
STAG: Smart Tools and Applications in Graphics (2021)
P. Frosini, D. Giorgi, S. Melzi, and E. Rodolà (Editors)

Efficient Image Vectorisation Using Mesh Colours

G. J. Hettinga1 , J. Echevarria2 , J. Kosinka1

1Bernoulli Institute, University of Groningen, the Netherlands
2 Adobe Research, San Jose, CA, USA

a b c d e f

Figure 1: An example input image (a) and our vectorised result (b). Please, zoom in to see full details. Our method follows an efficient and
controllable pipeline where we initially compute hard (red) and soft (green) image features (c, top). These features are then used to build
a curved triangular 2D mesh (c, bottom), where each triangle is equipped with mesh colours (d, top) that can be rendered efficiently in
real-time (d, bottom). Insets (e, f), coming from (a, b), show how our method keeps the sharpness around hard features (like the folds), while
interpolating colour smoothly everywhere else. Results of this quality can be achieved in seconds with the proposed method. Please, see the
accompanying video for a deeper look into this example.

Abstract
Image vectorisation methods proposed in the past have not seen wide adoption due to performance, quality, controllability,
and/or generality issues. We present a vectorisation method that uses mesh colours as a vector primitive for image vectorisation.
We show that mesh colours have clear benefits for rendering performance and texture detail. Due to their flexibility, they also
enable a simplified and more efficient generation of meshes of curved triangular patches, which are in our case constrained
by our image feature extraction algorithm. The proposed method follows a standard pipeline where each step is efficient and
controllable, leading to results that compare favourably with those from previous work. We show results over a variety of input
images including photos, drawings, paintings, designs, and cartoons and also devise a user-guided vectorisation variant.

CCS Concepts
• Computing methodologies → Image processing;

1. Introduction

Image vectorisation is the process of converting a bitmap (raster)
image into a vector image. Vector images define an image as a col-
lection of primitives, such as lines, curves, or more elaborate geo-
metric objects. Vector graphics are key in many disciplines, such as
graphics and web design, or textile and printing industries, due to
their ability to display an image at arbitrary resolutions without loss
of quality. The manual vectorisation of a raster image is a painstak-
ing process, especially for highly detailed input like photographs,
which requires expertise and immense amounts of time [YCZ*16].

Over the years, many approaches to automatic image vectori-
sation have been devised, using various primitives, the building

blocks of vector images. However, they have not seen wide adop-
tion given performance, quality or controlability issues, although
popular commercial tools like Adobe’s Live Trace [Ado19b] have
turned their limitations into an artistic style of its own. Creating
complex realistic vector graphics thus remains a challenge.

We propose a new image vectorisation method that excels at pro-
cessing time, detail control, and rendering efficiency, while produc-
ing representations that have potential to be included in existing
vector graphics authoring tools and are easily edited. Our method
performs well over a wide variety of inputs, including natural im-
ages and stylised design graphics.

Our approach follows a standard pipeline of three main steps:

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

DOI: 10.2312/stag.20211484 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-7981-6958
https://orcid.org/0000-0001-6802-0911
https://orcid.org/0000-0002-8859-2586
https://doi.org/10.2312/stag.20211484


G. J. Hettinga, J. Echevarria & J. Kosinka / Efficient Image Vectorisation Using Mesh Colours

image feature extraction, 2D mesh generation, and colour fit-
ting/texture transfer. Each step has been designed with quality, per-
formance, and control in mind, leveraging recent advances in mesh
generation and texture representation. Additionally, using the pro-
posed rendering method, our vectorised images can be rendered in
real-time on a wide range of hardware and offer extra control over
the level of detail for more constrained use cases.

We present an intuitive method for extracting image features
that preserve sharp and soft details alike. Our mesh generation
step faithfully traces and leverages those features in efficient
curved triangular meshes. Our new colour fitting step automati-
cally transfers texture information from the image to per-triangle
mesh colour [YKH10] patches. We show results for a variety of
inputs, which compare favourably to previous works in terms of
image quality, performance, or both.

In summary, the main contributions of our method are:

• The introduction of mesh colours as an image vectorisation prim-
itive, with an efficient strategy of automatic fitting;
• A novel way to extract texture information and soft features from

the input image;
• Efficient automatic and user-guided image vectorisation.

We start with an overview of related work in vector graphics
and image vectorisation (Section 2). Then we provide an overview
of our vectorisation method (Section 3), which is followed by a de-
tailed description of its stages: image feature extraction (Section 4),
mesh generation (Section 5), and texture transfer (Section 6). To
demonstrate the utility of our method, we show the results of ap-
plying our pipeline on several types of raster images, edits to our
vector images, our user-guided vectorisation pipeline and compare
with previous works (Section 7). Finally, we discuss our method
before concluding the paper (Section 8).

2. Related Work

Solid Colours & Linear Gradients. Early attempts at vectorisa-
tion of images automatically partition the image into regions that
can be represented reasonably well by flat, linear or quadratic gra-
dients [LL06]. This yields stylised representations of the original
image, which may be desirable in some applications. Vectorisation
of natural images using only solid colours often requires a prelimi-
nary colour quantisation step to simplify detail [Ado19a; LLGR20],
which affects the expressiveness and detail preservation of this ap-
proach. Moreover, interactive user guidance for such quantisation
is often desired to preserve salient semantic boundaries between
objects [XWLS17; RLB*14; FLB17]. Early attempts also include
adaptively created image triangulations [DDI06].

Diffusion Curves. Following the paradigm of image creation
based on its salient edges, diffusion curves [OBW*08] represent
an image by a set of curves defining sharp transitions in colour.
These colours are then diffused over the rest of the image. When
used in vectorisation, image edges are detected and represented
with smooth curves, and their colour is deduced from the under-
lying image. Diffusion curves have been extended in several ways
to allow for more expressiveness and user control of the primitive

itself, and thus also in the vectorisation process. This includes hier-
archical diffusion curves [XSTN14], depth-aware image vectorisa-
tion [LJD*19], and other methods [DLS13; ZDZ17]. Although dif-
fusion curves and their generalisations offer a powerful set of prim-
itives, they tend to be expensive to evaluate as this involves solving
large linear systems [OBW*08]. Advances in diffusion curves have
lead to numerous solvers that try to do this in a smart way [JCW09;
JCW11] or with raytracing [BLW11; PJS15]. Although Diffusion
curves are an excellent way to represent images they have not seen
wide adoption due to the complex nature of the solvers [BBG12].

