube. The result of this step
is an all-regular hexmesh corresponding to the polycube hexmesh.
The number of hexahedra composing the hexmesh depends on the
dimension of the model, but it can be scaled to easily obtain the
desired resolution in the hexmesh.

The next step is to decompose the hexmesh, by taking advantage
from the integer values of its vertices. We apply a sweep line algo-
rithm in all the tree axes and we split the lattice at every concave
edges.

Figure 4: A grid corresponding to a U-shaped mesh (left) and its
natural subdivision (right).

The major drawback of this method is that the subdivision is com-
puted in the polycube extracted grid, and not in the real polycube.
For this reason it cannot be applied to polycubes with geometric
inconsistencies, like for example self-intersections. For those sit-
uations, a more effective subdivision of the polycube has to be
computed.

The final step of the pipeline maps the subdivision onto the model,
according to the decomposition of the polycube. We decided to take
advantage of the approach used in the previous step, individually
quadmeshing all the cuboids in the hexmesh surface.

For each vertex P (x,y,z) of the hexmesh surface we determine in
which triangle it lies, using an octree as spatial data structure, and
express its position via barycentric coordinates ®g : ®; : @;. We
then determine the new vertex position P’ applying those barycentric
coordinates to the triangle in the original model. Given that A, B,C
are the vertices of the chosen triangle, we have that P’ = @y x A +
®; X B+ m; x C. An example of the final subdivision applied to the
model is shown in Figure 5.

This approach is robust and rely on well known techniques in
literatures. The complexity in time is linear to the number of vertices
in the hexmesh surface. The main advantage of this method is the
creation of quite regular boundaries between cuboids. Indeed, as
shown in Figure 6, while they are not perfectly planar, the are
definitely more regular than surfaces cut out of tetrahedra.

5. Results and Analysis

In this section we report the results of our method on several models.
In Figure 7 some examples are shown. For each shape we report
the original model, its polycube and the final decomposition. We
tested our proposed pipeline with classical 3D models and their

Figure 5: Explosion of the U-shaped mesh.

polycubes. Furthermore, for some of the model we tested the sub-
division with multiple polycubes, generated using the algorithms
proposed in [HIS*14] and [LVS*13] and optimized, in terms of
corners alignment, using the algorithm proposed in [CLS16]. This
allows us to discuss how the polycube’s characteristics influence the
final results.

In Table 1 we report, for each model, the number of pieces we
decompose it in, and how many of those are internal pieces. This
can be relevant as they are not necessary to recompose the object,
especially if the structural soundness is not a main goal. We do not
report the time elapsed to compute each subdivision, as it depends
on the desired resolution of the final model portions and not on
the model itself. Furthermore, the resolution of the integer lattice
can be changed, allowing us to find the right trade-off between the
resolution of the output pieces and the time needed to compute them.

Analysing our results we can state that while the quality of the
subdivision is not the best one can we get, it certainly is easy and
fast to compute. Our method is not intended to overcome the work
of [LBRM12] or other sophisticated decomposition algorithms, but
as a study to easily subdivide a mesh for fabrication purposes. Un-
der this aspect, our work is certainly producing good results, as
computational time can be well under the minute.
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Figure 6: Comparison between mapping a subdivision cut in the
polycube back to tetrahedra (left) and hexahedral mesh (right).
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Model Produced pieces Surface pieces Internal pieces
Airplane 92 85 7
Airplane optimized 27 27 0
Bimba 64 64 0
Bimba Polycut 37 37 0
Bunny 285 231 54
Cubespike 33 32 1
Duck 5 5 0
Eight 18 18 0
Femur 43 43 0
Foot 13 13 0
Good U 5 5 0
Homer 94 89 5
Kitten 163 146 17
Moai 37 37 0
Moai optimized 30 30 0
Sculpt 47 47 0

Table 1: Results of subdivision performed on multiple models. The optimized models are modified according to [CLS16].

Looking at the results we can see how different polycubes of the
same model yield different subdivisions. Indeed, the more edges
(or faces) there have, the more complex the subdivision can get. An
interesting aspect is how using optimized polycubes lead to better
result, with a good reduction of small and not semantic relevant
pieces.

