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Figure 1: An example of the proposed indicator basis (IB) and its main applications: the approximation and transfer of a step function. A
comparison between standard basis and our IB is proposed on a given function depicted on the left of the Figure (top). From left to right:
the original function on the source shape (top) and its ground truth transfer on the target shape (bottom). Approximation (top) and Transfer
(bottom) using the standard basis, and using the proposed IB. On the right the linear combination in the proposed basis on the source (top)
and on the target shape (bottom). The colormap represents the values of the step function from 0 to max. The value 0 is represented in white

in order to highlight the errors.

Abstract

Step functions are widely used in several applications from geometry processing and shape analysis. Shape segmentation,
partial matching and self similarity detection just to name a few. The standard signal processing tools do not allow us to fully
handle this class of functions. The classical Fourier series, for instance, does not give a good representation for these non
smooth functions. In this paper we define a new basis for the approximation and transfer of the step functions between shapes.
Our definition is fully spectral, allowing for a concise representation and an efficient computation. Furthermore our basis is
specifically built in order to enhance its use in combination with the functional maps framework. The functional approach also
enable us to handle shape deformations. Thanks to that our basis achieves a large improvement not only in the approximation
of step functions but also in the transfer, exploiting the functional maps framework. We perform a large set of experiments
showing the improvement achieved by the proposed basis in the approximation and transfer of step functions and its stability

with respect to non isometric deformations.

CCS Concepts

eComputing methodologies — Shape analysis; Shape modeling; eMathematics of computing — Functional analysis;

1. Introduction

In the era of automation, the need of ability for the computers to ex-
plore the real world has been growing exponentially. This is mainly
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due to the wide availability of algorithms and devices for the acqui-
sition and generation of geometric data from the real word. These
geometric data are digital representation of the surfaces of objects,
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animals and people from reality. In the last decades the interest in
these geometric data has greatly grown thanks to the several appli-
cations in which they are involved. Some of these applications are
acquisition, reconstruction, analysis, manipulation, simulation and
transmission of complex 3D models. Working with digital repre-
sentations of real objects, we still have to face many issues related
to their deformations. The real world is indeed not rigid and most
of the shapes can be found under different non rigid deformations.
One of the possible approaches to deal with these non rigid defor-
mations is the functional maps framework proposed by Ovsjanikov
et al. in [OBCS™12a]. The main idea of functional maps is to con-
nect two surfaces representing correspondences between functions
defined on them instead of correspondences between their points.
Moving in the functional spaces the problems related to the non-
rigid deformations of the surfaces are solved or at least simplified.
The functional space defined on surfaces is usually represented as
the space spanned by a fixed finite set of basis functions. In this
context the widely adopted basis is the Fourier basis, that has been
shown to be optimal for the representation of continuous functions.
Recently many researches have been dedicated to the definition of
a new basis or a new representation for the functional space. In this
paper we propose the Indicator basis (IB), a new basis for the ap-
proximation and the transfer of a specific set of functions defined
on manifolds: the step functions. Given a manifold M a step func-
tion on M is defined as every finite linear combination of region
indicator functions. Where a region indicator function of a given
region R C M is a function f such that:

fiM—{0,1}, €y

and f(x) =1 if x € R while f(x) = 0 otherwise. These functions
are very simple and they can be found in several applications in
geometry processing. An example is shape segmentation, in which
the shape is subdivided in regions each of which generates a step in
a step function. Another example in which step functions could be
useful is partial matching, where only a region of one shape could
be correctly matched with another shape.

These step functions are not continuous, therefore the Fourier ba-
sis does not appear to be appropriate in this case. For all these rea-
sons it is necessary to provide a good representation for step func-
tions. In this paper we propose a new basis for the step functions
representation. The proposed basis is spectrally defined exploiting
the strength of the spectral properties of the shapes. In particular the
spectral approach allows us to obtain a concise and efficient formu-
lation. This formulation is also suitable for use in conjunction with
the functional maps framework obtaining directly the transfer of
functions between shapes.

The main contributes of this paper are:

e We analyze the family of functions defined on surfaces that cor-
responds to standard step functions defined on 1D real interval.

o We define the Indicator Basis as a novel alternative for the syn-
thesis and analysis of the step functions on surfaces.

e We propose an efficient algorithm for the construction of the /n-
dicator Basis.

e We prove and evaluate how the spectral based definition is well
suited for the transfer of step functions between shapes.

e We compare the proposed basis with the state of the art method
in functional space representation on manifolds.

e We compare our method with a geodesic and a heat based al-
ternatives, proposed here for the first time, that can naturally be
identified as competitors to the proposed approach.

The method proposed in this paper could really contribute to many
applications in geometry processing.

The rest of the paper is organized as follows. In Section 2 we are
going to introduce the state of art in functional representation and
signal processing on manifolds. An overview and motivations for
the proposed framework are summarized in Section 3. Section 4 is
devoted to the theory and implementation of the Indicator Basis.
Experiments and evaluation of the method in standard application-
s are then collected in Section 5. Finally Sections 6 contains the
conclusions of the paper.

