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Abstract

In The Social Picture (TSP) an huge amount of crowdsourced social images can be collected and explored. We distinguish
three main kind of events: public, private and cultural heritage related ones. The framework embeds a number of advanced
Computer Vision algorithms, able to capture the visual content of images and organize them in a semantic way. In this paper we
employ VisualSFM (VSFM) to add new features in TSP through the computation of a 3D sparse reconstruction of a collection
within TSP. VisualSFM creates a N-View Match (NVM) file as output. Starting from this NVM file, which characterizes the
3D sparse reconstruction, we are able to build two important relationships: the one between cameras and points and the one
between cameras themselves. Using these relationships, we implemented two advanced Image Analysis applications. In the
first one, we consider the cameras as nodes in a fully connected graph in which the edges weights are equal to the number of
matches between cameras. The spanning tree of this graph is used to explore images in a meaningful way, obtaining a scene
summarization. In the second application, we define three kinds of density maps with relation to image features: density map,
weighted-density map and social-weighted-density map. Results of a test conducted on a collection from TSP is shown.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Display Algorithms—Viewing Algo-

rithms. 1.3.8 [Computer Graphics]: Applications—

1. Introduction

Social networks have become increasingly useful to understand
people opinion and trends. Particularly, social media have changed
the communication paradigm of people sharing multimedia data:
users express emotions and share experiences in social networks.
In social events (e.g., parties, concerts, and sport matches) users
are gradually changing in the so called prosumers, as they do not
just use but also produces and share multimedia data related to what
has captured their interest with mobile devices. The redundancy in
these data together with annexed metadata (e.g., geolocation, tags,
and mood-tag) can be exploited to infer social information about
the attitude of the audience. For instance, systems such as MoVi-
Mash [SGYO12], ViComp [BC16] and RECfusion [BFM™*17] are
able to generate a video which describes the crowd interest start-
ing from a set of videos by considering scene content popularity.
Indeed, the popularity of a visual content is an important cue to
understand the mood of crowd attending to an event or estimate
how much parts of a cultural heritage are perceived as interesting.
Large scale visual data from social media and other multimedia in-
formation gathered by multiple sources (e.g., mobile devices) can
be processed with Machine Learning and Computer Vision algo-
rithms in order to infer knowledge about social contexts [WL15] or
organize images by visual content.
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In our previous work, we presented a framework called The
Social Picture (TSP) [BFM*16], in which images are gathered
from social networks or uploaded directly in the repository by
users through a mobile app and a website. The framework is ca-
pable of collect, analyze and organize huge flows of visual data,
and to allow users the navigation of image collections generated
by the community. In TSP three categories of image collections
are distinguished: social events, private events and cultural her-
itage landmarks. The collections are processed with several tools
which include automatic clustering of images, intensity heatmaps
and automatic image captioning. These tools allow TSP to pro-
vide users a number of representative image prototypes related to
each stored collection, exploitable for different purposes (e.g., se-
lection of the most meaningful pictures of a painting during a show-
case in a museum). Automatic clustering is implemented using a
CNN representation [ZLX"14] and employing an AlexNet archi-
tecture [KSH12]. For each image, the fc7 features are extracted and
the t-SNE algorithm [MHOS] is employed to compute a 2D embed-
ding representation characterizing the pairwise distances between
visual features. The intensity heatmap is another tool implemented
in the framework. It consists of a map of values related to the num-
ber of collected pictures containing visual areas similar to the ones
of a specific landmark building or area of interest. Users can in-
teract with the heatmap selecting points on the map and retrieving
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images that contributed to generate intensity values in that specific
point. Finally, the automatic image captioning [KFF15] is a tool
used to create and suggest descriptions of images, that come useful
for text based queries performed by users.

In this paper we employed VisualSFM (VSFM) [Wul3] to com-
pute visual matching between images within a cultural heritage col-
lection of TSP and to obtain a 3D sparse reconstruction of land-
marks. Using VSFM and its 3D reconstruction, we define two new
advanced Image Analysis applications added to TSP. In the first
one, we consider the cameras as nodes in a fully connected graph
in which the edges weights are equal to the number of matches be-
tween cameras. The spanning tree of this graph is used to explore
images in a meaningful way, obtaining a scene summarization. In
the second application, we define three kinds of density maps with
relation to image features: density map, weighted-density map and
social-weighted-density map. Results of a test conducted on a col-
lection from TSP is shown.

