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Abstract

In this work, we used a deep learning (DL) model to solve a fundamental problem in differential geometry.

One can find many closed-form expressions for calculating curvature, length, and other geometric properties in the literature.
As we know these properties, we are highly motivated to reconstruct them by using DL models. In this framework, our goal
is to learn geometric properties from many examples. The simplest geometric object is a curve, and one of the fundamental
properties is the length. Therefore, this work focuses on learning the length of planar sampled curves created by a simulation.
The fundamental length axioms were reconstructed using a supervised learning approach. Following these axioms, a DL-based
model, we named LengthNet, was established. For simplicity, we focus on the planar Euclidean curves.

1. Introduction

The calculation of curve length is a significant component in many
classical and modern problems involving numerical differential
geometry [GP90LHC98]|. Several numerical constraints affect the
quality of the length calculation; additive noise, discretization
error, and partial information. One use case for length calculation
is a handwritten signature. It involves the computation of the
length along the curve [OTPH16]|. This use case and many others
should handle the mentioned numerical constraints. Hence, a
robust approach to handle it is required.

Recent works explore the possibilities of using classical machine
learning (ML) or deep learning (DL) based approaches as they
achieved great success in solving many classification, regression
and anomaly detection tasks [LBH15]. Evidence of the effective-
ness of DL in solving such tasks has been shown repeatedly in
recent years [LBH15|. An efficient DL architecture finds intrinsic
properties by using a convolutional operator (and some more
sophisticated and nonlinear operators) and generalizes them.
Their success is related to the enormous amount of data and their
capability to optimize complicated models by high computational
available resources.

Related papers in the literature mainly address a higher level of
geometric information by DL approach [BBL*17,[BN18]. Saying
that, a fundamental property was reconstructed by DL model
in [PWKI16], where a curvature-based invariant signature was
learned by using a Siamese network configuration [Chi20|]. They
presented the advantages of using the DL model to reconstruct the
curvature signature, which mainly results in robustness to noise
and sampling errors.
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As we know the powerful functionality of DL models, we are
highly motivated to use them to reconstruct fundamental geometric
properties. Specifically, we focus on the length property recon-
struction for curves in the two-dimensional Euclidean domain
by designing a DL-based model. The task was formulated in a
supervised learning setup. There, a data-dependent learning-based
approach was applied by feeding each example at a time through
our DL-based model and by minimizing a unique loss function that
satisfies the length axioms. For that, we created four anchor shapes,
and applied translations, rotations, and additional operations to
cover a wide range of geometric representations. The resulting
trained DL model was called LengthNet. It obtains a 2D vector as
an input, representing samples of a planar Euclidean curve, and
outputs their respective length.

The main contribution of this work is to reconstruct the length
property. For that, a DL architecture was designed. This archi-
tecture is based on the classical Convolutional Neural Networks
(CNNE).

The remainder of the paper is organized as follows: Section 2
summarizes the geometric background of the length properties.
Section 3 provides a detailed description of the learning approach
where the two architectures are presented. Section 4 presents, the
results followed by the discussion. Section 5 gives the conclusions.

2. Geometric Background of Length

In this section, the length properties are presented and the dis-
cretization error is reviewed.
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2.1. Length Properties

Consider a planar parametric differential curve in the Euclidean
space, C(p) = {x(p),y(p)} € R?, where x and y are the curve
coordinates parameterized by parameter p € [0,N], where N is a
partition parameter. The Euclidean length of the curve, is given by

P P
1o) = [ 1 (Plap= [ \/3+3ap M)

where x), = j—;,yp = ZTyr Summing all the increments results in the
total length of C, given by

N
= [F1cpldp. @)

Following the length definition, the main length axioms are pro-
vided.

