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Abstract

This paper describes a new "envelope" approach for detecting object perimeters in line-drawings vectorised from sketches of
polyhedral objects.
Existing approaches for extracting contours from digital images are unsuitable for Sketch-Based Modelling, as they calculate
where the contour is, but not which elements of the line-drawing belong to it.
In our approach, the perimeter is described in terms of lines and junctions (including intersections and T-junctions) of the
original line drawing.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems; I.4.6 [Image Processing and Computer Vision]: Segmentation—
Edge and feature detection

1. Introduction

Detection of object perimeters is a fundamental cue for Sketch-
Based Modelling (SBM)—the perimeter of an object "is such a
fundamental cue to tri-dimensionality that it is hard for humans
to suppress it" [BT81].

Digital images which capture scenes of the real world are very
rich in content (i.e., they contain a large amount of information),
but they typically store information at a low semantic level (e.g.,
raster or bitmap images). In contrast, SBM inputs are verysparse
images (they contain just a reduced set of strokes), which can be
converted into high semantic line-drawings containing only lines
and junctions. In drawings which depict polyhedral objects, the
lines and junctions in a drawing are graph-like representations that
depict edges and vertices of the object.

Hence, existing approaches for identifying region boundaries
in digital images—even those adapted to sketches and drawings
[Sau03]—are inappropriate for detecting perimeters in plain line-
drawings: semantic information would be lost in resampling lines
as a raster map, which would then be processed inefficiently using
algorithms designed for large amounts of data; and the output from
such algorithms is a set of successive points—or sometimes an ex-
ternal polyline—which defines a border which envelops the region
of interest.

What SBM approaches require instead is identifying the subset
of lines and junctions which bound the depiction of the object. In
this paper, we describe and assess our new approach for determin-
ing the object perimeter. Our approach uses the 2D line-junction

connectivity of the line drawing, and works for bothwireframeand
natural representations (the former include hidden edges, while the
latter exclude them). The output is thecircuit (closed sequence of
lines and junctions) which forms the perimeter.

Some lines only partially belong to the perimeter: the visible part
of an occluded line can terminate at an intersection in a wireframe
and at a T-junction in a natural line-drawing. We detect such in-
tersections and T-junctions and include them in the sequence of
corners, which are those junctions, intersections or T-junctions that
are found to belong to the perimeter. Thus, the set of corners is an
ordered subset of the set of junctions, intersections and T-junctions.

The capability of the approach to work with intersections allows
it to find the perimeter ofmultigraphline-drawings (where no path
of lines allows visiting all the junctions). The perimeters of each
separate subgraph are determined in addition to the global perime-
ter.

The rest of the paper is organised as follows. Section 2 introduces
useful terminology for our work and explains the type of drawings
used as input in our method. In Section 3 related work is discussed.
Sections 4 explains how our algorithm works to detect the perime-
ter of engineering sketches. Section 5 shows some examples used to
validate the method. Finally, Section 6 summarizes our conclusions

2. Input information and terminology

The input required by our algorithm is aline-drawing: a list of junc-
tions and a list of lines, where a line connects two junctions (note
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the similarity with the vertex-edge graphs of graph theory). Junc-
tions are (x,y) coordinate pairs and usually correspond to vertices
of the depicted object. Lines tend to correspond to edges. But a
simple edge may split into a set of lines, depending on the input
process. The lines highlighted in thick-red in Figure 1 right could
each be one line or two; our perimeter detection algorithm allows
for either interpretation.

Some applications allow direct input of lines; others interpret
sketches(in which lines may be overtraced for emphasis) or even
images. Although vectorisation, the conversion of sketches to line-
drawings as illustrated in Fig. 1, is still an open problem (as de-
scribed in [JGHD08]), reasonably good solutions already exist for
sketches of polyhedral objects, as considered here. Zhang et al
[ZSDL06] summarise older approaches, and propose a seeded seg-
ment growing algorithm for extracting graphical primitives from a
stroke.

Figure 1: Strokes (left), segmented (right, upper thick red lines)
and non-segmented (right, lower thick red line) collinear edges.

Vectorisation does not correct the geometrical imperfections in-
herent in sketching. However, as long as the topology remains un-
altered, our perimeter detection algorithm is unaffected by such im-
perfections.

Vectorisation must however merge dangling endpoints to pro-
duce junctions which depict valid vertices (Fig. 2).

Figure 2: Merging of three endpoints (left) to form a single junction
(right).

At T-junctions in natural line-drawings (see Figure 3 left), where
the endpoint of one line should meet an intermediate point of an-
other line, vectorisation may eithersplit the second line, so as to
produce two new lines which meet the first line in an "ordinary"
trihedral junction (Figure 3 middle), or leave the second line unal-
tered while ensuring that the endpoint of the first line exactly meets
the second line (Figure 3 right).