Parametric Patches. The gradient mesh primitive, originally in-
troduced in Adobe Illustrator [Ado19b], represents an image as a
regular grid of bicubic patches [Ado06; SLWS07]. These bicubic
patches are the result of interpolation of the colours and colour
gradients assigned to the vertices of the (gradient) mesh. Early at-
tempts at vectorisation with this primitive have used it in combi-
nation with (pre-)segmented regions with progressive subdivision
of patches [PB06] or optimising meshes [LHM09]. A fully auto-
matic pipeline based on a frame-field guided quadrangulation was
proposed by Wei et al. [WZG*19].

Later, subdivision surfaces were used over triangular
meshes [LHFY12; ZZW14] that were created using an elab-
orate pipeline of feature extraction, mesh generation as well as
colour fitting for a fully automatic image vectorisation solution.
However, subdivision surfaces are costly to evaluate and do not
in general interpolate colours assigned to mesh vertices [VK18].
Gradient meshes and subdivision surfaces can model smooth
regions of an image with high accuracy, but require many patches
in regions with high-frequency changes in colour. Recently, other
non-standard forms of the gradient mesh have been proposed to
alleviate this problem [LKSD17; LJH13; BLHK18; WZG*19;
BHEK21].

In [XLY09], thin-plate splines are used in combination with cu-
bic Bézier triangles. The Bézier triangle mesh is generated by sim-
plifying a pixel-dense triangle mesh, which is followed by optimis-
ing that mesh into Bézier triangles. Subsequently, thin-plate splines
are fit on a per-triangle basis. Chen et al. [CLL*20] combine dense
thin-plate splines with coarser gradient meshes that are generated
from a rough manual segmentation of the image. However, thin-
plate spline evaluation is costly, even though the authors provide
an efficient kernel to evaluate the splines. They are also unable to
preserve sharp features that are not preserved by the segmentation.

We also create Bézier triangles for our mesh, but directly from
detected image edges. In contrast to prior art, we represent the
colour inside each Bézier triangle as mesh colours [MSY19]. This
allows for representing texture in a detailed way and provides
a cheap, yet accurate representation of the original image. It is
worth noting that recent work on new primitives for colour ma-
nipulation [SKFS20] presents similar triangular subdivisions, but
the parametric shape of their colour distributions does not capture
spatial texture detail.

Other Vectorisations. Finally, there is a related but different class
of vectorisation that focuses on more abstract/stylised imagery such
as pixel art [KL11; SMC*13], where aliased raster edges can be
shape, texture or shading, making that inference the core of the

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

140



G. J. Hettinga, J. Echevarria & J. Kosinka / Efficient Image Vectorisation Using Mesh Colours

Figure 2: An overview of the steps in our method. From left to right: The input raster image, banded greyscale image to extract soft edges
from, extracted hard (red) and soft (green) image features, generated mesh, mesh colours with colours fitted, and final rasterised result.

problem. Other recent works focus on perceptually-motivated vec-
torisations of uniform colour regions separated by sharp transi-
tions [HDS*18; DSG*20]. Similarly, vectorisation of drawings and
sketches [FLB16; NS19; EVA*20; SBBB20] focuses on inferring
vector lines from latent lines perceived on the raster inputs.

3. Overview

Our method automatically converts an input raster image into a vec-
tor image. The image can have various content: we accept anything
from natural images to design graphics. Although we want the vec-
tor image to accurately represent the input image, we still want
the vector representation to be editable, that it can be rendered effi-
ciently, and that it does not contain a large number of primitives. To
that end, we extract image features that capture representative ge-
ometry, shading and texture. Once we vectorise them using spline
curves, they should turn into intuitive handles for high level edits.
These image features are also the constraints for our mesh gen-
eration step, where we are interested in a curved triangular mesh
that follows them faithfully. We look for efficient mesh generation,
with enough triangles to obtain a good topology to support detailed
mesh colour patches, yet the representation should still be easily
editable by the user for more local geometric edits. Next, we equip
each triangle with a mesh colour patch. We do not intend to expose
the mesh colours to the user for geometric edits. Thus they can
be of higher resolution than the mesh triangles to retain as much
texture detail as desired. Our new automatic texture transfer pro-
cess then fits the colours from the input pixels to the mesh colours
of the patches. Finally, we rasterise our vector images in real-time
through tessellation shaders, whose level of detail can be controlled
on the fly for excellent performance for visualisation, but also for
detailed offline work.

Figure 2 visually depicts the steps in our pipeline. First, the main
features of the image are extracted (Section 4). We then generate
a mesh (Section 5), which is followed by colour fitting of mesh
colours (Section 6). Figure 1 shows the same intermediate steps for
a more complex input.

4. Feature Extraction

The key to a successful image vectorisation is to establish which
features to preserve from the input raster image. Given that we aim
for a universal method applicable to any input image, we cannot
make any assumptions about their content. However, we define two
types of features: hard and soft edges. A similar distinction between
hard and soft edges was made earlier on by Lindeberg [Lin96] and
Elder [EZ98] who describe differing blur scales to edges which are
extracted using a scale-space approach. Their approach was later

Figure 3: Top row: Original image and the quantised greyscale
image with the extracted hard (red) and soft (green) edges overlaid.
Bottom row: Our vectorised version without using soft edges (left)
and with soft edges (right). Note that soft edges help to capture
more detail and to avoid artifacts on the reflections of the statue
and in the background. Please, zoom in for a more detailed view.

used in a vectorisation setting by Orzan et al. [OBW*08] to esti-
mate blur scales for edges.

