
STAG: Smart Tools and Applications in Graphics (2021)
P. Frosini, D. Giorgi, S. Melzi, and E. Rodolà (Editors)

SlowDeepFood: a food computing framework for regional
gastronomy.

N. U. Gilal1 and K. Al-Thelaya1 and J. Schneider1 and J. She1 and M. Agus1

1 College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar

Abstract
Food computing recently emerged as a stand-alone research field, in which artificial intelligence, deep learning, and data
science methodologies are applied to the various stages of food production pipelines. Food computing may help end-users in
maintaining healthy and nutritious diets by alerting of high caloric dishes and/or dishes containing allergens. A backbone for
such applications, and a major challenge, is the automated recognition of food by means of computer vision. It is therefore no
surprise that researchers have compiled various food data sets and paired them with well-performing deep learning architecture
to perform said automatic classification. However, local cuisines are tied to specific geographic origins and are woefully
underrepresented in most existing data sets. This leads to a clear gap when it comes to food computing on regional and
traditional dishes. While one might argue that standardized data sets of world cuisine cover the majority of applications, such
a stance would neglect systematic biases in data collection. It would also be at odds with recent initiatives such as SlowFood,
seeking to support local food traditions and to preserve local contributions to the global variation of food items. To help preserve
such local influences, we thus present a full end-to-end food computing network that is able to: (i) create custom image data
sets semi-automatically that represent traditional dishes; (ii) train custom classification models based on the EfficientNet family
using transfer learning; (iii) deploy the resulting models in mobile applications for real-time inference of food images acquired
through smart phone cameras. We not only assess the performance of the proposed deep learning architecture on standard food
data sets (e.g., our model achieves 91.91% accuracy on ETH’s Food-101), but also demonstrate the performance of our models
on our own, custom data sets comprising local cuisine, such as the Pizza-Styles data set and GCC-30. The former comprises 14
categories of pizza styles, whereas the latter contains 30 Middle Eastern dishes from the Gulf Cooperation Council members.

CCS Concepts
• Human-centered computing → Ubiquitous and mobile computing; • Computing methodologies → Scene understanding;
Object recognition;

1. Introduction

Driven by the progress in artificial intelligence and deep learning, a
recent, enormous boost in computer vision has triggered the emer-
gence of a plethora of applications related to image analysis that
are fundamentally changing the way people interact with multi-
media systems. Among those, a task that is becoming especially
common is the automatic recognition and classification of images
taken casually. Applications based on the resulting ’smart cameras’
are nowadays ubiquitous in the mobile ecosystem. As of writing,
most vendors have started equipping their high-end smartphones
with hardware-bases inference accelerators and have created artifi-
cial intelligence frameworks that optimize picture quality by ana-
lyzing the content of the scene to be captured and adjusting camera
settings accordingly. The very same computational infrastructure
also fuels a rapid evolution in the application domain, driven by the
automatic recognition of objects, scenes, persons, animals, etc.

In this application domain, food computing [MJL∗19] is a field

that recently emerged and gained high popularity quickly. A main
challenge to be addressed in this context is the automated un-
derstanding of food images, especially with respect to detection,
segmentation, and analysis of food on trays, measuring portions,
estimation of quality, nutritional value, and/or caloric content.
The prominent goals of most efforts addressing this challenge are
health-related targets, such as providing nutritional recommenda-
tions to users (driven by nutrition and Calorie estimation) as well
as screening food for ingredients or potential allergens to meet the
users’ dietary requirements.

While labeled data sets containing samples of international
cuisines are available to train deep models, the same is not true for
traditional and regional specialties. As a result, training deep neu-
ral networks using supervised learning to classify food according
to internationally recognized taxonomies has become a relatively
simple exercise. At the same time, the lack of data renders the same
task impossible for regional and traditional cuisines. However, the
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Figure 1: SlowDeepFood. Our end-to-end food computing framework is able to create regional food data sets semi-automatically (left). It
also creates custom classification models based on transfer learning (center) that can be deployed to mobile devices and integrated into
real-time applications (right).

latter cuisines are gaining more and more interest in a trend to move
away from fast food and back to more traditional ways of food
preparation. Various international organizations like IGCAT (In-
ternational Institute of Gastronomy, Culture, Arts and Tourism)1

and SlowFood2 regularly promote initiatives to raise awareness of
the importance of cultural and food uniqueness in an effort to pre-
serve distinctive food cultures. Inspired by such efforts, we address
the need to fill gastronomy representation gaps in public domain
data. We believe that therefore there is a need for customized data
relevant to different gastronomic cultures, such as outlined in this
paper. We also would argue that the availability of such data will
contribute to the aims of the aforementioned organizations, espe-
cially concerning: (i) preventing the disappearance of local food
traditions, (ii) stimulating creativity, (iii) educating for better nu-
trition, and (iv) improving sustainable tourism standards [Sim12].
With respect to the latter point, we would also argue that being able
to identify commonly encountered dishes of a globalized cuisine
provides less value than being able to identify and describe “ex-
otic” dishes, e.g., such as encountered on travels, with which one is
unfamiliar.