Additivity: The length additives with respect to concatenation,
where for any C; and C; the following holds

L(C)+L(G)=L(CUG). 3)

Invariance: length is invariant with respect to rotation (R) and
translation (T),

L(TRC])) = L(C). Q)

Monotonic: length is monotone, where for any C; and C; the fol-
lowing holds

L(C))<L(G) CCG. ®)
Non-negativity: The length of any curve is non-negative,

L£(C)>0. (6)

2.2. Discretization Error

In order to reconstruct the length property by the DL model, a dis-
cretization of the curve should be applied. As a consequence, it is
prone to errors. The curve C lies on a closed interval [0, B]. In order
to find the length by a discretized process, a partition of the interval
is done, where

P={a=po<pi <pr<---<pnv=B}. )

For every partition P, the curve length can be represented by the
sum

M=

s(P)= 2 1C(pn) = C(pn-1)l- (8)

n=1

The discretization error is given by,
eg=L—s(P)

N
N )
=Jo |Cp(p)ldp— Zl |C(pn) = C(pn—1)I-

n=
where obviously, e; — 0 when N — oo (for further reading, the
reader refers to [DC16]). Fig. 1 illustrates a general curve with A
their discretized representation for better error visualization.

Figure 1: Discretization.

3. Learning Approach
3.1. Motivation

The motivation for using the DL model for this task lies in the
core challenge of implementing equations (1) and (2) in real-life
scenarios. These equations involve non-linearity and derivatives.
Poor sampling and additive noise might lead to numerical errors
[[QWO3]||. The difterential and integral operators can be obtained by
using convolution filters [PWK16| and the summation can be repre-
sented using linear layers, which are highly common in DL models.
The differential invariants can be interpreted as a high pass filter
and the integration as a low pass filter. Hence, it is convenient to
use a CNN alike model for our task. Another approach to deal with
this task involves the Recurrent Neural Network (RNN), where the
curve is considered a time-series [[TB97}/SJ19]. Our suggested ar-
chitecture is based on a simplified CNN. As we aim to reconstruct
the length axioms, (3)-(6), each of them is considered in the model
establishment pipeline: from unique dataset generation 3.2, through
loss function design 3.3, and the architecture structure 3.4.

3.2. Dataset Generation

The reconstruction of the length properties was made in a super-
vised learning approach, where many curve examples with their
lengths as labels were synthetically created. Each curve is repre-
sented by 2 x N vector for the x and y coordinates and a fixed
number of points N. We created a dataset with 500,000 to en-
able DL-based model establishment. This large number of exam-
ples aimed to cover curve transformations and to satisfy different
patterns. These curves were created by considering four standard
anchor geometric shapes (circles, straight lines, triangles, and rect-
angles), as shown in Figure 2. We scaled, rotated, translated, and
then segmented them randomly into two segments, as shown in
Figure 3. We performed 10 different splits for each anchor curve
and sampled it in the forward and backward directions. In order
to increase the dataset variety, an oscillating vector with random
frequency and amplitude was added. This vector direction was de-
fined as perpendicular to the shape’s bounding curve. These steps
were applied on the curve parametric analytic representation for a
uniform sampling, defined on the [0, 1] interval. To enforce smooth-
ness, the curve is convolved with a Gaussian kernel, creating dif-
ferentiable curves even for the case of a rectangle and triangle. The
ground truth length (label) of the shapes was calculated via 1% or-
der approximation between every two successive samples, where
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Figure 2: Dataset generation: Curve examples of four anchor
shapes.
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Figure 3: Curve transformation example.

we applied oversampling of 2 X 100N . This process allows the re-
construction of Additivity and Invariance axioms.

3.3. Loss function

The optimization problem was formulated as a supervised learning
task. The loss function was design to meet the Additivity axiom.
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For each example, we aim to minimize the following
2
K=1L(s1)=0(2) =0 +A]O5]5. 0

where 51,52, and s3 are the input curves that hold the equality
L(s1) = L(s2) + L(s3), O is the DL model output, k is the ex-
ample index, A is a regularization parameter, ®;; are the various

model weight, and ||||§ is the norm, where 3 € [1,2]. The opti-
mization task is to reconstruct the equality:

L(s1) =0(s2) +0(s3) a1

Minimizing J; by passing many examples from the dataset, 3.1,
through the model, tuning its weights iteratively where eventu-
ally (10) and (11) coincide on the test set. The optimized resulting
model is characterized by the optimal weights provided by