2. Related work

Signal processing is the collection of all the technologies for repre-
sentation, manipulation and transformation of signals. A key ques-
tion in signal processing is how we should represent a signal. The
desired representation must be precise, concise and must simpli-
fy operations on signals. One of the widely adopted representation
is the Fourier Transform. The Fourier transform was proposed by
Joseph Fourier [Fou07], in 1807. Namely we refer to this represen-
tation as the Fourier transform also referred as the frequency rep-
resentation of the original signal. This frequency representation is
obtained thanks to the Fourier basis, a set of functions that can be
computed as the eigenvectors of a standard operator: the Laplace
operator. Given a signal defined on a domain, such as time, the
Fourier transform represents the signal as the linear combination of
the frequencies that generate it.

In Geometry processing we are interested in studying signals de-
fined on non Euclidean domain such as 2-dimensional surfaces of
real objects embedded in the 3D space. This kind of domains are
approximated and modelled as a smooth compact connected Rie-
mannian surface M (possibly with a boundary d M) embedded in-
to R3. We refer the reader to [dC92] for a deeper introduction to
Riemannian manifolds.

In order to extend signal processing to the non Euclidean domain-
s we need to define several tools for the analysis of signals de-
fined on surfaces. All the theory involved in these definitions are
out of the scope of this paper. The Laplace-Beltrami operator (L-
BO) is a positive semi-definite operator that generalizes the cor-
responding notion of Laplace operator from Euclidean spaces to
manifolds. By analogy with the Euclidean Fourier transform the
eigenfunctions of LBO form an orthonormal basis for signals de-
fined on surfaces [Tau95], [VLO8]. The LBO has been involved in
several applications as shown in [Lév06] giving rise to the spec-
tral approaches in the computer graphic. Some of the contributes
arise directly from the LBO are the global point signatures [Rus07],
and shape DNAs [RWPO06]. Diffusion process defined on manifolds
and all its derivations are strictly related to LBO and spectral ge-
ometry processing: the diffusion distances [CL06], the heat kernel
signature [SOG09, GBALO9] and the wave kernel signatures [AS-
C11]. In 2012 Ovsjanikov et al. [OBCS*12a] introduced the func-
tional maps paradigm to represent correspondences between func-
tional spaces instead of correspondences between points on the
surfaces. During last years many improvements to the functional
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maps framework have been proposed in particular in [NO17] the
authors showed how it is possible to obtain a huge improvement
in the functional maps estimation representing descriptors as lin-
ear operators acting on functions through pointwise multiplication.
Similarly to theirs, Nogneng et al. [NMR* 18] shown how a given
functional map can be exploited representing the functional spaces
not only as linear combinations of the LBO eigenfunctions but al-
so involving their (possibly high-order) point-wise products. The
functional maps framework is as well strictly related with the L-
BO, the LBO eigenfunctions are indeed adopted as basis for the
functional spaces. In [ABK15] Aflalo et al. show how the choice
of the LBO eigenfunctions are optimal for the representation of
continuous functions with bounded variation. Usually only a few
subset of the LBO eigenfunctions (the ones with smaller eigen-
values) are used as truncated basis for the functional space. This
choice constitutes the main limitation of the LBO eigenfunction-
s, in fact the set of the eigenfunctions used represents only the
low-frequencies and it is not able to represent functions with fast
variations. Furthermore the LBO eigenfunctions from two differ-
ent shapes suffer of switches in the signs and in the order that they
take from the corresponding eigenvalues, also in the case of near-
isometric shapes, as deeply investigated in [SK14]. To solve these
issues Kovnatsky et al. proposed the construction of compatible ba-
sis on collections of shapes using simultaneous diagonalization of
Laplacians [KBB*13]. Another drawback of LBO eigenfunction
is that they are globally defined. Using the LBO eigenfunctions
it is not possible to localize the analysis on small regions on the
shape. Tools for the spectral local analysis on non-Euclidean man-
ifolds, have recently been proposed: the Windowed Fourier Trans-
form (WFT) for graphs [SRV12] and shapes [BMM*15] together
with an anisotropic version [MRCB16] defined on the eigenfunc-
tions of the Anisotropic LBO [ARACI14]. These methods try to
localize the analysis of signals, but LBO eigenfunctions are stil-
1 adopted as a basis for the spectral representation. Neumann et
al. [NVT*14] applied the approach of [OLCO13] to problems in
computer graphics. In [NVT*14] authors proposed the compressed
manifold modes which provides a new basis locally supported. As
suggested in [OLCO13], the compressed modes are the solution-
s of an optimization problem that combines the Dirichlet energy
with a sparsity-inducing regularization based on Li-norm. An al-
ternative and more efficient computation of the compressed modes
is provided by Kovnatsky et al. [KGB16]. The main limitation of
this approach is that it does not provide the ability to select the re-
gion in which the modes are localized. A recent approach proposed
by Choukroun et al. [CSBK17] considers the spectral decomposi-
tion of an hamiltonian operator realized as a small modification to
the classic LBO. In [MRCBI18] Melzi is proposed a similar solu-
tion that provides a basis simultaneously localized and orthogonal
to the global LBO eigenbasis. As in the classical signal process-
ing, different basis can be exploited in order to face different issues
or depending on the final application. Basis and frames proposed
in [OLCO13], [KBB*13], [NMR*18], [CSBK17], [MRCB18] are
all alternatives to the standard Fourier basis [VLO08]. The key idea
of this paper is to propose the Indicator Basis (IB), a new alterna-
tive for signal processing on manifold. The novelty of this basis is
that it is specifically defined for step functions. These functions are
not continuous and our definition is likewise not continuous. The IB
improves the approximation the transfer of step functions between
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different shapes exploiting the functional maps framework. Our ex-
periments highlight that the proposed basis is able to handle shape
deformations and bring several advantages in various applications.