In order to provide technological support to initiatives promot-
ing worldwide food diversity, we present SlowDeepFood, an end-
to-end deep learning framework for food computing that is able to
efficiently target custom local gastronomies. The proposed frame-
work integrates the following technical contributions:

• a semi-automatic processing pipeline for the fast creation of spe-
cific food data sets representing gastronomic regions or specific
food categories (Sec. 3.2). Using Selenium’s Python bindings3 (a
portable framework for testing web applications) combined with
the chromedriver library, the pipeline is able to efficiently cre-
ate medium complexity, customized data sets for automatic food
classification in a reasonable time frame (around 30 minutes per
food category) ;
• an effective deep learning framework utilizing the concept of

transfer learning and built on top of modern EfficientNet archi-
tectures. Our framework is able to create lightweight models to
be used in mobile applications (Sec. 3.3). The proposed transfer
learning strategy is able to train accurate classification models in

1 https://www.europeanregionofgastronomy.org/, ac-
cessed 11.Sep.2021
2 https://www.slowfood.com/, accessed 11.Sep.2021
3 https://selenium-python.readthedocs.io/, accessed
16.Sep.2021

reasonable time (max. 6 hours for EfficientNet-B4 on Food-101)
on recent commodity GPUs;
• a prototype mobile application for real-time food classification

that integrates the models trained on our specific custom data
sets (Sec. 3.4). The application uses the smartphone camera for
performing real-time picture acquisition and predicts the top k
categories at a rate of several inferences per second using our
GPU-trained classifier.

We validate the deep learning framework on the most popu-
lar general food data set (namely ETH-Food101 [BGVG14]), for
which we obtain performance comparable to state-of-the-art meth-
ods [JMLL20] (that is, 91.91% top-1 accuracy for EfficientNet-
B4). We finally demonstrate the proposed technology on two newly
created custom data sets, namely Pizza-Styles containing 14 styles
of pizza, and GCC-30, containing 30 traditional dishes from Arabic
Gulf Countries. To this end, we report on accuracy of our classifi-
cation models and on preliminary evaluation of mobile applications
in typical usage scenarios in traditional restaurants.

2. Related work

Our work deals with food computing and deep learning applied to
image classification. Since a full review of the rapidly developing
field of food computing is beyond the scope of this work, we would
like to refer readers to surveys [MJL∗19,ZZL∗19]. In the following
we overview the main problems, the applications currently avail-
able, the deep learning frameworks currently used for image clas-
sification, as well as the data sets available for deep learning.

Food computing. Given the increasing availability of public
data and the evolution of AI technologies, a new computing
field named automated food analysis has recently emerged. The
main challenges addressed by the field are related to the clas-
sification and recognition of food images, and various meth-
ods have been proposed along the last decade. Advances in ma-
chine learning technologies have extensively improved the accu-
racy of object detection, identification, and recognition from sin-
gle pictures. The field has particularly benefited of deep learn-
ing and convolutional neural networks (CNNs). The latter have
been applied, among others: food recognition [SSC∗20, ZYK21],
food segmentation [GdMWP∗20, MSFV∗21], food-tray analy-
sis [Pop20], food classification [CMN20, SGH∗21], ingredient
recognition [CZN∗20], food quality estimation [LNC20], calorie
counting [LAM∗20, SDBJ21] and portion estimation [JQL∗20].
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Improvements in the performance of such tasks have in turn en-
abled various applications to fuse multimedia towards a variety
of health-related targets: to provide nutritional guidelines to users,
e.g., calories and nutrition estimation [LSV∗20], food recommen-
dation related to specific health conditions [RMK20] and automatic
dietary monitoring of canteen customers [CNS15a].

In this paper, we propose a framework for supporting Slow Food
initiatives aimed at the protection of local and traditional recipes.
Our framework fuses a semi-automatic preprocessing pipeline for
creating custom data sets related to specific gastronomy regions or
food categories with a deep learning architecture based on the re-
cent EfficientNet family of convolutional neural networks [TL19].