®;~kj = argminZJk. (12)

0, k

In this work, we considered two options of the loss function norm,
d: the L norm and the Ly norm. The L, norm is very common to
use for minimizing the mean-squared error (MSE) between the true
label and the predicted one. The L; norm (Manhattan Distance) is
very common to use for minimizing the Least Absolute Deviations
(MAD) between the true label and the predicted one. We trained
two models, one with L; norm and the second with L, norm. The
motivation for including the L; norm in the loss is our interest in a
model that calculates length. Hence, the relative error is of our con-
cern. Our hypothesis was that L outperforms the L,, as we indeed
obtained at 3.5.

3.4. LengthNet Architecture

A simplified CNN was designed as a predictor for this supervised
learning task. The baseline model receives as an input a 200 x 2
array representing discrete samples along the curve. It is inserted
into two one-dimensional convolution layers (Conv1D). Both with
a small kernel of size 3. The first with 24 filters and the second
with 12 filters. They are connected with the Rectified Linear Unit
(ReLU) activation function. Both Conv1D layers are followed by
another ReLU and a linear layer of 2,352 neurons which finally
outputs the length. The architecture is shown in Figure 4.

We tested several variations upon this baseline, e.g., models with
additional batch normalization layers. Still, we found that for this
simple task, a simple and shallow model achieves satisfying results.

3.5. LengthNet Training

Our training set consisted of 400,000 examples created from 400
shapes (100 for each anchor shape). Each specific shape was ro-
tated and segmented in various ways to achieve invariance over
those transformations creating the final dataset of size 400,000. The
test set consisted of 100,000 examples created from 100 different
shapes in the same manner. Training of this architecture for both
loss functions, (10), was done using the ADAM optimizer [KB14]
with a learning rate of le-3 with a constant decay rate of 0.99 and
a batch size of 128, which were set after parameter tuning. Both
models (with L; norm and L, norm) were trained by passing many
examples in small batches with a back-propagation method. The
training process was carried out in batches of 128 examples for 400
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Figure 4: LengthNet architecture: A general curve is inserted into the model for their length estimation. There, two 1D convolutional layers,
followed by one linear layer were considered with two ReLU activation functions.

Train and test loss
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Figure 5: LengthNet training

epochs. The chosen CNN-based architecture with L; norm for the
loss function was named LengthNet. Various parameters are pro-
vided in Table 1. Figure 5 shows a graph of the train and test losses
as a function of the number of epochs.

Table 1: Learning Parameters

as also the RMSE-Over-Length (ROL) measure, defined as

RMSE

E )

This measure provides a normalized error with respect to the
curve’s length. As we deal with various curves of different lengths,
we must appropriately weigh their errors. Figure 6 provides the
ROL histograms of L; norm based model and L, norm based
model. As shown, L; loss function based-model clearly outper-
forms L, loss function based-model according to the ROL measure.

ROL = (13)

4.1. Architectures Comparison

We compared the LengthNet performance with several architec-
tures. A Batch-Norm was added to the LengthNet architecture, af-
ter every convolutional layer. Once with L1 loss and once with
L2 loss. This modification did not improve the test loss, relatively
to LengthNet test loss. We also tried the long short term mem-
ory (LSTM) architecture, which are commonly used for sequen-
tial data. The LengthNet outperformed LSTM with both L1 and L2
loss. Results are summarized in Table 2.

The with Batch-Norm, and obtained large relative error of

Description Symbol Value
Nunber of examples K 500,000

Train/test ratio - 80/20
Regularization parameter A 0.01
Partition parameter N 200
Batch size - 128
Learning rate n 0.001
Decay rate - 0.99
Epochs - 400

4. Results and Discussion

Table 2: Architectures Comparison

Model Test loss | ROL
LengthNet (CNN+L1 loss) 0.239 0.021
CNN+L2 loss 0.254 0.029
CNN+L1 loss + Batch-Norm 0.360 0.039
CNN+L2 loss + Batch-Norm 11.36 0.230
LSTM +L1 loss 1.768 0.166
LSTM +L2 loss 2.370 0.099