5.1. Subdivision in additive manufacturing

We have already seen in the previous sections that one of the main
constraints when using additive technology is the size of the model.
With this technology it is possible to print almost any free-form,
using temporary supports to handle overhanging features.

The pieces produced by a polycube subdivision allow the com-
plete model to be bigger than the printing chamber. Furthermore,
the decomposition allows us to rotate every pieces to minimize the
necessity of supports; typically such orientation requires to place
the part such as the base layer is the portion that is going to be glued
to another. This causes the matching area to be slightly less regular,
but composing the model is still easy. On the other hand, if the use
of more supports and their placement on the model’s surface is not
a concern, the border faces matches perfectly.

A condition that is sufficient to avoid supporting structures while
printing a shape is the shape being a height-map. This corresponds
to the constrain of 3-axis machining as we see in the next section.

5.2. Subdivision in subtractive manufacturing

We have already seen how subtractive technology imposes strict
constraints on the model shape. There are differences between 3-axis
and 4-axis CNC milling machines manufacturing, since the different
constraints causes different results.

Regarding the 3-axis technology, the polycube-based decompo-
sition does not produce a suitable subdivision. Indeed, the border
faces are not flat, and this causes the pieces not to be height fields.
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This is the main weakness identified by our study, and in section 7
we will propose some possible solutions to it.

On the other hand, the 4-axis technology imposes less strict con-
straints, and a further extension of this method could produce suit-
able subdivisions, once identified the correct rotation axes.

The main drawback is that, in both cases, the number of parts of
a complex model is too high, and assembling them is a painful and
prone to errors task.

5.3. 3D printing examples

We were able to make some of the computed decompositions. We
present real results only on additive manufacturing since, as ex-
plained before, for the subtractive one we are far from a suitable
solution.

We fabricated the Duck and the U-shaped model, the first one is a
simple but real model of a common free-form toy, while the second
one is an abstract regular surface. These models have pretty simple
polycube mappings, and they are both partitioned into five pieces
(see Figure 8 for the two decompositions). The real fabrication
allowed us to state that the non-planarity of the border surface does
not have a major impact when reassembling the parts. On the other
hand, we were forced to use support structures while printing them.
In Figure 9 we show the reconstruction of the Duck model.

6. Limitations

Our analysis showed that the polycube-based subdivision produces
too many pieces when it is used to decompose complex models.
This causes the subdivision to include really small pieces, that does
not correspond to any relevant portion of the model. Optimized
polycubes lead to a more compact subdivision, but still present this
problem. In Figure 10 we can see the differences between the Moai
model when it is subdivided by using the original and the optimized
polycubes. Passing from 37 to 30 pieces does not really help and
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Figure 7: For each shape, on the left there is the input model, in the central column its polycube(top), and its decomposed polycube (bottom),

and, on the right, its subdivision.

Figure 8: Subdivision the U-shaped model (left) and the Duck model
(right).

both decompositions would be hard to recompose. Moreover, the
unoptimized decomposition has small parts and the optimization
step does not eliminate all of them.

Another important flaw highlighted by our analysis is the non-
planarity of the surface between the produced pieces. This charac-
teristic is well visible in Figure 11. If we could solve this issue, the

Figure 9: Pictures of the reassembled Duck.

majority of the pieces would be height-maps, therefore they would
be usable in a 3-axis fabrication process.

7. Future work

Our proposed subdivision can be improved in several ways. The
main issue we plan to address is to make the subdivision suitable
for 3-axis CNC milling machines. In particular, as seen before, the
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Figure 10: Moai model (left), and its subdivision using the original
and the optimized polycubes (respectively centre and right).

touching surfaces between pieces are not planar, causing the pieces
to be not millable even if they are height-fields.

A possible solution to this problem could be to fit a plane between
such surfaces, and move each vertex onto the plane. This would
lead to completely planar surface, that could be used as the base
surface in machining. However, this solution would not be enough
for all the models. In some of the simplest models, pieces are not
completely convex, and the subdivision would still be not usable. In
more complex models, however, the subdivision is much finer, and it
turns to be unuseful in 3-axis machining. Another possible solution
could be to split each portion in two sub-portions, by using a plane.
Choosing an appropriate plane, every piece of the subdivision (or at
least the majority of them) can be split into two height-fields.