Convolutional neural networks in mobile systems. Convolu-
tional neural networks (CNNs) are, at their core, deep artificial neu-
ral networks that try to emulate the behavior of the visual cortex in
the human nervous system. They have become extremely popular
in the visual computing community over the last decade for being
able to solving a wide range of problems related to image process-
ing [LHL16]. The success of CNNs can be largely attributed to
two trends. Firstly, fueled by increasing computational capabilities
as well as architectural advances in deep learning, models became
increasingly bigger. The reason was an attempt to achieve better ac-
curacy on ImageNet competitions, starting from AleXNet [KSH12]
that won the 2012 ImageNet competition, up to Squeeze-and-
Excitation Networks [HSS18] and GPipe [HCB∗19], winning the
same competition in recent years. Secondly, with the rise of smart
phones to ubiquity, a demand for the design of CNNs that perform
efficient inference on such traditionally limiting platforms arose.
This demand has been addressed by hand-crafted models such as
SqueezeNets [SdSZ∗18] and MobileNets [QZC∗18], or even fully
automated neural architecture search (NAS). NAS seeks to opti-
mize the hyperparameters of CNNs (depth, size, activation func-
tions, etc.) using modular building blocks as the underlying archi-
tecture. Notably, this approach has led to the Efficientnet family of
CNNs [TL19]. In the context of mobile-friendly CNNs, the focus
of further improvements is usually on the inference speed. Some
recent architectures like EfficientNet-X [LTP∗21], for instance, try
to improve GPU and/or TPU inference speed. Other improvements
focus on the training speed, such as BoTNets [SLP∗21]. Pertaining
to food recognition, there have been various recent attempts to uti-
lize CNNs for training multi-label classifiers for predicting the kind
of food. Examples include GoogLeNet [MJR∗15] and residual net-
works [MFM18]. Very recently, Min et al. [MLW∗20] proposed a
stacked global-local attention network, which consists of two sub-
networks for food recognition, while Jiang et al. [JMLL20] de-
signed a Multi-Scale Multi-View Feature Aggregation (MSMVFA)
scheme. The idea is to aggregate high-level semantic features, mid-
level attribute features and deep visual features into a unified rep-
resentation. The problem of the latter architecture is that it needs
additional ingredient knowledge to obtain mid-level attribute repre-
sentation via ingredient-supervised CNNs. In general, all discussed
methods are not optimized to be used in a mobile setting. In con-
trast, our work explicitly focuses on proposing a light-weight archi-
tecture derived from EfficienNet family of CNNs [TL19] to enable
mobile inference.

Figure 2: Geographic distribution of food data sets. Many impor-
tant gastronomy areas are not adequately represented. Also refer
to our list of publicly available, geo-referenced food data sets at
https://slowdeepfood.github.io/datasets/.

Food data sets. Concurrently to the evolution of architectural ad-
vances of deep models, not only in the field of food comput-
ing, the last years have also witnessed an accelerated growth of
a food image ontology coupled with sample data sets to sup-
port large-scale food recognition. These data sets now form the
benchmarks and test-beds for algorithms and models in food
computing. Among them, the most popular ones are: ETH’s
Food101 [BGVG14], containing 101,000 images representing 101
food categories, UNIMIB2016 [CNS15b] containing 1,027 canteen
trays for a total of 3,616 food instances belonging to 73 food classes
(to be used for object detection and dietary assessment), UNICT-
FD889 [FAS14], containing over 800 distinct plates of food, ISIA
Food-500 [MLW∗20] with, as the name suggests, 500 categories
and 399,726 images, and UEC-FoodPix [OY21], a large-scale food
image segmentation data set comprising 10,000 food images with
segmentation masks. In this work, we carry out a critical analysis
of recently published data sets according to the represented cul-
tural and regional environments to create a Geo-referenced clas-
sification. We published a web resource listing of the data sets
currently available 4. As shown in Fig. 2, the geographic distri-
bution of data sets available is far from uniform, critically under-
representing many important areas: most data sets were created for
stressing automatic processing methods and they are too general for
being applied to different culinary styles, methods and regions. To
overcome this limitation, we propose a semi-automatic processing
pipeline for creating databases representing strictly localized re-
gions of gastronomy. We demonstrate the potential of our approach
by targeting some areas that have not been considered for bench-
mark data as of writing.

3. SlowDeepFood Framework

3.1. Overview

We postulate the following requirements for our framework:

• R1. Fill the striking representation gaps of traditional
cuisines in currently available data sets. Doing so will boost
the impact of initiatives seeking to protect local food traditions
and remedy the current limitations of available data sets.

4 https://slowdeepfood.github.io/datasets/, accessed
17.Sep.2021.
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Figure 3: Data set creation pipeline. Starting from a taxonomy of food specialties, a Python script takes control of Google’s images search
engine. Through automated scroll and click operations, we are to download hundreds of images in a few minutes. This is followed by manual
proofreading to clean the data set.

• R2. Perform fine-grained classification dishes. Food recogni-
tion is a difficult task. Many dishes share common features, and
intra-class variance may often be larger than inter-class variance.
Therefore, standard models need to be customized, especially
for custom data sets representing local traditional food special-
ities for which small geographic displacements may have great
impact on the visuals of the final dish.
• R3. Enable isolated mobile inference. Deploying most archi-

tectures on mobile devices without relying on a cloud back-end
(“isolated”) suffer from being overly optimized for accuracy per-
formance and not for inference speed. The idea of performing
isolated inference is gaining more and more attention, though,
and benefits tourists requiring apps that are efficient in terms of
the use of memory, bandwidth, battery power, and time (latency)
during inference.