The paper is organized as follows. Overview of VSFM and its in-
tegration in our framework is described in Section 2, together with
the definition of the Model (the data structure) employed for the
process of advanced Image Analysis applications implementation.
Then, we present exploration of the spanning tree representation
and density maps in Sections 3 and 4, respectively. Conclusion and
final discussion are drawn in Section 5.

2. VSFM integration and Model definition

VisualSFM (VSFM) [Wul3] is a powerful tool of 3D reconstruc-
tion from a set of images, exploiting Structure from Motion (StM),
publicly available online [WoV]. VSFM maintains high accuracy
by regularly re-triangulating the feature matches that initially fail
to triangulate. VSFM performs a linear-time incremental StM
method [ZW15]. Hence it fits our scenario in which we want to es-
timate the 3D reconstruction of images within a collection, where
new images could be added in any moment by users.

In this paper we used 2924 photos from the cultural heritage
collection called Pisa, that was already been used as study-case
in [BFM™16] for Heatmap computation based on image retrieval
and image matching.

Once images are loaded into VSFM, it extracts the visual fea-
tures (SIFT [LowO01] and GIST [OTO1]) from them. Then, VSFM
matches visual features and computes 3D sparse reconstruction.
VSEFM builds more than one single 3D-reconstructed model, as is
possible that different scenes exist within a single dataset of pho-
tos or VSEM is not able to associate a set of coherent photos to
the same model (due to too much different points of view). We
chose the best reconstructed model, which is the one with the high-
est number of cameras. VSFM saves this result in a N-View Match
(NVM) file. In order to read the NVM file we designed a proper
parser. The obtained data structure has been enriched with other
meta-data in our framework (e.g., GPS tag and focal length). It rep-
resentes our Model for the process of advanced Image Analysis
applications implementation (Figure 1).

The NVM file has an own template [WoV]: for each model, all
cameras (images) and 3D points in the reconstruction are listed.

PISA

2924
images

Figure 1: Initial workflow: images of a collection are processed
with VSFM and a Model is obtained through parsing of the NVM
file (3D reconstruction) and meta-data aggregation from our frame-
work.
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Figure 2: Camera — Point — Correspondences (CPC) matrix and
row-wise and column-wise sums. CPC is of boolean type.

For each point there is a full list of all the cameras that “view” that
point. In other words, for each point the information about which
camera uses that point as visual feature for matching is stored. On
the other hand, given a camera, the relationship about what are the
features used by that camera is implicit. In order to make this lat-
ter relationship explicit, we define a C x P matrix, where C is the
number of cameras and P is the number of points. This matrix is
named Camera-Point-Correspondences (CPC). The CPC matrix is
of boolean type: it has a value 1 in position (c,p) if and only if
the camera ¢ used the point p as visual feature for matching. The
row-wise sum of CPC gives as result the total number of points
that each camera view, while the column-wise sum gives as result
how many times each point has been viewed by cameras (Figure 2).
Both of these sums can by normalized w.r.t. the maximum row-wise
and column-wise. The normalization is used to obtain the “frequen-
cies of view some point” for cameras and the “frequencies of been
viewed by a camera” for points. These values can be used in place
of the color vertex of 3D points, so they can be viewed in a 3D-
points frequency representation (Figure 3).

We also defined a matrix that represents relationships between
cameras used in the 3D sparse reconstruction. This second matrix
is named Camera-Camera-Matches (CCM). For each row ¢ in CPC
we compute the sum of the logical AND between ¢ and the other
cameras ¢. The so obtained values are stored in CCM, in the proper
cell in position (¢,c). In this way, the matrix CCM is symmetric
w.r.t. the principal diagonal, which is null since is meaningless
to consider self-matches (Figure 4). The values in CCM are non-
negative. For values equal to 0 we can assume that corresponding
cameras do not match at all.

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.