Hard edges come mainly from colour discontinuities that typi-
cally capture salient shapes, contours and textures of the elements
in the image; and they should remain sharp on the vector image.
On the other hand, we use soft edges to model smooth but com-
plex colour transitions (e.g. shading). Edge detection is still an ac-
tive topic after decades of research [MA09], with recent neural ap-
proaches that do an increasingly good job at inferring geometrical
edges at object level [XT15; LCH*17; HZY*20]. However, these
methods are not that well suited to surfacing progressive texture
detail or complex colour transitions.

Edge Extraction. For simplicity and ease of control, and similarly
to previous works [XLY09; CLL*20], we use the Canny edge de-
tector [Can86]. Given the performance of the rest of our method,
this choice provides interactive and intuitive control over the level
of detail of the resulting vectorisation. We typically set the low and
high thresholds to 15 and 100 in the range [0,255], respectively.
However, while Canny is good at detecting hard edges, it fails to

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

141



G. J. Hettinga, J. Echevarria & J. Kosinka / Efficient Image Vectorisation Using Mesh Colours

pick up soft edges: lower thresholds lead to too much noise and/or
unwanted texture detail. Thus, we propose a new simple procedure
to extract soft edges to complement the hard ones found by Canny.

Upon closer inspection of the vectorisations obtained using only
hard edges, we noticed that the missing soft edges we were inter-
ested in are typically orthogonal to the smooth colour gradients in
the image. To expose those features, we quantise a greyscale ver-
sion of the input image (20 levels by default), and trace the discon-
tinuities from the resulting banding. This is similar in spirit to the
iso-contours used to vectorise brushstrokes in [BDF14], but our soft
edges go through extra processing before being traced differently.

Edge Filtering. Because hard and soft edges may overlap near ar-
eas where the image gradients change quickly, we filter the soft
edges based on their distance to neighbouring hard edges, effec-
tively removing them from areas where hard edges were already
present. We do this by creating the distance transform of the previ-
ously extracted hard edges and using this as a filter for the extracted
edges from the banded image. This filtering promotes the creation
of sparser geometry later on in Section 5, as it removes bands that
overlap with hard edges or are closely parallel to them. Figure 3
shows the result of quantising the greyscale image, and the subse-
quent soft features extracted from them (top right). These features
help us better capture soft image details, such as all the blurry back-
ground elements in the input image (bottom row).

5. Mesh Generation

The goal of the mesh generation step is to create a mesh of cubic
Bézier triangles that conform to the detected image features. We
vectorise the detected edges by converting them to cubic Bézier
splines, which are then used to drive the curved triangulation step.

Edge Vectorisation The extracted hard edges are traced and linked
into pixel chains to be vectorised as cubic Bézier splines. These
splines help us capture curves and remove the aliasing present on
the hard edges, and enforce C0 or G1 continuity as needed. In the
spirit of [Sch90], we progressively fit the splines to the chains by
recursively fitting curves to each whole pixel chain. We keep each
fit only if the maximum error distance between a polyline approx-
imation of the Bézier curve and the pixel chain is half a pixel. If
not, the pixel chain is split at the pixel with the largest distance,
and new splines are fitted to the respective halves of the previous
pixel chain, until every segment of the pixel chain is converted.

Soft edges are usually noisier and do not represent salient image
features that need to be preserved as accurately as the hard edges.
Therefore, we found an approximation is sufficient and we do not
have to strictly enforce the start and end points of the spline piece to
lie over the actual pixel-chain. Figure 3 (top right) shows the vec-
torised edges obtained from the input image. As can be seen, the
hard edges are accurate, whereas the soft edges offer an approx-
imation of the bands from the quantisation, without affecting the
quality of the reconstruction. Hard and soft edges are kept separate
to be handled differently in later stages of the pipeline.

Curved Triangulation. The soft and hard vectorised edges from
the previous step are curved, so direct application of standard lin-
ear meshing techniques would cause degeneracies if supporting

straight line segments crossed through the curved edges. One op-
tion could be to subdivide the curved segments until only accurate-
enough linear elements remain, but this would quickly increase
the number of faces in the subsequent meshing step. Instead, we
choose to create a curved triangular mesh, as this allows us to keep
a lower number of generated triangles while directly incorporat-
ing the curved edges. [XLY09] also use curved triangular domains,
however they are the result of untangling an initial linear mesh
through a nonlinear optimisation method. We generate our curved
triangular meshes in a single and more efficient pass.

To generate such a mesh we follow the example of Mandad and
Campen [MC20] based on guarding triangles to avoid intersections
and employ standard constrained Delaunay triangulation. We speed
up the mesh optimisation phase by inserting supporting vertices
into the triangulation at regular intervals and only when the inserted
position is some distance from the nearest feature. Alternatively,
TriWild [HSG*19] could also be used to generate the geometry. Af-
ter the triangulation step, we are left with a non-degenerate curved
triangulation. This fixes the topology of the mesh. Next, we deter-
mine its geometry and parametrisation.

On each (curved) triangle, we construct a cubic Bézier triangle
(see Figure 4, left) by using the control points of the curved edges as
edge control points and converting straight supporting segments to
cubic Bézier curves, which determines all the blue control points.
This ensures that all vectorised (hard and soft) edges are exactly
reproduced in the curved triangulation. To fix the parametrisation,
we add the central control point (red in the figure) as the centroid
of the edge control points of each triangle. We also keep track of
which edges represent hard and soft features by tagging them. The
straight segments generated by the triangulation step are always
deemed to be soft.

6. Texture Transfer

As mentioned before, our goal is to use vector primitives able to
handle varying texture detail, while being fast to evaluate. We pro-
pose the use of mesh colours [MSY19], a first in the context of
image vectorisation, when not considering simple vertex colours
and standard linear interpolation. Mesh colours [YKH10] are a con-
venient way of storing colour and texture information in complex
meshes. Above all, no texture coordinates are needed, which re-
moves the need for complex UV maps and unwrapping techniques.
This makes it robust to further transformations and edits, especially
when compared with parametric texture representations from pre-
vious vectorisation work. These properties make mesh colours a
fitting mechanism for transferring texture information from a raster
to a mesh. However, mesh colours have been used in conjunction
with 3D painting tools [YLT19], and there are no standard ways of
transferring texture information to mesh colours.