The SlowDeepFood framework we propose satisfies the afore-
mentioned requirements by designing, implementing, and inte-
grating the following components (for a schematic depiction see
Fig. 1):

• Semi-automatic custom data set creation: starting from a list
of predefined food categories, obtained by gathering input from
domain experts, books, and web resources, we use automatic
scripts to download hundreds of images for each categories on
popular search engines. After that, again with the help of experts,
we perform manual proof-reading to clean the image collections.
• Classification through transfer learning on CNNs: in order to

solve fine-grained classification problems, we fine tune a fam-
ily of pre-trained big CNNs through a transfer learning process.
Transfer learning starts with a network trained on a different task
(e.g., ImageNet), which is used as a feature extractor. A classifi-
cation “adaptor”, called head, (c.f. Fig. 4) is trained first and for
only a few epochs to convert the commonly more than 1,000 fea-
tures to the number of classes at hand. Then, the full network in-
cluding the “body” is fine tuned for another few epochs. The un-
derlying assumption is that the features one seeks to train the net-
work to are very similar between tasks, and much of a more ex-

pensive, previous training session can be recycled. In this work,
we consider the popular family of EfficienNet networks [TL19].
• Isolated mobile deployment: for isolated deployment on mo-

bile CPUs, GPUs, or Edge TPUs we convert our models to make
best use of the computational resources available on the mobile
device (i.e., we use Efficientnet light, targeting the TensorFlow
Lite framework). This optimizes the use of CPU, memory, and
battery and it minimizes inference time. On top of that, we de-
veloped a prototype application for real-time classification of im-
ages gathered from the mobile’s back camera.

In the following subsections we detail the components of the
SlowDeepFood framework.

3.2. Data set creation

A pre-requisite for any classification model based on computer vi-
sion technologies is an image data set for training and testing. Con-
sidering the task of assembling a data set on the specialties of a
regional cuisine, we identify the following steps:

• individuate a taxonomy composed of a list of categories that we
want to discriminate;
• find a sufficient number of representative pictures for each cate-

gory to form a training and testing set;
• proofread the database with help of experts to filter out wrongly

labeled pictures.

For the first step, many resources may be used, ranging from on-
line resources related to food categories to indication from food
experts, books, etc. In this work, we first considered the indications
from food experts, integrated with the information extracted from
a general public resource called TasteAtlas 5 which features an in-
teractive global food map with dish icons shown in their respec-
tive regions. TasteAtlas purportedly contains nearly ten thousand
dishes (see Fig. 3).

After compiling the taxonomy containing the food category list,

5 https://www.tasteatlas.com/, accessed 11.Sep.2021
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we need to find a representative set of pictures online for each item
in a given set of regional dishes or specialties. To do so, we devel-
oped a semi-automatic Python tool using Python’s Selenium bind-
ings. Selenium is a framework to conduct unit tests on scripts em-
bedded in webpages. We use the chromedriver library to run the
scripts on webpages and Selenium to feed automated events into the
browser. Our tool opens a tab on the browser and then performs an
automatic search on Google’s image databases. After that, we feed
automated scroll and click operations to the browser, allowing for
the rapid download of hundreds of images (see also Fig 3). Since
automatically downloaded data has a significant noise level (i.e.,
pictures are wrongly labelled), we perform expert proof-reading
of the entire collection. For each food category we thus manually
check all pictures and exclude incorrectly labelled ones. In Sec. 4
we report statistics gathered during the creation of a custom data
sets for Pizza specialties (“Pizza-Styles”) and for traditional dishes
of Middle Eastern Gulf countries (“GCC-30”).

3.3. Classification model

Similar to other computer vision applications, we exploit the trans-
fer learning paradigm (see Fig. 4) for our food image classification
problem. Transfer learning starts with an existing model that was
pre-trained on a popular generic data set (in our case ImageNet).
The bulk of this model is used as a feature extractor (“body”). We
then add dense layer with softmax activation function (“head”) to
convert the generic features into the probabilities for each of the
categories. The network is then fine tuned in two steps: First, the
head is trained while body weights are kept static. This is to avoid
back-propagating the untrained weights of the head into the body.
In a second step, head and body are fine tuned to improve perfor-
mance. We use the EfficientNet family [TL19] as the body of our
architecture for two main reasons:

• accuracy: as of writing, EfficientNet models achieve the highest
accuracy on the ImageNet data set. They have replaced ResNet-
50 for many deep learning tasks6;
• scalability: EfficientNets were generated according to an effi-

cient scaling method, called compound scaling. This scaling de-
scribes optimal scaling of network depth, width, and input im-
age resolution to maximize accuracy while minimizing inference
cost.

EfficientNet’s compound scaling is parameterized by a single
scaling factor φ, deriving the scaling for depth, width, and input
image resolution as follows. The network depth is scaled by α

φ,
the width by β

φ, and the resolution by γ
φ. The values of α,β,γ

are fixed, and obtained through grid search optimization in a way
that for any new φ, the total number of floating point operations
(FLOPS) for inference will increase by 2φ. The baseline network is
called EfficientNet-B0 (depicted in Fig. 4), and it is characterized
by:

• MBConv building blocks [SHZ∗18], residual blocks using an
narrow-wide-narrow structure. In the case of EfficientNet-B0

6 https://sotabench.com/benchmarks/
image-classification-on-imagenet, accessed 11.Sep.2021

they are coupled with with 3× 3 and 5× 5 depth-wise convo-
lutions.
• squeeze-and-excitation (SE) [HSS18], adding parameters to

each channel of the building block that allow the network to ad-
just the weighting of each feature map adaptively.
• swish activation function [MH21], defined by σ(x) := x

1+e−βx .
Swish can be understood as a smooth function that interpolates
(non-linearly) between a linear function (for β = 0) and the recti-
fied linear unit (ReLU) activation function (for β→∞). This al-
leviates the issue of vanishing gradient during back-propagation.