Another interesting topic to further investigate is a post-
processing step to reduce the number of the produced portions.
As it is shown in Table 1, we can have more than a hundred parts,
and recomposing them would be an extremely tough task. A possible
strategy to face this problem could be to merge adjacent pieces in
clusters, keeping in account the printing chamber size (see Figure
12). This would not be a trivial step, as we would have to apply the
right constraints to maintain the subdivision suitable for fabrication.
Possible constraints may regard the size, to avoid to generate clusters
bigger than the printing chamber, and shape, to avoid the creation
of concave clusters.
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Figure 11: Front view of an exploded subdivision of the Cubespike.
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Figure 12: An example of possible clustering in the Moai model.

References

[CLS16] CHERCHIG., LIVESU M., SCATENI R.: Polycube simplification
for coarse layouts of surfaces and volumes. Computer Graphics Forum
35,5(2016), 11-20. 2,4, 5

[GSZ11] GREGSON J., SHEFFER A., ZHANG E.: All-hex mesh generation
via volumetric polycube deformation. Computer Graphics Forum 30, 5
(2011), 1407-1416. 2

[HFW11] HAo J., FANG L., WILLIAMS R. E.: An efficient curvature-
based partitioning of largescale stl models. Rapid Prototyping Journal
17,2(2011), 116-127. 2

[HIS*14] HUANG J., JIANG T., SHI Z., TONG Y., BAO H., DESBRUN
M.: ¢1basedd construction of polycube maps from complex shapes. ACM
Trans. Graph. 33,3 (June 2014), 25:1-25:11. 2,4

[HLZCO14] HU R., L1 H., ZHANG H., COHEN-OR D.: Approximate
pyramidal shape decomposition. ACM Trans. Graph. 33, 6 (Nov. 2014),
213:1-213:12. 2

[HMA15] HERHOLZ P., MATUSIK W., ALEXA M.: Approximating free-
form geometry with height fields for manufacturing. Computer Graphics
Forum 34, 2 (2015), 239-251. 2

[HWFQO09] HE Y., WANG H., Fu C.-W., QIN H.: A divide-and-conquer
approach for automatic polycube map construction. Computers & Graph-
ics 33, 3 (2009), 369 — 380. IEEE International Conference on Shape
Modelling and Applications 2009. 2

[LBRM12] Luo L., BARAN I., RUSINKIEWICZ S., MATUSIK W.: Chop-
per: Partitioning models into 3d-printable parts. ACM Trans. Graph. 31,
6 (Nov. 2012), 129:1-129:9. 2, 3,4

[LEM*17] LIVESU M., ELLERO S., MARTINEZ J., LEFEBVRE S., AT-
TENE M.: From 3d models to 3d prints: an overview of the processing
pipeline. Computer Graphics Forum 36,2 (2017), 537-564. 2,3

[LJFWO08] LiNJ., JIN X., FAN Z., WANG C. C. L.: Automatic polycube-
maps. In Advances in Geometric Modeling and Processing: 5th Interna-
tional Conference, GMP 2008, Hangzhou, China, April 23-25, 2008. Pro-
ceedings, Chen F., Jiittler B., (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008, pp. 3—-16. 2

[LMPS16] LIVESU M., MUNTONI A., PUPPO E., SCATENI R.: Skeleton-
driven adaptive hexahedral meshing of tubular shapes. Computer Graph-
ics Forum 35,7 (2016), 237-246. 2

[LVS*13] LI1VESU M., VINING N., SHEFFER A., GREGSON J., SCATENI
R.: Polycut: Monotone graph-cuts for polycube base-complex construc-
tion. ACM Trans. Graph. 32, 6 (Nov. 2013), 171:1-171:12. 2,4

[SFLF15] SONG P.,Fu Z., L1u L., Fu C.-W.: Printing 3d objects with
interlocking parts. Computer Aided Geometric Design 35 (2015), 137 —
148. Geometric Modeling and Processing 2015. 2

[THCMO04] TARINI M., HORMANN K., CIGNONI P., MONTANI C.:
Polycube-maps. ACM Trans. Graph. 23, 3 (Aug. 2004), 853-860. 1, 2