Mesh Colours. In our setup, we map triangular mesh colours to
the cubic Bézier triangles that were generated in the previous step
(Section 5). Figure 4, middle, shows a schematic view of mapped
mesh colours. The resolution r handles the number R =

(r+1)(r+2)
2

of mesh colour vertices ti per patch, where i = (i, j,k), i+ j+k = r
and i, j,k ≥ 0. We follow the procedure of [MSY19] to interpolate
mesh colour values over each patch. For clarity of presentation and

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

142



G. J. Hettinga, J. Echevarria & J. Kosinka / Efficient Image Vectorisation Using Mesh Colours

Figure 4: Left: A cubic Bézier triangle with control points (the cen-
tral one is in red). Middle: Resolution 4 mesh colour texture with
(4+1)·(4+2)/2= 15 mesh colours mapped on the cubic Bézier
triangle. Right: Linear (top) and quartic (bottom) interpolation.

input r = 2 r = 4 r = 6

Figure 5: From left to right: Input image and vectorisations us-
ing the same mesh but different resolution r of mesh colours. On
purpose, the mesh does not capture the features of the input im-
age correctly. Regardless, increasing r leads to increasingly better
approximations of the input image.

to prepare the ground for our proposed mesh colour fitting scheme
(Section 6.1), in the following we detail the steps for evaluating a
mesh colour texture on a triangular patch.

The barycentric coordinates φφφ = (u,v,w) with respect to a tri-
angle 4 in the mesh are used to determine the three closest mesh
colours: ti, tj, tk. These colours together determine a mesh colour
(sub)triangle of4. From the coordinates φφφ we determine the local
barycentric coordinates φφφ inside the mesh colour triangle. These
local coordinates are subsequently used to either linearly or quarti-
cally interpolate between the three colour values of the mesh colour
triangle. The former results in piece-wise linear C0 colour interpo-
lation over 4, and the latter in piece-wise quartic C1 colour inter-
polation at the expense of increased computational cost. We choose
to use the C0 version as there is not a lot of difference (Figure 4,
right column), except in cases where mesh colour values vary ex-
tremely. The resolution of each mesh colour texture can be changed
per triangle [Yuk16], effectively adjusting the amount of texture de-
tail that can be represented and the storage required for it. Figure 5
shows a simple example where a static mesh approximates the same
image with different mesh colour resolutions. Higher mesh colour
resolutions are able to approximate the input more clearly.

6.1. Mesh Colour Fitting

At this stage, the mesh geometry is already fully defined and mesh
colours can be fitted to them. Ideally, the colour fitting process
should be implemented as a global least-squares problem over all
mesh colours of the entire mesh. This would automatically generate
smooth colour transitions over triangle boundaries that are marked
as smooth. However, this leads to a large system of equations that
needs to be solved and would not be practical both with regards

to memory and performance. Our approach simplifies the problem,
by fitting each triangle individually and only afterwards smoothing
mesh colours where appropriate.

We first fit mesh colours to each cubic Bézier triangle T
parametrised over 4 separately. We sample each T in the mesh
uniformly to obtain the pairs (pi,φφφi) for every sample position pi in
the image with φφφi its barycentric coordinates in4, i.e., T (φφφi) = pi.
To effectively fit mesh colours, we need to ensure that the number
of samples m satisfies m > R. Using the image position pi of each
evaluated pair, we look up the bilinearly interpolated colour value
I(pi) = ci in the input raster image I. Using φφφi, we determine the lo-
cal barycentric coordinates φφφi of pi in its mesh colour (sub)triangle.
We then minimise the following function on a per-triangle basis,
used once per colour channel:

min∑
i

(
T c(φφφi)− ci

)2
,

where T c evaluates the colour corresponding to T . This is a stan-
dard least squares problem that we solve for the mesh colours of T .
The matrix of the system can be reused for fitting triangles with the
same mesh colour resolution r, since it is independent of the actual
image positions and it uses only parametric positions (expressed in
terms of φφφ), which are generated uniformly for each triangle. We
efficiently perform this sample pair creation process in parallel for
each triangle using GPU compute shaders.

To increase the efficiency of this colour fitting step even further,
we adaptively use different mesh colour resolutions based on the
size of each triangle with respect to the original image, as fol-
lows. We assume that during the feature extraction step most re-
gions of highly varying colour are split into smaller ones, and that
each resulting triangle after the mesh generation step lies in an area
with small changes in colour. Therefore, the smaller the triangle,
the lower resolution it needs to represent the textured area of the
original image. We bin the triangles based on their pixel area in
the original image into three different bins. These bins correspond
to increasing resolution of mesh colours r ∈ {1,2,4}. This bene-
fits performance as lower resolution textures require less samples
to be generated, reducing CPU-GPU congestion and improving the
speed of the fitting. Optionally, the resolution of the mesh colours
can be increased for smaller patches to r = 4 by creating additional
mesh colour vertices through linear interpolation of existing mesh
colours, which allows unified rendering of triangles later on.

Offset Sampling. We found that bilinear sampling does not fetch
correct colours when sampling close to hard edges, causing colour
bleeding artefacts to appear on the triangles (Figure 6, top). Inspired
by Liao et al. [LHFY12; OBW*08], we use a one-pixel padding
around hard edges. When sampling at hard edges, the actual sam-
pling is offset from the padded region. This ensures that sharp tran-
sitions on the raster image are preserved by sampling on the correct
side of the edge (Figure 6, bottom). By offsetting the sampling we
are able to create crisp edges without affecting the smooth interpo-
lation on either side of the edge.