Recently, light versions of models in the EfficientNet family
have been released [Liu20]. These models are optimized for Ed-
geTPUs as well as mobile CPUs and GPUs. EfficientNet-Lite re-
moves the Squeeze-and-Excitation from the original EfficientNet
and substitutes the swish activation function by ReLU6 (a modi-
fication of the rectified linear unit where the activation is limited
to a maximum size of 6), to allow a more efficient quantization of
model weights. Despite these simplifications significantly reducing
the size of the models, an ImageNet accuracy above 80% is main-
tained.

In our framework, we use models from EfficientNet and
EfficientNet-Lite families. We train the models using transfer learn-
ing as described above on our custom food data sets. Specifically,
we use EfficientNet models on desktop GPUs to evaluate the nom-
inal performance, while deploying EfficientNet-Lite classifiers on
mobile devices. In Sec. 4 we report on classification performances
of our models generated from both families, both for standard food
data sets like Food-101 [BGVG14] and our custom data sets.

3.4. Mobile deployment

We integrated the classifiers trained on our custom food data sets
into an Android application. The application classifies pictures ob-
tained from the mobile phone’s back camera in real-time, and dis-
plays the names of the most likely dishes to the user. The architec-
ture of the application is depicted in Fig. 5 and contains the follow-
ing components:

• a camera activity process, for controlling the device camera and
to access the frames in real-time.
• image processing tools, needed to adapt the pictures from the

camera according to the requirements of the inference model,
e.g., by performing rotations, crops, centering, normalizing and
resizing to the expected size (in our case 224×224) for classifi-
cation. The output of this component is an image tensor that can
be processed by the classifier.
• a classifier based on TensorFlow Lite. The classifier is obtained

by quantizing the original model that was trained on a desktop
GPU. This component controls our inference and can be cus-
tomized by changing settings such as the number of top scored
results or score thresholds.
• a main activity process, responsible for instantiating a properly

configured classifier, to start a background thread for performing
continuous inference, to overlay the classification results on top
of the camera image, and a user interface. We display the top
K probability values (our prototype currently uses K = 3) and
associated dish categories.
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Figure 4: SlowDeepFood architecture. Our classification model uses transfer learning on top of EfficientNet convolutional neural networks.
To the “body” (feature extraction) of the network, we add a “head” (classification) consisting of an average pooling and a dense layer with
softmax activation to compute the probabilities for each of the N dish categories.

Figure 5: Mobile application. The custom food classification mod-
els are deployed on mobile platforms and integrated in a prototype
application for performing real-time inference of pictures acquired
through smartphone back camera.

The threads are organized in a producer-consumer fashion to
avoid blocking classification and adding latency, thus maximizing
inference and display rate. The application is, in this way, able to
provide multiple inferences per seconds (see also Sec. 4 for details
about performance in mobile setting).

4. Results

In the following, we report on preliminary results obtained with
the SlowDeepFood framework. We assessed the classification per-
formance on ETH’s Food101 data set [BGVG14], and compared
with state-of-the-art classification methods. Using the semiauto-
matic processing script, we create two custom food data sets:
(1) Pizza-Styles, specializing on different traditional styles of
Pizza, and, (2) GCC-30, specializing on traditional dishes from
Gulf Countries.
Finally, we created two custom mobile applications for real-time
recognition of Pizza versions and Gulf traditional dishes and we
tested them in the wild with sessions in traditional restaurants. We
plan on making the mobile application prototype, our custom data
sets, as well as the source code available on github at a later stage.

Implementation details We implement the various stages of our
framework’s pipeline using different approaches:

• the pre-processing script is implemented in Python and uses Se-
lenium and the chromedriver library.
• the classification models are implemented in Python using

Jupyter notebooks. They use the FastAI [HG20] framework for
GPU training, and TensorFlow Lite as well as Model Maker for
mobile deployment.
• our mobile applications are implemented in Kotlin through based

on a TensorFlow Lite image classification sample 7. They are
then deployed to Android smartphones.

Custom data set creation We tested the pipeline for fast collec-
tion of food image data sets by creating two custom data sets:
Pizza-Styles focuses on variations of the popular, namesake Italian
dish, whereas GCC-30 focuses on a particularly interesting cuisine
(namely, Middle Eastern cuisine) that has not yet been addressed
by the food computing community

Figure 6: Data set creation statistics. Left: histogram of specialties
per country in GCC-30 data set. Top right: box-plot summarizing
number of downloaded pictures per specialty for Pizza-Style and
GCC-30. Bottom right: box-plot summarizing processing time in
minutes per specialty for Pizza-Style and GCC-30.