F.LM. Milotta & M. Bellocchi & S. Battiato / The Social Picture: Advanced Image Analysis Applications 49

Figure 3: A detail of 3D-points frequency representation on The
Social Picture web platform: the points with the highest feature-
[frequency are represented with bigger shape and red colors, while
on the countrary points with the lowest feature-frequency are rep-
resented with smaller shape and blue colors.
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Figure 4: Camera-Camera-Matches (CCM) matrix. This symmet-
ric matrix is obtained from the CPC boolean matrix as sum of the
logical AND between each camera (represented as a row in CPC)
and the other ones.

The computation of the CPC and CCM matrices is known as
scene summarization of the dataset [SSS07].

3. Scene Summarization

Scene summarization is stated as the issue of select a set of
canonical images that represents the visual content of a scene.
In [KSX14,SSS07] a graph-based approach for scene summariza-
tion is presented, where the graph is built using matching visual
features between images. We follow a similar method, employing
the Model defined in Section 2, obtained from the VSFM output
enriched with meta-data from TSP.

Values in CCM matrix can be seen as the edge-weights of an
undirected graph. Indeed, cameras can be considered as nodes in
a fully connected undirected graph in which the edge-weights are
equal to the number of matches between cameras. The spanning
tree of this graph can be used to explore images in a meaning-
ful way, in a sort of tour of the selected collection. We employed
the known minimum-spanning-tree (MST) construction algorithm
from Kruskal [Kru56] as it is particularly performing approach in
terms of complexity: O(V - E) in the worst case, where V are the
nodes and E are the edges of the graph.
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Values stored in the CCM matrix represent how many cameras
(images) are similar to each other. For this reason, we considered
the values in CCM matrix as cost. However, since the Kruskal al-
gorithm sorts the edges in increasing order of cost, we modified the
original values of CCM as follows. Firstly, the reciprocal of each
value in CCM is computed, in order to convert maximum values in
minimum, and viceversa. Then, as it is not possible to define the
reciprocal for values equal to 0, we set their cost to 1 (the highest
possible value because CCM has non-negative values). In this way,
all the new values are normalized in the range (0;1), accordingly
to the non-negative costs requirement of the algorithm of Kruskal.

For each node (camera) in the MST a score is computed. We
define this score as the sum of the edge-weights adjacent to each
node. It can be computed for each camera as the row-wise sum of
CCM (or equally column-wise because CCM is symmetric). Then,
we choose the node with the highest score as the source node of the
graph traversal, implemented with a Depth First Search (DFS). This
choice is made because very similar images are in the same path of
the MST. When a node has more than one adjacent node (e.g., the
node is root of a subtree in the MST), then it can be considered as
the centroid of images contained in its subtree [KSX14].

An example of DFS graph traversal on MST of the se-
lected collection has been publiced online on http://youtu.be/
PJgGBbD-rrc. Two consecutive images of the traversal are shown
in Fig. 5. This kind of image summarization video is hardly evalu-
able with an objective metric. Instead, it is usually evaluated with a
subjective consensus [KSX14,SSS07]. We are still in the process of
investigate a better evaluation method. More in details, we state that
scores of nodes may be exploited to discard the most unrelated im-
ages during the traversal. However, to assess a valid threshold for
score values a wider experimentations should be conducted, with
an higher number of collections. We remand this investigation to
future works.

4. Feature Density Maps

Exploiting CPC matrix we can select all the points used as features
by a given camera. Through the Model, which is parsed from NVM
file, we also know the position of features in the image. Given the
positions of visual features, we can define several kinds of maps
(Figure 6):

e Density Map (D-map): characterizes the spatial density of the
inlier visual features of an image; the inlier visual features are
the one used for matching and 3D sparse reconstruction. In other
words, D-map highlights locations of the image in which visual
features are more dense.

o Weighted-Density Map (WD-map): characterizes the spatial
density of the inlier visual features of an image, weighted w.r.t.
their feature-frequency (as computed from CPC matrix). In other
words, WD-map characterizes the density and importance of vi-
sual features within an image.