3. Overview

1D Euclidean Domain. Here we provide a general idea of the con-
tents of this paper, showing the motivations in the case of 1D Eu-
clidean domain. In this domain the Fourier basis is composed by
the harmonic functions corresponding to the eigenfunctions of the
Laplace operator. The Laplace operator can then be seen as the sum
of second partial derivatives of the function. This basis is optimal
for the analysis and the synthesis of smooth functions with limited
variations.

In this paper we would like to improve the approximation and
transfer of a specific class of functions: the step functions. More
formally the step functions can be defined as the set of all possible
finite linear combination of indicator functions. An example of an
indicator function f is the following:

1, ifxeRrR
fR:D—R | frx)= , (2)
0, otherwise
where R C D is an interval in the domain. Given a set of
interval {Ry,...,Ry} and the corresponding indicator functions
{fRy>--->r,} astep function s is any linear combination of them:
5s:D—R | s=0fg, +...+0fR,; (3)
where o, ...,0q € R. For simplicity here we consider only con-

nected interval on the real line, if one of the interval is composed
by more than one connected component we can easily divide this
interval in all its connected components and consider one indicator
function for each of them. A step function is clearly a not smooth
function and therefore the Fourier basis is not an optimal choice for
represent this functions.

For this reason we propose the Indicator Basis (IB) a new basis,
specifically defined to approximate and transfer indicator functions.
The main contribute of this paper is to define a set of indicator
functions satisfying the following properties:

1. All the step functions can be well approximated as a linear com-
bination of these functions.

2. The set is finite, providing a concise and efficient representation.

3. The definition and computation of these functions should be ef-
ficient.

4. The obtained representation of step functions must be easily
transferred between different domains.

Some examples of Fourier basis functions and some of Indicator
basis functions are shown in Figure 2.

2-dimensional surfaces. Once we get the general idea in the 1D
Euclidean domain, we focus on the case of 2-dimensional surfaces
embedded in R>. A surface of this kind is modelled as a connect-
ed compact smooth 2-dimensional Riemannian manifold M C R3,
eventually with a boundary d M. In the discrete setting we rep-
resent M as a triangular mesh with a set of n, vertices }V and
vertices .
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Figure 2: Three Fourier basis functions (top row) and three Indica-
tor basis functions (bottom row) in 1D under Neumann boundary
conditions.

Thanks to the differential geometry defi-
nitions we are able to equip the surface M
with the Laplace Beltrami Operator (LBO),
the second order differential operator that can
be seen as the counterpart of the Laplace op-
erator on manifolds. Due to lack of space we
refer to [dC92] for more details on the differ-
ential geometry theory involved in the definition of the LBO.

In the discrete setting the LBO is represented as a matrix of di-
mension n4 X n4. This matrix is obtained as the product A, =
(AM)~IwM. AM is the mass matrix a diagonal matrix which en-
tries are equal to the area element associated to each vertex. wM
is the stiffness matrix defined accordingly to the local geometry of
the surface. More explicitly the stiffness matrix W 4 contains the
cotangent weights w;; defined as follows:

(cotayj+cotf;;)/2 ije&Cé;

wy = { Lo/ Vel EE
— Liti Wik i=j;
0 else;

where o, B;; denote the angles zk/\j , ]/\hz of the triangles sharing the
edge ij, & are the edges connected to the vertex i and £y 4 are the
edges on the boundary (see inset Figure where the adopted notation
is clarified). To better understand the previous construction and to
see details in these choices we refer to [PP93].

Since the LBO is a positive semidefinite operator
Apng: FIMR) — F(M,R), it admits an eigendecomposi-
tion Ap ¢, = A;¢;, where A} <A, < ... are real eigenvalues, and
¢,0,,... are the corresponding eigenfunctions. These eigenfunc-
tions can be seen again as the counterpart of the Fourier basis
on manifolds. Even in this case the Fourier basis is composed by
smooth functions and as shown in [ABK15] it is optimal for the
representation of smooth functions defined on surfaces.

A step function on M, the main character of this paper, can be
defined as a finite linear combination of indicator functions. An
indicator function on M is a function fg such that:

1, ifxeRr
fReM—R | fx)= . &)
0, otherwise
where R C M is a given region inside M. Given a set of region-
s in M {Ry,...,R;} and the corresponding indicator functions

{lev'“»qu}! s=04fR +...+0qfR, (otg,...,0q € R) is a step
function on M. As in the 1D case, we consider for simplicity con-
nected regions on the surfaces only. Fourier basis and indicator ba-
sis examples on a 2-dimensional surface is depicted in Figure 3.