Colour Smoothing. After each individual triangle in the mesh has
been fitted with its associated mesh colours, we can increase the
fidelity of our vectorisation by smoothing mesh colours that are on

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

143



G. J. Hettinga, J. Echevarria & J. Kosinka / Efficient Image Vectorisation Using Mesh Colours

Figure 6: Vectorised image without (top) and with (bottom) off-
set sampling around hard edges. Insets show the increased sharp-
ness not only on silhouettes, but also hard edges coming from other
sources like shading.

Figure 7: Top: Input image (left) and our vectorised result (right).
Bottom: Without smoothing (left) the seams of the mesh become
apparent (some examples are highlighted by the red arrows), some-
thing especially undesirable at large magnification factors typical
for vector graphics. The proposed smoothing of the mesh colour
values of neighbouring mesh colour patches removes such seams
for a more natural and higher quality result (right).

the edges of the triangles. The smoothing procedure, where mesh
colour values on edges are averaged with respect to their values on
adjacent mesh colour patches, only needs to be done for edges that
were previously deemed to be smooth, i.e., supporting (smooth)
edges that were created in the triangulation step (Section 5), or
the smooth edges from the feature extraction stage (Section 4).
This step guarantees at least C0 interpolation of colour in smooth
regions. Figure 7 shows the difference between before and after
colour smoothing. Before smoothing, the underlying triangulation
is clearly visible in some regions. After smoothing, these artefacts
vanish and the resulting vector image has C0 colour interpolation
everywhere except at hard features.

6.2. Rendering

The resulting vector graphics representation should lend itself to
efficient rendering. To this end, we employ tessellation shaders in

the modern graphics pipeline. All triangles are rendered as cubic
Bézier triangles. We store the mesh colours in textures as proposed
by [MSY19] and evaluate them using the process outlined in Sec-
tion 6 in a fragment shader. This of course leads to duplication of
mesh colour data for edges and vertex positions. This is actually
necessary to model hard edges; this gives distinct colours on either
side of the edge and no filtering should be applied there. For smooth
edges, there does exist duplication.

We have not focused our efforts on improved filtering of tex-
tures, such as trilinear filtering and MIP-mapping. There have been
recent improvements and variants on the mesh colour technique
that extend them with increased filtering capabilities and hardware
support [Yuk16; YLT19; MSY20].

Due to the unified processing of different resolution mesh colour
patches, we are able to render each vector image using a single draw
call. In addition to this, we employ adaptive tessellation to increase
the performance even more. We use the projected edge length of
the triangles to determine its tessellation factor. This guarantees
that this optimisation does not create any gaps between adjacent
(tessellated) triangles.

7. Results

Figure 1 shows an intricate input image with lots of details. Our ex-
tracted image features keep the sharpness hard features and capture
relevant features like specular highlights and folds (Figure 1, f),
while the mesh colour patches can capture fine texture as desired;
see the accompanying video for a deeper look into this example.
Figure 2 shows a simple logo that turns into a relatively simple vec-
tor image that could be edited further to remove the background, for
example. Figure 3 shows an interesting combination of sharp and
soft details, which our image features help capture accurately. Fig-
ure 6 shows another example of clean stylised graphics faithfully
captured by our representation.

Figure 8 shows additional results showcasing a variety of image
features, textures and details. Most of the small errors with respect
to the original image accumulate along the edges. This can be at-
tributed to the offset sampling we do along hard edges (Section 6)
and the fact that the vectorised edges might not perfectly align with
the actual edges in the image.

7.1. Performance

Table 1 shows the performance of our vectorisation method, for
several of results featured in this paper. In addition to the total tim-
ings, we also show timings of several of the intermediate steps, and
rendering times of the rasterisation of the obtained vector images.
We ran the method on a low-end laptop, with an NVIDIA MX150
GPU, 8GB of RAM, and an Intel i5-8250 CPU; obtaining times
that make our method practical.

The proposed method can vectorise any image with reasonable
performance, taking just a few seconds for the whole process. The
feature extraction step (Section 4) is dependent on the resolution
of the input image, and the number of features in the image. The
mesh generation step (Section 5) depends on the content of the im-
age, and the number of extracted features and their orientations. For

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

144



G. J. Hettinga, J. Echevarria & J. Kosinka / Efficient Image Vectorisation Using Mesh Colours

Figure 8: Left: Input raster images and their corresponding error
maps with respect to our rendered vector images (right). Overall,
these examples were vectorised accurately all over the image with a
mean squared error of 2.73, 2.25, 4.69, respectively, top to bottom.
Bottom artwork by Allison Bamcat.

instance, curved features that lie close to each other will generate
more triangles than just a single curve. Then the performance of
the colour fitting step (Section 6) depends on the number of gener-
ated triangles. However, due to our parallelisation and our adaptive
patch resolution, it can be achieved quite efficiently. The resulting
vector images can be rendered efficiently through our use of tessel-
lation shaders. Even for images with a large number of triangles we
achieve real-time performance rates (see accompanying video).

Compression. We also provide the compression ratios for the im-
ages featured in this paper in column CR in Table 1. We calcu-
lated the compression ratio with respect to the raw image data as
is common in other vectorisation papers [CLL*20]. We base the
size of our representation on the following. First of all we con-
sider the difference between linear triangles with 3 ·2 ·4 = 24 bytes
and curved triangles, triangles with at least one curved edge, with
9 · 2 · 4 = 64 bytes each. Furthermore, we consider the three dif-
ferent resolutions used with 3 · 3 = 9, 6 · 3 = 18, and 15 · 3 = 45

bytes each, respectively. Then the raw size of our representation is
#LinearTriangles · 24+ #CurvedTriangles · 64+ #SmallPatches ·
9+#RegularPatches ·18+#LargePatches ·45 bytes. Our approach
is able to achieve comparable compression rates to other techniques
and the raw data could be compressed even further using standard
compression techniques such as zip. In addition, the size of the rep-
resentation could be decreased even further, by not optimising for
triangle size, but rather for the content that a triangle depicts, hav-
ing lower mesh colour resolution for smoother or constant colour
image regions.