T-junctions of natural line-drawings require no special code for
perimeter detection if treated as real trihedral junctions. The same

Figure 3: T-junction (left) may either split the second line (centre),
or ensure that the first line touches the second (right).

applies for intersections in wireframes. Since this implies that lines
that represent actual edges are split into a set of two or more sub-
lines, some properties of the line may be lost (e.g. collinearity) un-
less we enrich the line-drawing with suitable information about ge-
ometrical constraints.

In this paper, we also allow for the alternative approach: leave
the lines unsplit and add the perimeter information as a comple-
ment, and our perimeter detection algorithm is designed to deal
with both split and unsplit intersections and T-junctions (see Sec-
tion 4.1). Perhaps, this alternative increases computational com-
plexity, but it will hopefully preserve the design intent implicit in
the strokes depicted to be seen as lines that depict edges. Thus, for
the rest of the paper, "junctions" are the ordinary ones—shared tips
of the lines in the 2D drawing that are assumed to be the projec-
tions of the 3D vertices of a polyhedron—while we also consider
the unsplit intersections and T-junctions. We name as corners to
the ordered subset of the set of junctions, T-junctions and unsplit
intersections that are found to belong to the perimeter.

3. Previous work

Our long term goal is extracting as many perceived cues of informa-
tion about sketched line drawings as possible. In this context, it has
been stated that the number of contour edges for polyhedron pro-
jections is small and the number of intersections of contour edges
appears to be even more favourable [KW96]. Thus, detecting the
perimeter of sketched drawings of polyhedral shapes is an interest-
ing goal, as far as we can get this information before we search
for more high semantic level cues that help us to recover the 3D
shape implicitly depicted in the 2D line drawing. Thus, on the con-
trary of other well-known approaches ( [KW96], [PDB∗01]), we
do not know information about faces and their orientations while
we search for the perimeter. Just on the contrary, we try to get the
perimeter in order to use this information in a later search for visi-
ble and occluded faces.

Besides, we can distinguish between perimeter and silhouette,
since the latter is usually defined as a set of successive points—
or sometimes an external polyline—which defines a border which
envelops the region of interest, and constitutes a cue for figure-to-
ground distinction [IFH∗03]. This implies that the output silhouette
of most of the approaches applied to sketched drawings of polyhe-
dral shapes is not a subset of the original set of lines and junctions
of the polyhedron, but an overlaid entity [QJLL07].

The first work directly related with perimeter detection in
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drawings of polyhedral shapes is the Roberts’s work on percep-
tion of three-dimensional objects from line drawings, which in-
cludes a whole section on Polygon Recognition [Rob63], [Rob65].
Roberts’s approach is simple and efficient. First, at each junction,
all lines connected to that junction are ordered by their orienta-
tion. The search for a polygon starts at a random line, and at each
junction, the line we follow is the next in the ordered list after the
one along which we arrived. The process is repeated until the initial
junction is reached again, and the circuit is closed in a cycle (Figure
4).

Figure 4: Robert’s approach for detection of polygons in a natural
line-drawing.

This method can be used to identify regions in natural drawings
(regions can correspond to faces of the object, or to part-faces as in
Fig. 5 left), and can also find the exterior boundary polygon. It fails
for wireframe drawings (Fig. 5 right).

Labelling methods (from Huffman [Huf71], Clowes [Clo71] and
Waltz [Wal72], to Varley and Martin [VM00b], [VM00a]) may ob-
tain the perimeter (Fig.5 left), but this is not their main goal, and
they require catalogues of valid junction labels—so far, only tri-
hedral and tetrahedral junctions have been catalogued fully; full
catalogues of 5-hedral junction labels and beyond are not practical.

Figure 5: Labelled natural line-drawing (left) and the correspond-
ing wireframe (right).

4. Our approach

We want to find a sequence of lines—plus the corresponding
junctions—which defines the perimeter as a closed circuit. Our

strategy should be tailored to the actual needs of the reconstruc-
tion approach (we advocate a "cascade" approach which first de-
tects simple cues such as perimeter and then uses these results to
further analyse the line-drawing searching for more complex cues).
We only extract the information from the line-drawing that we shall
need (not “as much as possible", as with labelling methods).

For finding the perimeter we firstly identify the upper junction—
which together with the leftmost, rightmost and lower junctions
(i.e., those with the biggest or the smallest x- or y-coordinate) must
belong to the perimeter. Thus, the upper junction becomes the first
corner, and at least one of the lines connected to it must also belong
to the perimeter.