Figure 3: Three Fourier basis functions (top row) on a 2-
dimensional surface of a human body and three Indicator basis
Sfunctions (bottom row) on the same human shape. The differences
between the three selected t are highlighted in the black box on the
bottom of the Figure.

Once again the Fourier basis is not well defined for the repre-
sentation of the step functions. In this paper we propose the Indi-
cator basis for the approximation and the transfer of step functions
between surfaces. The properties that we list for the 1D case can
be summarized saying that with the Indicator basis we obtain an
efficient and concise representation of step functions that can be
naturally involved in the functional maps framework [OBCS* 12b],
improving our ability to transfer step functions between shapes.

4. Method

In this Section we introduce the implementation of the IB on
shapes. The Section is divided in two parts. The first is devoted
to the definition of the IB on a single shape. In the second part we
focus on the transfer of the IB between two given shapes.

4.1. Computation of the Indicator basis on a single shape

Let M be a shape with its mass matrix AM and its LBO eigende-
composition:

AM = {M\A yenn ,Xm } the set of eigenvalues and
oM — {¢{Vl, ... ,¢m } the corresponding eigenfunctions,
both truncated to dimension k.

The IB on M is obtained accordingly to the following pipeline.

Compute the Subset of Vertices. Given the mesh associated to M
and its set of vertices )V we want to select a subset Vg of V. The
only property we need to take care of is to select vertices uniformly
distributed on the surface guaranteeing to cover the entire shape.
To do that we adopt the fast marching farthest point sampling al-
gorithm [MDO03, ELPZ97], based on the geodesic distances. In all
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the experiments, where it is not specified, we select the 5% of the
vertices. We denote the number of selected vertices as njp < naq.
An example of the obtained set of vertices on a human shape is
depicted on the left of Figure 5.

Spectral Gaussian. In order to build our IB we need to define in-
dicator functions on M. This definition should be general and spe-
cifically designed for approximation and transfer of step functions.
For both this goals we focus on the spectral representation of func-
tional space defined on surfaces. The idea is to define a Gaussian in
the spectral domain. In other words we define a Gaussian function
as its coefficient in the Fourier representation. To define the spec-
tral Gaussian two parameters should be selected: the center and the
spread of the spectral Gaussian. We fix A; = 0 as the spectral center
of the Gaussian and © € R for the spread. Then for each frequency

0.35 T T T T T
= 7] = (0.0001
03
— 1, = 0.005
0.25 \ 13 = 0.01 L]
02 |- —
0.15 — —
0.1 |- —
0.05 [— —
0 | | | | |
1 5 10 15 20 25 30

frequencies

Figure 4: The spectral Gaussian g"',8%,8" computed for t| =
0.0001,7 = 0.005 and t3 = 0.01.

the coefficient of the spectral Gaussian is defined as:
g = MM, ©)

varying [ in the set of adopted frequencies: / € {1,...,kxrq}. The
function defined in this way associates a values on each frequen-
cy from 1 to k4. Three examples corresponding to three different
choices of T are depicted in Figure 4, where the x-axis represents
the frequencies, and the values of the Gaussians are represented on
the y-axis. The spatial image of this spectral Gaussian is a Gaus-
sian again which depends on the choice of a point x € M that is the
center of the Gaussian g, computed as follows:

km

8= @O ) ™
=1

where © is the element-wise products. The values (g; © ¢, (x)), VI €
{1,...kaq} can be seen as the spectral coefficients in the basis oM
of g,.. We compute the spatial Gaussian on each of the points in the
set Vig = {p1,...,Pnp }- The width of the the spectral Gaussian
depends on the parameter t. Larger is the value of 7 tighter is the
spectral Gaussian. We select a set 7 of 3 different T, T = {1; =
0.001,T3 = 0.005,73 = 0.01]} . With these parameters we obtain
q = 3 X nyp spatial Gaussian that are collected side by side in a
matrix G = [g;'l,...,g;f],...,g;‘nm,.“,gﬁm}

(© 2018 The Author(s)
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Our definition of the IB functions is completely related with the
Fourier Basis obtained from the eigendecomposition of the LBO.
This spectral definition is general (it does not depend on specific
properties of the mesh). The LBO is completely intrinsic, being ful-
ly defined by the metric tensor. The space of functions spanned by
the first eigenfunctions of the LBO are stable under near-isometries
as shown for example in the work of [Kat95]; therefore the LBO
eigenbasis is well designed for the transfer between pairs of shapes
as a low-pass representation of signals, as shown in []. The defi-
nition of the Gaussian in the spectral domain has been already ex-
ploited in many works from graph theory and geometry processing.
Shuman et al proposed in [SRV12] the spectral Gaussian defini-
tion as a part of the framework that defines the windowed Fourier
transform on graphs. Extending the work of Shuman from graphs
to manifold in [BMM*15] the spectral Gaussian are used in order
to define a window function for the convolution on the manifold.
This window is a key component of the convolutional neural net-
work defined on manifold that are proposed in [BMM™*15]. The
same definition is exploited in [MRCB16] where an anisotropic
version of the windowed Fourier transform for manifolds is pro-
posed [ABK15]. Here we report the formula that defines the spec-
tral Gaussian and we refer to previous works for more details.