Feature Parameters. To investigate the influence of the feature
extraction step on the resulting vectorisation we have vectorised
an image with varying levels of edge detection. In Figure 9, we
show two different vectorisations of the same input image using
different parameter settings for edge detection. The left image has
an abundance of hard features detected in the furry areas of the
image. By increasing the threshold values we are able to extract a
sparser set of features. We can see that in the areas that had edges
before, the banding features take over now. This, however, blurs the
features as they are not deemed to be hard anymore and some detail
is lost as evidenced by the insets. Nevertheless, the right image is
still a good approximation of the original image as the most salient
features are still preserved. The large number of features also leads
to a large number of generated triangles, and although we are still
able to render it efficiently, it negatively effects the compression
ratio as seen in Table 1, rows 9 and 10.

7.2. Editing

We support low-level deformations, i.e., dragging vertex positions
and tangent handles of the cubic edges of the Bézier triangles. How-
ever, in some areas a relatively large number of elements can be
generated and editing can become tedious. Instead, the mesh can be
effectively manipulated using proportional editing tools [LHFY12]
paired with handling of curves in the spirit of [LJG14].

Table 1: The performance of our vectorisation pipeline on several
of the results featured in this paper. The time measurements are
shown in seconds except for the rendering time, which is shown in
milliseconds, and are split over the elements of our vectorisation
pipeline: FE = Feature Extraction, MG = Mesh Generation, CF =
Colour Fitting, RT = Rendering Time, CR = Compression Ratio.4
indicates the number of triangles.

Image Resolution 4·103 FE MG CF Total RT CR
Fig 1 854×1024 ∼ 38 0.5 0.8 3.0 4.3 ∼ 23 0.72
Fig 2 785×618 ∼ 2 0.24 0.1 .5 0.9 < 1 0.07
Fig 3 bottom left 848×1280 ∼ 50 0.5 0.7 4 5.3 ∼ 25 0.78
Fig 6 1280×1181 ∼ 4 1.7 0.05 1.1 2.9 ∼ 2 0.06
Fig 7 441×441 ∼ 10 0.03 0.1 1.1 1.3 ∼ 3 0.89
Fig 8 top 1920×1284 ∼ 22 4.7 0.4 2.7 7.8 ∼ 25 0.18
Fig 8 middle 1280×853 ∼ 8 0.9 0.7 2.8 4.5 ∼ 10 0.16
Fig 8 bottom 1198×1198 ∼ 60 0.8 0.9 5.9 7.6 ∼ 17 0.77
Fig 9 left 864×864 ∼ 147 0.8 18.6 16 35.6 ∼ 33 2.68
Fig 9 right 864×864 ∼ 20 0.5 1.9 3.5 6 ∼ 16 0.52
Fig 13 left 639×479 ∼ 22 0.03 0.3 1.8 2.1 ∼ 7 1.24
Fig 14 1113×1291 ∼ 18 1.5 0.3 2.3 4.1 ∼ 24 0.26
Fig 15 441×631 ∼ 8 0.1 0.1 1.1 1.3 ∼ 4 0.56

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

145



G. J. Hettinga, J. Echevarria & J. Kosinka / Efficient Image Vectorisation Using Mesh Colours

5702 features 1048 features

Figure 9: Two vectorisations of the same image using different edge
detection parameters. Left: Canny edge detection with low set to 15
and high to 100. Right: low set to 100 and high to 200.

Figure 10: Our vector images are easily editable by manipulating
the curved mesh. From left to right: One of our vectorised results,
the mesh of the vector, the edited mesh, and the rendered edited
image. See the accompanying video for the editing session.

We show an example of this in Figure 10 and the supplemen-
tary video. Because of our real-time rendering performance, users
can efficiently zoom in and out for precise control. More elaborate
manipulations such as grouping of features and others as proposed
in [LHFY12] are also possible, but we did not implement them. Be-
cause of our overall performance, some hybrid raster-vector editing
workflows, where local edits to a rasterised vector image could be
quickly re-vectorised, could be explored as future work.

We have also created an application that allows users to create
spline curves on top of a raster image. Similarly to our feature ex-
traction stage of the pipeline, the user can mark them as hard or
soft features. The created curved features are used as inputs to the
rest of the pipeline. This user-guided process of vectorisation can
be done fully interactively thanks to the efficiency of our pipeline.
In addition, the user adds curves locally, which requires only local
updates to the triangulation and mesh colours. Figure 11 shows an
interactively generated vectorisation of a raster image. In addition,
the same workflow could be used to clean up automatically vec-
torised images by adding or fixing features that were not captured
correctly in the edge detection phase.

Figure 11: User-guided vectorisations of several images. Left to
right: Original image, user-placed curves in red and green, and
generated mesh in blue, and resulting vectorisation. Top: 47 curves
generated 460 triangles. Middle: 155 curves generated 993 trian-
gles. Bottom: 186 curves generated 1404 triangles. Please, see the
accompanying video for the interactive vectorisation session.

7.3. Comparisons with Previous Work

We compare against recent methods and relevant primitives for im-
age vectorisation: thin-plate splines (TPS), subdivision meshes, and
diffusion curves. For all comparisons we must state that we can
only approximately compare as many algorithm have only partly
vectorised the image by first manually segmenting the image or for
others we were not able to find the original input images and we
were left with a lower quality input image. Still, we have to the
best of our abilities tried to compare to the existing methods.

Figure 12 shows a comparison with a partially automatic TPS-
based method [CLL*20]. As can be seen, their method is very
good at capturing fine texture detail, but at the same time it scales
similarly to a raster image, thus loosing some sharpness around
hard edges. In addition, their vector patches often show seams un-
der magnification. In contrast, our method keeps sharpness around
hard edges and does not show texture seams thanks to our colour
smoothing around soft edges. Our texture detail is affected both by
the feature extraction step and the patch resolution, obtaining less
realistic abstracted looks when not sufficient.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

146



G. J. Hettinga, J. Echevarria & J. Kosinka / Efficient Image Vectorisation Using Mesh Colours

Figure 12: Comparisons between [CLL*20] (left) and our pro-
posed method (right). Our method seems better at preserving
sharpness coming from geometric discontinuities (petals in the sec-
ond row, holes in the last row), which are easily picked up by our
extracted image features. However, ours is not that good at cap-
turing extremely detailed textures like fur (first row). Insets also
show the relevance of our colour smoothing across patches, absent
in [CLL*20] (second and bottom rows). Vectorised backgrounds
were not available from [CLL*20], but included for completeness.