4.2. Monotonic Property

The LengthNet was well established after 400 epochs. In order to
validate the LengthNet, we used the Root MSE (RMSE) measure,

A linear relation was established between the true length and the
LengthNet (Fig.7). The x-axis represents the ground truth length,
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Figure 6: ROL histograms. Ly norm vs. Ly norm comparison. Ly
loss function based-model clearly outperforms Ly loss function
based-model

Length

Figure 7: LengthNet monotonic property assessment

and the y-axis is the predicted length by the LengthNet. This result
shows the generalization capability and, in particular, shows the
success of reconstructing the (Monotonic) axiom.

4.3. Comparison to first-order Spline interpolation

A classical approach for length calculation uses the first order
spline interpolation (yielding a length calculation equivalent to (8)).
A comparison between the Ist order spline interpolation and the
LengthNet was made. The length of all test set examples were cal-
culated, once by the 1st order spline interpolation and once by the
LengthNet. The results are presented in Figure 8, where the relative
error histograms are shown for each. The LengthNet histogram is
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Figure 8: LengthNet vs. spline interpolation relative error his-
tograms.

mostly below 2.5%, while for the 1st order linear spline, half of the
relative error is concentrated around 2.5%, relatively wide spread.

4.4. Noise Robustness

We check the capability of the LengthNet to estimate the length of
curves with additive white Gaussian noise. We set the standard de-
viation of the noise to Ad, where d is the mean distance between
two successive points along the curve and A € [0,1] is the noise
magnitude parameter. Figure 9 shows two curves with their asso-
ciated noisy curves, with A = 0.5. We compared the performance
of our model with linear spline interpolation. The LengthNet and
the linear spline sensitivity to additive noise are presented in Fig-
ure 10 (blue and green plots). For a low level of additive noise, the
LengthNet predicts the curve length property pretty well. Only for
noise magnitude of 0.3 a relative error of over 10% is obtained.
The relative error of the LengthNet is much lower than the linear
approximation for most of the data. The ability to be robust to noise,
even though the LengthNet didn’t see any noisy example, is a good
capability.

In addition, we add a low pass filter (LPF) to smooth the noise for
both approaches (orange and purple in Figure 10). We obtained bet-
ter results, where the suggested LengthNet outperforms the linear
spline for noise magnitude up to A = 0.7.
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Figure 9: Noisy vs. original shapes. Var parameters=0.5
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Figure 10: LengthNet vs. linear approximation sensitivity to addi-
tive noise with and without LPF

4.5. Generalization for unseen examples: Lame curves

In order to evaluated model generalization capabilities, we present
the Lame curves family (super-ellipse), given by:

’ X
a
where a and b were set to 1, for simplicity, and r is the shape pa-
rameter. Note, when » < 1 the curve has non-differentiable points.

Some curves from the family are provided in figure 11. We im-
plemented the parametric equation for 39 different curves where

=1 (14)

,
y
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Figure 11: Lame curves family.
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Figure 12: Lame curves: Relative error of the LengthNet as a func-
tion of r.

r € [0.5,10] with steps of 0.25. Then, we passed each curve trough
the LengthNet. Results are shown in Figure 12.

5. Conclusions

A learning-based approach to reconstruct the length of curves was
presented. The power of the deep learning based model to recon-
struct the fundamental axioms was demonstrated. There, a very
simplified architecture was designed to deal with sequential data.
We have shown that the norm L; is more appropriate for this
problem than the common L; norm in the loss function formula-
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tion. Furthermore, by comparison to the linear approximation, we
see how the LengthNet deals with noisy examples, even though it
hasn’t been trained on noisy data. Currently, the LengthNet does
not deal well with high noise magnitude. Future challenges: we
aim to generalize a DL model with the capabilities of taking a level
set from a given image and performing accurate length calculation
using more examples, such as the outline of the human figure. For
that, we aim to formulate the problem as an unsupervised learn-
ing (or self-supervised learning) task. Also, we may include some
transformations, such as affine, equi-affine, and homography trans-
formations.
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