Some spatial Gaussian obtained from this definition varying the
value of T and with two different center are shown in the middle of
Figure 5.

T1 T2 T3 T T2 T3
4 Di 8 Pi 8 pi bl’i b pi bpf

Ll

NN NERN

T T2 T3 T1 T2 T3
8p; 8p; &p; bP/ bP/ b pj

Vis

Figure 5: An overview of the steps in the definition of the Indicator
basis. From left to right, the points selected on M, spatial Gaus-
sian defined for the 3 different © values around two different points
(one on the first row and one on the second row), finally the indica-
tor basis functions obtained from the previous Gaussian functions.
Near to each example we add a zoom on then region where the
indicator is localized.

From Gaussian to Indicator function. Finally for each of the
Gaussian function g7, in order to obtain the indicator function that
compose the proposed basis IB, we perform the following post-
processing:

le; ]
max(|gz[)*
Saturation: by(p) = 1if g5(p) > 1.
Remove noise: by(p) =0if gi(p) <.

Normalization: g} =

We refer to the last two steps as binaryzation of the basis functions.
In our experiments we fix Y= 3 After this post-processing each of
the original spatial Gaussian becomes a binary indicator function.
We collect all of this indicator functions side by side in the basis
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Algorithm 1 Indicator Basis computation on M.

Input: M the mesh with its Fourier basis oM,
a set of real values T = {ty,... 7/}, and a threshold y € (0, 1).
Output: Z = {by,...,b,} Indicator basis on M.

Select a subset of njp vertices Vip C V.
for j=1:tdo
Compute g% the spectral Gaussian.
fori=1:n;pdo
Compute g;’,: the spatial Gaussian translated in v;.
Normalization step: g, = |g,|/max(|g)).
Compute b;’,: as binaryzation of g;’,'. w.r.t. the threshold .

end for
end for
return Z = {b; =b},,..., by = bf,’nm}

matrix Z. When it is necessary we will refer to this basis as ™
making explicit the surface on which it is defined.

The pipeline for the construction of the indicator basis is sum-
marized in Algorithm 1.

4.2. Approximation of a Function with 7

Once we have our basis Z , given a function f we want to approx-
imate f as f a linear combination of the basis function in Z that
means:

F=1a/,

where o/ are the coefficients of f in the basis Z. The computation
of @/ can be defined in different way, here we propose two alter-
natives. The first is to compute a/ as the solution of the following
linear system:

Ta/ = f. (8)

Unfortunately the basis in Z are not linear independent and the pre-
vious linear system is usually underdetermined. As a valid choice
we propose to compute o/ as the solution of the following mini-
mization problem:

o = argmin||Za.— f|| +p||tlfo. )
acR?

The minimization of the /0 pseudo-norm promotes the sparsity of
the solution and in particular promotes solutions with a larger num-
ber of zeros. This is a good choices for our basis; in fact we have
a lot of basis functions and we know that just a few of them are
needed to obtain a good approximation of the signal. In our imple-
mentation we use the method proposed in [RZE08] for the mini-
mization of the /0 pseudo-norm. We fix the parameter p = 0.75.
An approximation example on the 1D Euclidean case is shown in
Figure 6. As can be seen the proposed basis (in red) allows to bet-
ter approximate the original step function (in black) with respect
to the results obtained using the standard Fourier basis (in blue).
We propose 2 different signals. On the left the approximation of a
binary ({0,1}) step function. On the right results on a similar step
function, but with values different from 0 and 1. An example of the

approximation of a function between two 2-dimensional surfaces
using the proposed basis is depicted in the first row of Figure 1,
with a comparison with the standard approach based on the LBO
eigenbasis.

4.3. Transfer of a Function with IB

Finally we consider the case in which we have two shapes M
and NV with their LBO eigenbasis @™ = {(])OM, s ,¢,?f471} and

oV = {(l)év, . J[)fj{[_] } truncated to dimension k¢ and knr € N
respectively. One of the main applications in signal representation
is functions transfer between two different domains. The transfer
of step functions is the main application that we face with our basis
7.

Functional Maps. As already said we make use of the Func-
tional maps framework [OBCS™12a] to transfer functions between
shapes. Here we just give a short introduction to the original frame-
work, and we refer to [OBCS*12a] for details. Consider ©: N —
M be a pointwise map between N and M . The functional map-
s framework [OBCS*12a] proposes to consider a linear operator
T : F(M,R) — F(N,R) that maps functions from N to M, de-
fined as the composition T'(f) = f o®. Adopting to the LBO eigen-
basis, the operator 7', namely the functional map, admits a matrix
representation C = (¢;;), which coefficients can be obtained as:

M M M M N

i ij \—L-//_/i
Accordingly to what is suggested in [OBCS* 12a] we use only trun-
cated set of eigenbasis, thus we also truncate the series (10). This
choice reduces the estimation of the functional map to a smaller
matrix C € RV kM In this work we consider the map C to be
given for all the methods that we compare. We refer for the differ-
ent possible solutions for the estimation of the map to the literature
collected in Section 2.