Because our image quality is often comparable to that
of [CLL*20], we chose not to include gradient meshes [LHM09]
in our comparisons, as their limitations when capturing highly de-
tailed textures were already demonstrated by Chen et al. Figure 14
shows a comparison against another TPS-based method [XLY09],
where our simpler and more performant pipeline achieves compa-
rable results to their more intensive vectorisation method. Figure 15
shows a comparison with another mesh-based approach [LHFY12]
that uses subdivision surfaces. Our decoupling into a spatial 2D
mesh and 3D (RGB) mesh colours allows finer control over colour
whilst not complicating the geometry, capturing higher level of de-
tail while achieving comparable smoothness and mesh density.

Figure 13 shows comparisons with hierarchical diffusion
curves [XSTN14]. We found that their image feature extraction
translates into a global loss of clarity and detail for photos. For de-
signed graphics, their method extracts cleaner features that produce
quality closer to our method.

7.4. Discussion

Previous vector graphics primitives have focused mostly on high
colour continuity surfaces. Our vector representation is ‘only’ C0,

Figure 13: From top to bottom: Input images, our results, re-
sults from [XSTN14], our extracted image features, and the ones
from [XSTN14]. When applied to photos, our method produces
sharper and cleaner results across the whole image (please, zoom
in for details). For simpler inputs with clearer discontinuities, both
methods perform similarly.

but given our proposed feature extraction step, the mesh is gener-
ated in a way that all triangles lie on areas with little variation in
colour. These areas can then easily be handled by the mesh colour
patches, removing the need for smoother interpolation strategies
like subdivision surfaces or thin-plate splines, which are less effi-
cient to evaluate than our representation.

Although our pipeline uses standard and also state-of-the-art
techniques for extracting features and constructing the geometry,
our proposed steps are not dependent on each other. This means
that the proposed pipeline can be potentially updated/upgraded in
the future; specifically the curved triangulation might benefit the ef-
ficiency and quality of the pipeline. Although our feature extraction
step manages to capture most of the salient features of the image,
the resulting vector representation can only be as good as the fea-
tures that have been extracted. Our focus in this paper has not been
perfecting the feature extractor, but rather show the power of our
choice of primitive for vectorisation. Naturally, there is room left

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

147



G. J. Hettinga, J. Echevarria & J. Kosinka / Efficient Image Vectorisation Using Mesh Colours

Figure 14: From left to right: Input image, our result, result from [XLY09], our image features and triangle mesh, and the ones from
from [XLY09]. Final quality is very similar between both methods, including sharpness around hard edges due to their feature alignment,
and our offset sampling and mesh colours. The main differences lie in the 2D mesh, with theirs being sparser. However, the complexity of
their mesh optimisation and the evaluation of their thin-plate splines is higher than our simpler but more efficient approach. Note that the
vectorised background was not available from [XLY09], but we included it in our result for completeness.

Figure 15: From left to right: Input image, our result, result from [LHFY12], our image features and mesh, image features and mesh
from [LHFY12]. While image features and triangle structure look similar, our mesh colour patches are able to capture more detail, even in
smooth regions such as under the nose.

for exploring combinations of traditional filtering and neural mod-
els. In any case, the rest of our pipeline can generally generate an
adequate vectorisation given any set of curved input features.

Although tessellation shaders increase the rendering perfor-
mance, it is still possible to render the images using only the CPU,
or alternatively using compute shaders or texture based solutions
for the Web. In addition, a downgraded approximation of the vector
image can be created easily by extracting each mesh colour patch as
a piece-wise linear triangulation, using the evaluated mesh colour
positions as vertices. This may help the compatibility with current
vector format standards such as PDF [Ado06] that do not directly
support our proposed vector representation.

Theoretically, we could push our method to two extremes: on the
one hand, the whole input image could be represented using only
two triangles with a very high resolution of the mesh colours; on the
other hand, each pixel of the input image could be captured by two
triangles with a very low (in this case zero) texture resolution. Both
are similar in spirit to [WZG*19], which is an efficient method,
but it does not adapt its resolution to local regions with higher de-
tail. In addition, not having explicit image features for geometric
edits means the user would need to move each vertex manually,
so having some sort of higher-level vectorised control features is
more desirable. In summary, one needs to be find a good balance

between the number (and geometry) of the mesh triangles and the
mesh colour resolution. Our pipeline achieves this balance to a very
good extent, but additional optimisations are still possible, such as
more elaborate local adaptivity or iterative feedback between dif-
ferent steps of our pipeline.

8. Conclusion

We have presented a fully automatic image vectorisation method
that can vectorise any image, ranging from natural images to lo-
gos and cartoon images, with good performance and reconstruc-
tion accuracy. Through our novel use of mesh colours, we are able
to transfer detailed colour textures to a mesh of curved triangles
generated from our feature extraction step.

Our efficient pipeline is capable of vectorising a wide range of
image types in seconds on commodity hardware. To ensure that
not only hard edges but also smooth image regions are captured
correctly, we add soft edges obtained from colour banding to our
image features. These features are vectorised, and then respected
by the mesh of curved triangles equipped with mesh colours repre-
senting the vectorised image. This results in relatively sparse vector
representations that are flexible and easy to edit, as demonstrated in
the varied examples presented throughout the paper and the supple-
mentary video.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

148



G. J. Hettinga, J. Echevarria & J. Kosinka / Efficient Image Vectorisation Using Mesh Colours

References
[Ado06] ADOBE. Adobe PDF. https : / / www . adobe . com /
content/dam/acom/en/devnet/pdf/pdf_reference_
archive/pdf_reference_1-7.pdf. 2006 2, 10.