Concerning the Pizza-Styles data set, we created the taxonomy

7 https://github.com/tensorflow/examples, accessed
11.Sep.2021
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Figure 7: Pizza-Styles data set. Our custom Pizza-Styles data set
contains 14 categories representing special styles of Pizza. The
training set contains 2,100 images (150 images per class), while
the testing set contains 700 images (50 images per class).

by collecting subcategories from online resources. We also in-
cluded some traditional local Italian Pizza styles, like the D.O.P.
Focaccia di Recco from Liguria, and Pizzetta Sfoglia from Sar-
dinia. The number of automatic downloaded pictures was, on av-
erage, 314.75 per category. At the end of the cleaning process, we
ended up with 14 Pizza subcategories, each represented by 200 im-
ages. Of these, we reserve 150 for training and 50 for testing (see
Fig. 7). The overall process took an average of 31.7 minutes per
category (cf. Fig. 6 for box-plots related to the number of pictures
and processing times).

Figure 8: GCC-30 data set. Our custom GCC-30 data set contains
30 traditional dishes from Middle East Gulf Countries. The training
set contains 4,500 images (150 for each class), while the testing set
contains 1,500 images (50 for each class).

Concerning Middle East traditional cuisine, we used TasteAt-
las as initial reference for collecting information about dishes, for
the countries in the Arabic peninsula, namely Qatar, Yemen, Saudi
Arabia, Kuwait and Oman. After compiling a first taxonomy, we
gathered feedback and suggestions from local food experts in the
region, as well as traditional restaurants for further refining the list
of dish categories. We removed the dishes with a high pairwise sim-
ilarity, as well as dishes that cannot be considered traditional and
do not strictly represent the Arabic peninsula. At the end of the tax-

onomy creation process, we compiled a complete list of 30 dishes,
representing the five Gulf countries as indicated in Fig. 6, left.

After that, we used the obtained taxonomy to search online for
images representing the specialties (in most cases, we used the Ara-
bic name of each dish to increase the chance to find pictures). In
this way, we collected an average of 346.27 images per category.
We then filtered and cleaned the data to arrive at a training set of
150 pictures, and a testing set of 50 pictures. The total process, in-
cluding downloading and manual filtering, required an average of
28.66 minutes per category (see also Fig. 6 for detailed box-plots
related to the number of pictures and the total processing time). At
the end of the process, we obtained a full GCC-30 data set contain-
ing 6,000 images (cf. Fig. 8).

Classification performances To assess the performance of our
transfer learning framework, we trained models based on Efficient-
Net family on the ETH’s Food101 [BGVG14] data set, and we
compared with the current state of the art. We used a desktop PC
equipped with a single NVidia RTX 2080 TI 11GB DDR6 RAM.
We used FastAI version 1 [HG20] to proceed with transfer learning,
following the paradigm of splitting the model into body and head
as previously outlined. We use FastAI’s one-cycle learning policy,
which schedules learning rate [Smi18] and optimizer momentum.
The bounds for the learning rate schedule were estimated through
a range test. This runs the model for several batches with variable
rates and produces a plot depicting accuracy against learning rate,
helping in selecting optimal bounds. As loss function, we used the
categorical cross-entropy [ZS18] provided by FastAI. To minimize
the classification loss, we used the Adam optimizer [RKK18] with
default parameters (β0 = 0.9, β1 = 0.999, ε = 10−8, wd = 0.01).
We subdivided the learning process in four stages composed by an
estimation of learning rate bounds and a one-cycle training phase
with a limited number of epochs (3, 7, 5 and 5, respectively, for a
total of 20 epochs). After the first stage and only for the first model
we performed a fast noise clean-up of the training and validation
test by removing the top-losses pictures. The cleaned data was then
used to train all models. We used image sizes computed accord-
ing to the scaling equations for EfficientNet (ranging from 224 for
EfficientNet-B0 and EfficientNet-Lite0, up to 380 for EfficientNet-
B4). The batch size was derived to fit into the RAM available on our
GPU (from 160 for EfficientNet-B0 and EfficientNet-Lite0, down
to 24 for EfficientNet-B4). Our training times ranged from 2m30
sec for EfficientNet-Lite0 up to 18m20s for EfficientNet-B4. For
evaluating the accuracy, we exploited the test-time augmentation
offered by the FastAi framework.

Table 1 compares the accuracy reported by recent literature
with the accuracy we achieved using EfficientNet CNNs for
ETH’s Food101 data set. At the time of writing, the state-of-
the-art of 96.18% top-1 accuracy is obtained by a modified ver-
sion of EfficientNet-V2 with a Sharpness-Aware Minimization
(SAM) procedure [FKMN21]. Using our framework and despite
limited computational resource, we are able to boost the original
EfficientNet-B4 accuracy by 0.41% [TL19] (reducing the error by
17.4%) in less than six hours of training. Our accuracy is higher
than all architectures proposed specifically for food computing so
far.