Mapping of the Gaussian. As we saw previously the Gaussian
functions on M are defined through their spectral coefficients. If
we consider a Gaussian function g its spectral coefficients are
{8/ ©0,(x) };‘241 that correspond to their representation in the Fouri-
er basis. Exactly these coefficients are the ones that can be trans-
ferred by the functional map C. Indeed thanks to C we can compute
the spectral coefficients for the Gaussian functions on N\

CIE 00, (x),....81, O, ()] (1)

Thus for every T and every x € M we can compute the image of g;

on N as:
K =oNCEI 00, (x),.... 8L, 00, 0] . (12

The notation hY with the point x € M as subscript can be mis-
leading. In fact being a function defined on N the correct cen-
ter of the Gaussian h} should be a point y € A/ such that y =
7! (x) the correspondent point of x € M. Varying the value of
Tt € T and varying the point x in the set V;p we obtain H =
(hp,- . hpy sy, oo b, ] the images of the set of spatial
Gaussian G. Each of the functions in H is in correspondence with
its pre-image in the same position in G.

(© 2018 The Author(s)
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Figure 6: We compare the approximation of a step function (in black) using the standard harmonics (in blue) and the proposed indicator
basis (in red). On the left we compare the approximation of a function with values in {0,1}. On the right a similar step function with non
integer values. In the legend on the right side of the name we report the relative error for each method.

From H, the set of Gaussian on A/, following the same binaryza-
tion step performed on G, we are able to obtain the indicator basis
TV . Thanks to the ordered correspondence between the columns in
7™M and the ones in 7V we can transfer the function feF(M,R)
on N easily as:

e=1Vao/, (13)

where o are the same coefficients that represent f in the basis
™, computed as in Equation 9. Thanks to its formulation the
computation of the proposed basis is well defined w.r.t. the func-
tional maps, so it is specifically built to exploit the transfer of func-
tion with the functional maps C. An example of the transfer of a
function between two different shapes using the proposed basis is
depicted in the second row of Figure 1.

Summing Up. The entire pipeline of the proposed method could
be summarized as follows:

1. Fix a subset Vip = {p1,...,Pny} of points on M in order to
cover the shape homogeneously.

2. Produce several Gaussian with different width around each of
the the points in Vg using the spectral Gaussian definition.

3. Obtain the basis Z binaryizing the Gaussian functions.

4. Compute C the functional maps of dimension kar X ka4 be-
tween M and N

5. Thanks to the spectral definition, the image of these Gaussian
are easily computed on N\ using &N C the image of ®MyviacC,
as basis on V.

6. Computing the sparse coefficients we can approximate and
transfer functions between M and .

5. Experiments
5.1. FAUST Dataset

The FAUST dataset [BRLB14] contains 100 human shapes. All
these shapes are built starting from real scans of 10 different peo-
ple in a set of 10 fixed poses. The obtained collection of 100 shapes
are then registered to a common template with a common triangu-
lar mesh composed by 6890 vertices and 13776 triangles. Thanks
to this common template a complete ground truth point-to-point

(© 2018 The Author(s)
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correspondence is available for all the pairs in the dataset. Among
the available datasets, FAUST is one of the more recent and chal-
lenging due to the non isometric deformations generated by the d-
ifferent poses and subjects. We perform our experiments on these
shapes using different set of 10 pairs randomly selected.

5.2. Competitors and alternatives

Standard (std). This is the classical approach based on the Fourier
theory [Lév06], [VLO8]. The used basis is the truncated orthonor-
mal subset of the first eigenfunctions of the Laplace-Beltrami op-
erator.

Standard double size (std2). The same as the the previous one but
using a number of eigenfunctions equal to two times the number
used in std.

Point-to-point mapping (p2p). We use the standard point to point
map conversion with ICP proposed in the original functional map
paper [OBCS*12b]. Once we have the point-to-point map we de-
fine a function on NV assigning to each vertex of A the value of the
original function at the corresponding vertex on M.

Products (prod). As proposed in [NMR* 18] we use not only linear
combination of the eigenfunctions, instead we consider also prod-
ucts between pairs of them. the results is a second order polynomial
representation of the functional spaces.

Geodesic Indicators (geod). This is the first of the two alterna-
tives that we generate. In this case for each of the points in Vip
we adopt the set of indicator functions obtained from 5 different
geodesic neighbourhood with 5 different levels of locality as basis.
Then we perform the transfer of these geodesic indicators on the
target shape using the functional map on the Fourier representation
of these geodesic indicators. The analysis and synthesis of a given
function is done using the two alternatives that we proposed for the
IB.