e Social-Weighted-Density Map (SWD-map): similar to the WD-
map, but it also take into account the inlier visual features
from images matching (directly or indirectly, through exhaus-
tive matching - See Section 4.3.1) with the reference one. In
other words, SWD-map characterizes the density and “social”
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Figure 5: Two consecutive frames of Depth-First-Search graph traversal of the Minimum-Spanning-Tree of Pisa Collection.
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Figure 6: Creation of Density Maps from the Model.

importance of visual features within an image, since the feature-
frequency values are obtained taking into account also the im-
ages acquired by several points of view, which might have WD-
maps potentially different.

e Cumulative Map (C-map): similar to the SWD-map, but the C-
map does not characterize density of robust visual features. The
C-map highlights parts of images frequently viewed in similar
images in the dataset, computing the perspective transformations
between them. So, the C-maps gives a smoother idea of what is
socially salient from the point of view of the crowd. The intensity
heatmap described in [BFM*16] can be considered a C-map.

Some example of density maps is shown in Table 1. A deeper
description of each map is given in the following subsections.

4.1. Density Map (D-map)

The visual feature density is obtained quantizing the 2D space of
the image and counting how many features are contained in each
quantized interval. Density values obtained are normalized w.r.t.
the maximum obtained. This map is named Density Map (D-map).
Note that the visual features contained in the NVM file (and so in
the Model) are all “inlier”, this means that they are the one used
for matching and 3D sparse reconstruction. They are a subset of

the whole possible visual features, already filtered by VSFM. The
majority of the inlier visual features can be usually found near cor-
ner points particularly robust to scale and rotation variations.

4.2. Weighted-Density Map (WD-map)

The D-maps can be further refined taking into account a weight for
each visual feature. The weight is equal to the feature-frequency, as
computed through the column-wise sum from CPC matrix. In this
way, each feature contributes differently to the computation of the
density map during the quantization of the 2D space of the image.
Density values obtained are normalized w.r.t. the maximum ob-
tained in the whole map. The so obtained map is named Weighted-
Density Map (WD-map). The D-maps characterize where the ma-
jority of visual features can be found, while the WD-maps charac-
terize where the most important and robust visual features can be
found. Indeed, it is possible that a low number of very salient fea-
tures generates a value in a WD-map higher than a bunch of low
salient features. Given an image, the position of visual features in
the WD-map is the same than the one in the W-map, since we just
changed the weight of the features. What we want to highlight in
the WD-maps is that in this kind of maps we are stressing the im-
portance of the features from the point of view of the whole dataset,
not just of a single image.

4.3. Social-Weighted-Density Map (SWD-map)

It is easy to find what images match with an input one exploit-
ing CCM matrix. We select the row in CCM related to the input
image. Then, we look for images with a number of matching fea-
tures higher than 0. We can either set a threshold #,; on the number
of matching features in order to filter the image matching, obtain-
ing the most reliable ones that reduce the risk of erroneous trans-
form estimations. In the experiment described in this paper, we set
tm = 30. For all the images that have more than #,, features in com-
mon, we estimate the perspective transformation between them. A
T transform matrix is obtained for each transform estimation. In
SWD-map computation, we do not directly transform the images,
but their WD-maps, without the normalization w.r.t. the maximum
described in Section 4.2. All the non-normalized WD-maps, trans-
formed with their own 7', are summed to the non-normalized WD-
map of the reference image. This final result is normalized w.r.t.

(© 2017 The Author(s)
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Table 1: Examples of Density Maps from Pisa Collection. From left to right, ID in the collection (ID), original image (Image), visual
features marked on the original image (Features), Density-Map (D-Map), Weighted-Density Map (WD-Map), Social-Weighted-Density Map
(SWD-Map) and a blended image between the original one and its SWD-Map are shown.

ID Image Features

16

45

69

74

87

WD-Map

SWD-Map Blended SWD-Map

the maximum obtained by the sum of all the weighted feature densi-
ties. This map is named Social-Weighted-Density Map (SWD-map),
since it is generated by a “social knowledge” that is able to decide
what features of an image are meaningful.