It is also worth mentioning that Min et al. [MLLJ19] use ad-
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Model Top 1 Acc. Top 5 Acc.
Deep Food [LCL∗16] 77.40% 93.70%
WISeR [MFM18] 90.27% 98.71%
Inception V3 [HMC∗16] 88.28% 96.88%
IG-CMAN [MLLJ19] 90.37% 98.42%
PAR-NET [QLS∗19] 90.40% -
EfficientNet-B0 [ours] 87.49% 97.09%
EfficientNet-Lite0 [ours] 85.01% 96.04%
EfficientNet-B2 [ours] 89.05% 97.70%
EfficientNet-Lite2 [ours] 86.34% 96.81%
EfficientNet-B4 orig. [TL19] 91.50% -
EfficientNet-B4 [ours] 91.91% 98.52%
EfficientNet-L2+SAM [FKMN21] 96.18% -

Table 1: Accuracy on ETH’s Food101 data set. Performance com-
parison between recent methods and the EfficientNet models used
in our work. We report top-1 and top-5 accuracy, where reported
by the original publication.

ditional input metadata, namely the ingredient list associated with
each image, while the WISeR architecture [MFM18] requires sub-
stantial memory amounts as well as significant computational ef-
forts to process a single datum, thus rendering deployment on mo-
bile devices unfeasible.

Model Pizza-Styles Acc GCC-30 Acc
EfficientNet-B0 [ours] 87.86% 91.67%
EfficientNet-Lite0 [ours] 85.71% 90.67%
EfficientNet-B2 [ours] 91.43% 92.67%
EfficientNet-Lite2 [ours] 87.86% 90.67%
EfficientNet-B4 [ours] 94.29% 95.33%

Table 2: Top-1 accuracy on Pizza-Styles and GCC-30 data sets.
Moving from full Efficient-B to EfficientNet Lite models shows an
acceptable and graceful degradation of accuracy.

After assessing the transfer learning framework in general, we
tested various EfficientNet models on our Pizza-Styles and GCC-
30 data sets. Table 2 summarizes the top-1 accuracy for both data
sets. While it is clear that moving from a full desktop setup to mo-
bile devices implies a loss of performance, we observe a very gen-
tle degradation when migrating from the full EfficientNet-B to Lite
models. We observed losses in accuracy of 2.5% (B0 to Lite0) and
3.5% (B2 to Lite2) of the top-1 accuracy, which we deem a fully
acceptable trade-off for being able to perform classification any-
time, anywhere. Note that the performance on GCC-30 is better as
it offers more intra-class variation than Pizza-Styles. In addition we
maintain a top-5 accuracy very close to 100% (omitted in the table
for brevity), making our framework useful for certain dietary tasks.
For instance, by combining the potential allergenes in the top-5 a
conservative recommendation can be made with very high confi-
dence. At the end of the training phase, we selected the Lite2 model
for mobile deployment, since it offers a slightly better performance
to inference speed trade-off on the Pizza-Styles data set.

In Fig. 9 we also provide a qualitative evaluation. There, we
show various cases of successful predictions for Pizza-Style and

GCC-30 using EfficientNet Lite2, the same model deployed in the
smartphone app. Figure 10, left, shows the confusion matrix ob-
tained with our EfficientNet-Lite2 model on Pizza-Styles data set:
the model is able to accurately discriminate between all kind of
pizza represented in the data set even if some of them have very
similar appearance. In fact, Margherita and Napoli can be consid-
ered modifications of Marinara pizza, and the visual differences
between them can be difficult to spot (see Fig. 10 right). Finally,
Fig. 11 shows the confusion matrix for the GCC-30 data set us-
ing EfficientNet-Lite2: even if in most cases the model is able to
classify specialties with high accuracy, some rice-based dishes are
difficult to discriminate (as an example, see Mandi and Mutabbaq
Samaq in Fig. 11).

Mobile application performances For evaluating the perfor-
mance of the framework in a mobile setting, we deployed two cus-
tom classification models for our Pizza-Styles and GCC-30 data
sets and created two different mobile applications. We installed
them on two smartphones running the Android operating system:
a Huawei P20 Pro, and a Samsung Galaxy A51. We tested the ap-
plications in the wild in two different restaurants: one traditional
Yemeni restaurant and an Italian-style pizza place. This replicates
one expected typical usage scenario of the technology, wherein a
group of casual customers, who are not expert of a particular gas-
tronomy, order and share a number of dishes they never saw be-
fore (see Fig. 12 left), and, naturally curious, would appreciate ad-
ditional information about them. Our tests show that our mobile
app enabled users to correctly recognize various traditional Yemeni
specialties, ranging from Fahsa over Marqook to Mahsoub, as well
as various styles of Pizza such as Diavola, Quattro Formaggi, and
Ortolana (kindly also refer to the accompanying video 8and also
see Figs. 12 and13).