Heat Indicators (heat). The last alternative is instead based on
the heat kernel on the surface. In this case as indicator we use the
saturated version of the heat kernel around each of the points in V;p
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approx
dim std std2 prod geod (8) geod heat (8) heat ours (8) ours

10 0.70£0.20 | 0.55+0.18 | 0.524+0.20 | 0.194+0.06 | 0.18 + 0.06 0.72 0.72 0.34 £0.17 | 0.37 £0.19
30 0.454+0.16 | 0.354+0.11 | 0.32+0.10 | 0.19+0.06 | 0.18 £ 0.06 0.44 0.43 0.21 £0.08 | 0.21 +0.09
50 0.37£0.12 | 0.31 £0.09 | 0.27 +0.09 0.19 £ 0.06 | 0.18 +0.06 0.39 0.39 0.19 £ 0.07 | 0.19 +0.08
70 0.34+£0.10 | 0.28£0.09 | 0.29 +£0.08 | 0.18 + 0.05 0.18 £ 0.6 0.36 0.38 0.18 £0.06 | 0.19 £0.07
920 0.32+£0.10 | 0.26 £0.08 | 0.354+0.08 | 0.194+0.07 | 0.18 + 0.06 0.36 0.38 0.18 £0.07 | 0.18 £0.06

Table 1: Comparison between the proposed method and the competitors in the approximation of indicator functions. The relative error
computed as in Equation 14 reported in the Table is an average on 100 randomly generated indicator functions on 10 randomly selected
pairs from the FAUST dataset. For each of these results we also report + the standard deviation, except for the heat(8) and heat for which
the standard deviation is always close to 0.20 or greater. Each row in the Table corresponds to a different dimension of the basis used. For

each row we highlight the best result in green, the second one in red and the third one in blue.

gt transfer

dim std std2 pP2p prod geod (8) geod heat (8) heat ours (8) ours
10x10 | 0.70 0.56 0.59 0.57 4.04 1.03 1.00 1.09 0.53 0.63
30x30 | 046 0.36 0.27 0.36 1.62 0.61 0.92 0.91 0.43 0.36
50x50 | 0.38 0.32 0.19 0.31 0.95 0.50 0.90 0.95 0.31 0.28
70 x70 | 0.34 0.29 0.15 0.32 0.77 0.50 0.85 0.94 0.26 0.25
90x90 | 0.32 0.26 0.13 0.37 0.73 0.51 0.86 1.02 0.25 0.23

Table 2: Comparison in the transfer of indicator functions between the proposed method and the competitors. The relative error computed as
in Equation 15 reported in the Table is an average on 100 randomly generated indicator functions on 10 randomly selected pairs of shapes
from the FAUST dataset. The functional map used for the transfer is a ground-truth functional map. Each row in the Table corresponds to a
different dimension of the map C. For each row we highlight the best result in green, the second one in red and the third one in blue.

for 5 different time-scales. Then the obtained basis is used as done
for the geodesic indicators.

As explained in the previous Section we have two different def-
inition for the coefficients in the proposed IB. This is true also for
the geod and heat method above proposed too. In the following we
will refer to the results obtained from coefficients computed as in
equation 8 as geod (8), heat (8) and ours (8). While we will refer
to ones obtained with Equation 9 as geod, heat and ours.

5.3. Evaluation details

We adopt a relative error in the approximation and transfer (respec-
tively denoted by Eqpp and Erran) to give a quantitative evaluation
of the results. These relative errors are defined as :

— 24
guPP = foFAZ(;)(x)zfd)x x7 (]4)
I iran (x) = firan)*dy

Iy frran(v)2dy

where fiyqn is the ground truth transfer of f from M to A, while f
and firan are respectively the approximation and the transfer of the
function f. In these equations dx and dy are the infinitesimal area
elements respectively on M and .

gtran -

s)

5.4. Results

In all our experiment we consider a given functional map of the di-
mension of the basis used that are the ones selected for the method
std. For all the methods the functional map used is the same, with
its natural extension to products for the method prod as explained

in [NMR*18]. Method std2 is the only exception, where the di-
mension of the basis doubles the original one. Hence also the map
has dimensions equal to two times the original dimensions.

In the first experiment, for 5 different dimensionality of the map,
we compare the approximation and the transfer error for all of the
competitors. The results shown are the average of 100 random in-
dicator function on 10 random pairs from FAUST dataset. In Table
1 are reported the errors in the approximation. For each of these
errors we report also the standard deviation, except for the heat(8)
and heat for which the standard deviation is always close to 0.20
or greater. Being only suitable for transferring, the method p2p is
not present in this Table. As it can be seen, the method geod does
not depend on the dimension of the basis in the approximation and
it outperforms all of the competitors when a small number of ba-
sis functions are used. On the other side the heat method is highly
dependent on the number of eigenbasis used as it corresponds to
the quality of the spectral representation of the heat diffusion. The
same is true also for our method, even if it is better than the com-
petitors except for the geod. Once we adopt 50 or more eigenbasis
our method achieves the best approximation results also consider-
ing the standard deviation. In Table 2 we collect the results for the
transfer obtained with ground truth functional maps. On each row
we use a square functional map with a different dimensionality. It is
clear that the geodesic information are not well transferred through
the functional maps based on the LBO eigenbasis, and the precision
in the geodesic approximation is completely lost. Furthermore it is
clear that ours is more appropriate and precise with respect to ours
(8). Although the p2p achieves the best result, our performance is
always fully satisfactory. Our method achieves the best results in
comparison with all the other functional representation methods.