As we follow the perimeter clockwise around the drawing, we ar-
rive at each junction (like junction V in Figure 6) along anincoming
line which is already part of the perimeter (linee0 in Figure 6), we
determine anoutgoingline to add to the perimeter (this outgoing
line will then be the incoming line at the next junction, and so on).
The outgoing line is always the leftmost line as viewed from the in-
coming line (linee3 in Figure 6). In determining the leftmost line,
angles between lines must be normalised to the range (0◦, 360◦)—
this has the additional benefit of ensuring that the interpretation is
independent of the orientation of the line-drawing.

Figure 6: Inner angles between lines sharing the junction V.

To find the initial outgoing line at our starting junction, we have
no previous incoming line. Instead, we use an artificial incoming
line which arrives vertically at our start upper junction (i.e. parallel
with the y-axis) (see (P−1−P0) in Figure 7).

The procedure ends when we return to the first corner.Dangling
lines are defined as those lines with one endpoint not connected to
other lines (line 0-4 in Figure 8). In case that current corner is not
connected to other lines than the one most recently added to the
perimeter (dangling line), this line is added again to the perimeter.
Then its endpoints are re-added as corners in reverse order.

In pathological cases where the starting corner is the end ofn
dangling lines (or chains of dangling lines), we allow the algorithm
to go through the initial cornern+1 times.

Our algorithm also copes with lines which belong only partially
to the perimeter, as can happen in wireframe drawings of non-
convex polyhedra. There are two possibilities: one junction belongs
to the perimeter, but the other does not (as with lines 0-1 and 10-11
in Figure 9 left); or part of a line belongs to the perimeter, while its
endpoints do not (as with line 2-15 in Figure 9 right).
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Figure 7: Inner angles relative to the x axis.

Figure 8: Simple perimeter with dangling lines.

To consider intersections or T-junctions, each time a new line is
added, we test whether any other lines cross—or end at—the cur-
rent perimeter line. If so, we inspect the intersection points. The
closest intersection point to the previous junction will be added to
the perimeter as if it were a corner, and the left turn along the inter-
secting line is also added to the perimeter as its outgoing line. Since
a single line may include more than one T-junction (e.g. edge 0-6 in
the test-drawing of Figure 10), the crossing test must be reapplied

Figure 9: Partial lines in the perimeter.

to the new outgoing line. If no line intersects the current line, the
far endpoint will become the next corner.

Figure 10: Two segments of the same line, delimited by pairs of
T-junctions, belong to the perimeter.

4.1. The algorithm

The input to the algorithm are lists of the (x,y)-coordinates of each
junction and the head and tail junctions of each line. The algorithm
first calculates derived information: subgraphs information and a
list of lines connected to each junction. Note that intersections and
T-junctions can be calculated only once—in advance—and used
as required. The procedure to detect subgraphs is a breadth-first
search to visit all junctions connected to an arbitrarily selected first
junction. This results in the first subgraph. Repeating the procedure
for any not-yet-visited junction results in a second subgraph. The
procedure is complete when no more junctions remain unvisited.

The output of the algorithm is a list of ordered lines and cor-
ners that belong to the perimeter (PerimeterLines and Perimeter-
Corners). Positive numbers in the list of corner refer to junctions of
the original line drawing, while negative numbers are pointers to a
list of intersections or T-junctions that belong to the perimeter. The
coordinates of the intersections and T-junctions that belong to the
perimeter are saved (list TX), as much as the lines that produce each
intersection (list TEdges). Note that the distinction between inter-
sections and T-junctions is simple: the intersection is a T-junction
if it is close to one vertex of the outgoing edge.

The complete flow of our perimeter detection function is as fol-
lows:

Per ime te rByEnve lope ( )
{

F i r s t C o r n e r = Ge tUpperJunc t i on ( )
P r e v i o u s C o r n e r = F i r s t C o r n e r
P r e v i o u s C o r n e r . y += 1
C u r r e n t C o r n e r = F i r s t C o r n e r
NumTJ= 0
C u r r e n t L i n e = −1
NextCorner= F i r s t C o r n e r
TJ= f a l s e
do
{

i f ( NextCorner >= 0) / / The c u r r e n t co rne r
/ / i s a j u n c t i o n

{
C u r r e n t L i n e = GetOutgo ingL ine (

Cur ren tCorne r , P r e v i o u s C o r n e r )
P e r i m e t e r L i n e s . push_back ( C u r r e n t L i n e )
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P r e v i o u s C o r n e r = C u r r e n t C o r n e r
i f ( A n y I n t e r s e c t i o n ( C u r r e n t L i n e ) )
{

XPoint= G e t C l o s e r I n t e r s e c t i o n (
C u r r e n t L i n e )

XLine= G e t I n t e r c e p t i n g L i n e (
C u r r e n t L i n e )