The video demonstrates that the EfficientNet Lite models are
able to perform multiple inferences per second (we observed in-
ference rates constantly above 20Hz). This fast inference can be
further exploited to improve classification performance by aggre-
gating multiple inference probability outcomes through dynamic
filters or even more sophisticated neural network models. Such ap-
proaches would then be akin to test-time augmentation, in which
the user rotates/translates/moves the camera relative to the food,
thereby changing orientation and appearance under the restaurant’s
light sources. Voting or averaging probabilities might then lead to
the same improved performance we observed for FastAI’s test-time
augmentation (TTA), but at a lower latency and computational cost
(FastAI’s TTA batches image variations into a single prediction
whereas we propose to infer on single images and aggregate af-
ter the classification). We plan to investigate this interesting avenue
in the future.

The technology we propose adds value to restaurant customers,
since it can perform real-time classification of dishes in real-time.
Users can then check ingredients and additional information online
in order to assess nutritional value, potential for allergens, etc. For
the future, we plan to complete the system by linking the mobile

8 https://www.dropbox.com/s/wbabinbj5pqxavf/stag_
submission5_slowdeepfood.mp4?dl=0
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Figure 9: Examples of correct predictions. The first row displays the predict results for GCC-30 test set, while the second row displays
predictions for Pizza-Styles images.

Figure 10: Pizza-Styles fine-grained results. Left: confusion ma-
trix shows that the model is able to accurately discriminate all kind
of pizza in the data set. Right: low inter-class variation for several
pizza styles stems from a similarity in preparation and ingredients.
For example, starting from a Marinara style, adding mozzarella
and basil results in a Margherita. Adding anchovies as yet another
ingredient results in a Napoli. Such cases are hard to discern visu-
ally even for humans.

Figure 11: Fine-grained GCC-30 classification results. Left: the
confusion matrix shows that the model can discriminate all spe-
cialties. Right: some examples of incorrect classification on partic-
ularly complicated, rice-based dishes.

application to web resources for providing complete information
about the food specialties automatically recognized, and to com-
pare this information to user-specific dietary requirements on the
smart phone.

5. Conclusions and future work

We presented a food computing framework for end-to-end food im-
age classification. Our framework spans the full range, from data
set creation up to mobile deployment and usage in the wild. In par-
ticular, we demonstrate how our framework can be used for creat-
ing custom data sets representing regional gastronomy that is woe-
fully underrepresented in presently available data sets. Our frame-
work can support touristic, marketing, and political initiatives that
aim at the promotion and protection of traditional and local food
specialties. Using the Food101 data set as a baseline, we demon-
strated that our process for training the classifiers exceeds state-of-
the-art performance, reaching a top-1 accuracy of 91.91% using an
EfficientNet-B4 We assessed our classification models with ETH’s
Food101 data set and obtained a top accuracy of 91.91% [TL19]).
We also demonstrated the framework’s versatility by creating two
custom data sets and models for Pizza-Styles (including otherwise
rather obscure, local variants such as the D.O.P. Focaccia di Recco
from Liguria or Pizzetta Sfoglia from Sardinia), and for traditional
dishes in Middle Eastern Gulf Countries (Yemen, Oman, Qatar,
Saudi, Kuwait, etc.). Finally, we showed the potential of the system
by taking our mobile app to the “isolated tourist in a real-world”
setting: dining in traditional restaurants without relying on an ac-
tive internet connection to classify food unfamiliar to some in our
group. Despite promising preliminary outcomes, there are still im-
portant practical limitations in the framework that we plan to ad-
dress in the future:

• fully automatic pre-processing: our data set creation step still
needs manual proof-reading, a time consuming tedium. We
plan to incorporate modern machine learning approaches for
automating this process, in particular, by following curricu-
lum learning strategies [BLCW09, WCZ21] and self-training
pipelines [XLHL20]. Self training is exceptionally attractive in
this context, since it offers a seamless transition path from super-
vised to unsupervised learning.
• hierarchical classification: we are currently able to create cus-

tom models representing particular food categories or regional
cuisines. As long as more models will be created, we will need
to create hierarchical organization of categories in a way to re-
fine classification starting from food type, up to the region, and
specific subcategories. To this end, we plan to employ hierar-
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Figure 12: Real-time mobile application. We tested our classification model trained on GCC-30 in a traditional Yemeni restaurant, resulting
in successful recognition of numerous traditional dishes.

Figure 13: Real-time mobile application. We tested our classifica-
tion model trained on Pizza-Styles in an Italian Pizzeria, resulting
in successful recognition of various pizza types.

chically structured local classifiers [YWHL19]. In the same con-
text, a largely unexplored area that deserves more attention in the
future is the automatic extraction of taxonomies that are “beau-
tiful to a machine”, rather than humans. While understandable
taxonomies have established themselves as useful tools to cate-
gorize and organize knowledge for humans, they are not neces-
sarily the right tool to make a hierarchical concept accessible to
machine learning. We will therefore also examine the automatic
generation of machine taxonomies, e.g., by hierarchical cluster-
ing based on confusion matrices.
• few-shot learning: according to the food specialties consid-

ered, it is very difficult to find online representative images to
be included in the training sets for classification models. This,
of course, is the curse of the premise of our work: We want
to preserve variety and local influence over the internation-
ally established gastronomic mean. Therefore, few-shot learning
schemes [WYKN20] are needed to alleviate this issue, and we
plan to investigate this avenue in the future.
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