In Figure 7 we compare all the competitors on the transfer using

(© 2018 The Author(s)
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a ground truth functional map defined on a basis of dimension 30
on the Source shape and increasing the dimension ks of the basis
on the Target shape. On the y-axis we report the relative error com-
puted as average of 100 random generated function on 10 random
selected pairs of shapes from the FAUST dataset. On the x-axis the
increasing value of ks is shown and the last value on the right cor-
responds to the error in the approximation. The p2p achieves the
best results for every value of kar. The other methods are all far
from the p2p result, the only exception is the proposed method. As
can be seen increasing the dimensionality of the basis on the target
shape the results of our method are really improved. With k; close
or greater than 200 the transfer obtained with our method is not so
far from the p2p. This confirm that the IB well represent and trans-
fer the step functions defined on surfaces. The only limit on our
basis is the quality of the map. If we have the possibility to use a
larger number of eigenbasis on the target shape our method reaches
the results that we have in the approximation (that are shown on
the last column of the Figure 7). These results proof that our basis
is the best one in the transfer application with respect to the oth-
er functional representation methods. The powerful transfer results
obtained by the p2p is limited to the fact that this method does not
constitute a functional representation, it is only useful for transfer.
If we want to represent step functions on shapes with a fixed basis
in a signal processing scenario we should use the proposed IB.

transfer
1 T T T T T T

relative error

0 | | N N SR A S | |
30 50 75 100 120 140 160 180 200 250 300

Q

knr

Figure 7: Comparison on the transfer without saturation using a
ground truth functional map defined on a basis of dimension 30 on
the Source shape and varying the dimension ks of the basis on
the Target shape. The relative error computed as in Equation 15
reported in the Table is an average of 100 random generated func-
tion on 10 random selected pairs from the FAUST dataset. The last
value on the x-axis correspond to the error in the approximation.

Finally in Figure 8 some qualitative examples for the approxima-
tion and transfer of indicator functions between all the competitors
are depicted. Varying the pair of shapes and the indicator function

(© 2018 The Author(s)
Eurographics Proceedings (©) 2018 The Eurographics Association.

dim
method | 10x 10 | 30x30 | 50x50 | 70x70 | 90 x 90
geod 30.72 31.00 30.74 31.10 30.71
heat 5.59 5.82 5.72 6.01 6.30
ours 0.26 0.26 0.26 0.26 0.26

Table 3: Comparison in the timing of the three different definitions
of the indicator basis geod, heat and ours. In the Table the time
in the computation of the basis on the two shapes of each pairs.
The times are reported in seconds. These are the average on 10
pairs with around TK vertices. In each column we compare the
three methods for different size of basis.

we propose three different examples. In all these experiments the
functional map is encoded in a matrix of dimension 100 x 30. As
can be seen the IB well approximates and transfers the indicator
function in all the pairs considered. These qualitative results con-
firm again that the IB is the best functional representation for step
function defined on surfaces.

5.5. Timing and Efficiency

In Table 3 we evaluate and compare the timing of the three alterna-
tive computations, namely geod, heat and ours. As it can be seen,
the proposed method is definitely faster than the competitors.

6. Conclusion

In this work we propose the indicator basis, a new basis for the
analysis of step functions defined on different domains. For the con-
struction of this basis we provide a synthetic spectral formulation
that makes it very efficient. The usefulness and the strength of the
proposed basis are evaluated and compared with the state-of-the-
art competitors. The proposed basis is specifically desirable for the
transfer of region indicator functions. The performance in the trans-
fer comparison confirms this claim. The quality of the obtained re-
sults and the efficiency of its computation make the indicator basis
a a desirable alternative for the analysis of step functions.

Limitations. The proposed method is clearly limited by the spe-
cific set of functions for which it is defined. The indicator basis is a
nice tool for the approximation and the transfer of any step function
but can not be generalized to other functions. The proposed basis is
highly dependent on the choice of parameters. For instance with a
bad selection of the subset of vertices the indicator basis could be
not able to represent indicator function on the entire surface. The
analysis of the dependence between the selection of the parameters
and the quality of the results may be explored as a future work.

Future work. The main point that is addressed in this paper and
that follows clearly from what has been proposed is the sparse rep-
resentation of step functions using the indicator basis. The sparse
representation of functional space can be widely investigate in fu-
ture work. The evaluation contained in this paper is restricted to the
human shape and in particular to FAUST dataset. An extension of
the present evaluation should be performed on larger set of shapes
from different class and different datasets. In addition to an exten-
sive evaluation that was not performed in this paper, also possible
applications in signal processing tasks, such as localization of sig-
nals, can be explored in future work.
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Figure 8: A comparison between all the competitors and our indicator basis (IB) in the approximation and transfer of three different indicator
functions. The Figure is divided in three sub figures. The approximation (first row) and the transfer (second row) for a different indicator
function on a different pair are evaluated in each of these sub figures. The original function on the source shape and its ground truth transfer
on the target shape are shown on the left. The results for all the competitors are collected on the right in the Figure. The p2p method does
not provide results in the approximation. The colormap represents the values of the step function from 0 to max. The value 0 is represented
in white in order to highlight the errors.
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