TJ= is_T−J u n c t i o n ( )
NextCorner=−1 / / The n e x t co rne r

/ / i s an i n t e r s e c t i o n
}

e l s e
{

NextCorner= G e t F a r J u n c t i o n (
C u r r e n t L i n e )

}
}

e l s e / / The c u r r e n t co rne r
/ / i s an i n t e r s e c t i o n

{
P r e v i o u s L i n e = C u r r e n t L i n e
C u r r e n t L i n e = XLine
P e r i m e t e r L i n e s . push_back ( C u r r e n t L i n e )
i f ( TJ )

C u r r e n t L i n e = XLine
P r e v i o u s C o r n e r = XPoint
i f ( A n y I n t e r s e c t i o n ( C u r r e n t L i n e ) )
{

XPoint= G e t C l o s e r I n t e r s e c t i o n (
C u r r e n t L i n e )

XLine= G e t I n t e r c e p t i n g L i n e (
C u r r e n t L i n e )

TJ= is_T−J u n c t i o n ( )
NextCorner=−1 / / The n e x t co rne r

/ / i s an i n t e r s e c t i o n
}

e l s e
{

NextCorner= G e t F a r J u n c t i o n (
C u r r e n t L i n e )

}
}
i f ( NextCorner >= 0)
{

P e r i m e t e r C o r n e r s . push_back ( NextCorner
)

C u r r e n t C o r n e r = NextCorner
}
e l s e
{

TX . push_back ( XPoint )
NumTJ − −

TEdges[−NumTJ−1]. push_back (
C u r r e n t L i n e )

TEdges[−NumTJ−1]. push_back ( XLine )
P e r i m e t e r C o r n e r s . push_back (NumTJ)

}
}
whi le ( C u r r e n t C o r n e r != F i r s t C o r n e r )

}

For the sake of simplicity, we have omitted the test for dangling

lines which occur at the beginning of the search (see Section 3) and
a trap for infinite loops (stop after visiting as many junctions as the
figure contains).

The perimeter finder is successively called after loading the cor-
responding subgraph in thedatabase.

The function to determine the closest intersection point excludes
both the current edge and the edges connected to it, so as to prevent
detecting false intersections between the current edge and edges
that share its endpoints. The function also, when required, identifies
a junction that belongs to the outgoing line of a T-junction.

The full source code of the algorithm is freely available at
[CVP16].

5. Validation

To test the validity of the approach, we used four types of sketch:

1. Sketches whose line-drawings are bounded by simple perime-
ters of full lines connected at junctions (see Figure 11).

2. Sketches whose line-drawings are bounded by perimeters which
include partial lines crossing at intersections or T-junctions (see
Figure 12).

3. Sketches whose line-drawings are bounded by perimeters which
include non-trivial combinations of intersections or T-junctions
(see Figure 13).

4. Sketches of complex "flat" drawings to validate the algorithm in
the presence of complex intersections and singular points (Fig-
ure 14).

Figure 11: Perimeters of full lines.
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Finally, we tested that our approach successfully detects the
perimeters of subgraphs, as well as the perimeter of the full line-
drawing (Figure 15).

Figure 12: Perimeters including isolated T-junctions.

We note that natural drawings with T-junctions may easily be-
come decomposed into subgraphs if we do not split T-junctions as
explained in Figure 3. Thus, a line drawing such as the first exam-
ple in Figure 13 produces three sub-perimeters in addition to the
main perimeter shown in the figure.

Figure 13: Perimeters including complex combinations of junc-
tions and intersecting lines.

Figure 14: Drawings of flat shapes including intersections and
other singular points.

Figure 15: Perimeters of the full line-drawing and the subgraphs.

Our approach is simple and its computational cost is small. One
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example with 117 edges and 71 vertices takes less than one mil-
lisecond (Figure 16). The algorithm (Section 4.1), including pair-
wise tests for crossing lines, is O(n2).

Figure 16: Perimeters of the full line-drawing and the subgraphs.

6. Conclusions

Perimeter detection is a basic and useful stage in Sketch-Based
Modelling.

Existing approaches for perimeter detection in digital images are
inappropriate, as neither the input nor the output fit the needs of
Sketch-Based Modelling.

Published SBM approaches are inappropriate for wireframe rep-
resentations and multigraph line-drawings.

We have developed a new approach for determining the perime-
ter of a 2D line-drawing which works for both natural line-drawings
and wireframes. It does not require any other information than lines
and junctions. It is not limited to particular types of polyhedron.

Our new approach quickly and correctly detects perimeters of
line-drawings vectorised from sketches of polyhedral objects, and
defines the perimeter as a subset of lines and junctions of the origi-
nal line-drawing.
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