The rationale behind the computation of SWD-maps is that im-
ages similar to a reference one might contain information that is not
present in the reference image. For instance, similar images might
contain objects that in the reference image is hidden due to occlu-
sion or a bad point of view. Through SWD-maps some parts of the
reference image might be judged as meaningful by a pool of similar
images and each one of them independently define what is mean-
ingful for itself. A pro of SWD-maps is the capability to highlight
salient-features region even if there is some occlusion in the image
(Images 45, 69 and 87 in Table 1), while a con is the issue related to
erroneous transformations, that might generate wrong density esti-
mation in the final SWD-map.

4.3.1. Exhaustive Image Matching

The SWD-map computation performs image matching between the
images in a collection from TSP matching with an input image,
accordingly to CCM matrix. This kind of image matching can be
seen as the first level of an exhaustive image matching. In order to
become “exhaustive”, we want to match also the images on the sec-
ond, third, .. .n™-level of matching, where in each level L we have

(© 2017 The Author(s)
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all the images matching with images at level L — 1. The exhaus-
tive matching is completed when no more images can be matched
(when an empty level is reached). Is important that each image is
matched at most once to avoid loop in the process. Exhaustive im-
age matching is refered in the literature as Query Expansion or Re-
Query [CPS*07]. However, in this paper we adopted a different
approach to implement the exhaustive matching.

To realize exhaustive image matching we define a matching
queue Q in which reference images of level L are enqueued. Hence,
for instance at level 1, Q contains just the first reference image. We
build a matrix named Matching Values (MV), selecting the rows
of CCM corresponding to the reference images in Q. Once MV is
created images in Q are dequeued one by one. Then, we remove
from MV the columns corresponding to images already considered
as reference one (from level 1 to L) and the columns with maximum
equals to 0, since they cannot be matched with any reference image.
For each remaining column C,, we find the row C; in which there
is the maximum of the column and we compute the transforma-
tion matrix T(c,r)y characterizing the perspective transformation
between cameras C. and C, at level L. Transformations 7 can be
concatenated from level L to 1, transforming all the images within
the exhaustive matching process w.r.t. the initial reference image.
Finally, cameras corresponding to remaining columns, if any, are
enqueued in Q for level L+ 1. If Q7 1 is empty, then the exhaus-
tive matching will be over.
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4.4. Cumulative Map (C-map)

The Cumulative Maps (C-maps) are similar to the SWD-map: given
an image, we use the visual features computed by VSFM to esti-
mate a perspective transform 7" between the reference image and
all its matching images. However, differently from the SWD-maps,
in the C-maps we transform the matching images using a mask,
properly a matrix with only values 1. All the masks, transformed
with their own 7', are summed to the mask of the reference image.
This final result is normalized w.r.t. the maximum summed value
obtained. Differently from the SWD-maps, the C-maps do not char-
acterize density of robust visual features, but they highlight parts
of the reference images frequently viewed in similar images in the
dataset. The intensity heatmap described in [BFM*16] can be con-
sidered a C-map. Visual features are often found near corner points,
but salient objects are not necessarily made of corner points. More-
over, users are not interested in visual features when they acquire
a photo. So, the C-maps gives a smoother idea of what is socially
salient from the point of view of the crowd.

5. Conclusion

In this paper we presented an extension of our framework The So-
cial Picture (TSP). VisualSFM (VSFM) [Wul3] has been employed
to compute visual matching between images within a cultural her-
itage collection of TSP and to obtain a 3D sparse reconstruction
of landmarks. Using VSFM and its 3D reconstruction, we defined
new features added to TSP, such as the 3D-points frequency, and
presented two advanced Image Analysis applications: scene sum-
marization and density-maps.

Through the scene summarization we were able to create a video
with a set of canonical images representing the visual content of
a selected collection. This kind of summarizing-video is hardly
evaluable with an objective metric. Instead, it is usually evaluated
with a subjective consensus [KSX14, SSS07]. We defined a score
for each image in the scene and stated how it may be exploited
to discard the most unrelated images during the traversal. We re-
manded the assessment of a valid threshold for score values to a
wider future experimentation.

We shown how density-maps can be used together with the StM
technique to highlight parts of the image with robust visual fea-
tures. Several types of density-maps have been defined with differ-
ent aims. Particularly, SWD-maps represent a good tool to stress the
presence of visual features even when a strong occlusion is present
in the image.
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