[Ado19a] ADOBE. Adobe Illustrator: Image Trace. https://helpx.
adobe.com/illustrator/using/image- trace.html.
Online; accessed 13 December 2020. 2019 2.

[Ado19b] ADOBE. Adobe Illustrator: Meshes. https : / / helpx .
adobe.com/illustrator/using/meshes.html. Online; ac-
cessed 13 December 2020. 2019 1, 2.

[BBG12] BOYÉ, SIMON, BARLA, PASCAL, and GUENNEBAUD, GAËL.
“A Vectorial Solver for Free-Form Vector Gradients”. ACM Trans.
Graph. 31.6 (Nov. 2012). ISSN: 0730-0301 2.

[BDF14] BENJAMIN, MARK D., DIVERDI, STEPHEN, and FINKEL-
STEIN, ADAM. “Painting with Triangles”. NPAR 2014, Proceedings of
the 12th International Symposium on Non-photorealistic Animation and
Rendering. Aug. 2014 4.

[BHEK21] BAKSTEEN, SARAH D., HETTINGA, GERBEN J., ECHEVAR-
RIA, JOSE, and KOSINKA, JŘÍ. “Mesh Colours for Gradient Meshes”.
STAG: Smart Tools and Applications in Graphics. Ed. by FROSINI, P.,
GIORGI, D., MELZI, S., and RODOLÀ, E. The Eurographics Associa-
tion, 2021 2.

[BLHK18] BARENDRECHT, PIETER J, LUINSTRA, MARTIJN, HOGER-
VORST, JONATHAN, and KOSINKA, JIŘÍ. “Locally refinable gradient
meshes supporting branching and sharp colour transitions”. The Visual
Computer 34.6-8 (2018), 949–960 2.

[BLW11] BOWERS, JOHN C, LEAHEY, JONATHAN, and WANG, RUI. “A
ray tracing approach to diffusion curves”. Computer Graphics Forum.
Vol. 30. 4. Wiley Online Library. 2011, 1345–1352 2.

[Can86] CANNY, J. “A Computational Approach to Edge Detection”.
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-
8.6 (1986), 679–698 3.

[CLL*20] CHEN, K., LUO, Y., LAI, Y., et al. “Image Vectorization With
Real-Time Thin-Plate Spline”. IEEE Transactions on Multimedia 22.1
(2020), 15–29 2, 3, 7–9.

[DDI06] DEMARET, LAURENT, DYN, NIRA, and ISKE, ARMIN. “Image
compression by linear splines over adaptive triangulations”. Signal Pro-
cessing 86.7 (2006), 1604–1616 2.

[DLS13] DAI, WEN, LUO, TAO, and SHEN, JIANBING. “Automatic image
vectorization using superpixels and random walkers”. Image and Signal
Processing (CISP), 2013 6th International Congress on. Vol. 2. IEEE.
2013, 922–926 2.

[DSG*20] DOMINICI, EDOARDO ALBERTO, SCHERTLER, NICO, GRIF-
FIN, JONATHAN, et al. “PolyFit: Perception-Aligned Vectorization of
Raster Clip-Art via Intermediate Polygonal Fitting”. ACM Trans. Graph.
39.4 (July 2020). ISSN: 0730-0301 3.

[EVA*20] EGIAZARIAN, VAGE, VOYNOV, OLEG, ARTEMOV, ALEXEY,
et al. “Deep Vectorization of Technical Drawings”. Computer Vision –
ECCV 2020. Ed. by VEDALDI, ANDREA, BISCHOF, HORST, BROX,
THOMAS, and FRAHM, JAN-MICHAEL. Cham: Springer International
Publishing, 2020, 582–598. ISBN: 978-3-030-58601-0 3.

[EZ98] ELDER, J.H. and ZUCKER, S.W. “Local scale control for edge
detection and blur estimation”. IEEE Transactions on Pattern Analysis
and Machine Intelligence 20.7 (1998), 699–716 3.

[FLB16] FAVREAU, JEAN-DOMINIQUE, LAFARGE, FLORENT, and
BOUSSEAU, ADRIEN. “Fidelity vs. Simplicity: A Global Approach to
Line Drawing Vectorization”. ACM Trans. Graph. 35.4 (July 2016).
ISSN: 0730-0301 3.

[FLB17] FAVREAU, JEAN-DOMINIQUE, LAFARGE, FLORENT, and
BOUSSEAU, ADRIEN. “Photo2clipart: Image Abstraction and Vectoriza-
tion Using Layered Linear Gradients”. ACM Trans. Graph. 36.6 (Nov.
2017). ISSN: 0730-0301 2.

[HDS*18] HOSHYARI, SHAYAN, DOMINICI, EDOARDO ALBERTO,
SHEFFER, ALLA, et al. “Perception-Driven Semi-Structured Boundary
Vectorization”. ACM Trans. Graph. 37.4 (July 2018). ISSN: 0730-0301 3.

[HSG*19] HU, YIXIN, SCHNEIDER, TESEO, GAO, XIFENG, et al. “Tri-
Wild: Robust Triangulation with Curve Constraints”. ACM Trans.
Graph. 38.4 (July 2019), 52:1–52:15. ISSN: 0730-0301 4.

[HZY*20] HE, J., ZHANG, S., YANG, M., et al. “BDCN: Bi-Directional
Cascade Network for Perceptual Edge Detection”. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2020), 1–14 3.

[JCW09] JESCHKE, STEFAN, CLINE, DAVID, and WONKA, PETER. “A
GPU Laplacian Solver for Diffusion Curves and Poisson Image Editing”.
Transaction on Graphics (Siggraph Asia 2009) 28.5 (Dec. 2009), 1–8.
ISSN: 0730-0301 2.

[JCW11] JESCHKE, STEFAN, CLINE, DAVID, and WONKA, PETER. “Es-
timating color and texture parameters for vector graphics”. Computer
Graphics Forum. Vol. 30. 2. Wiley Online Library. 2011, 523–532 2.

[KL11] KOPF, JOHANNES and LISCHINSKI, DANI. “Depixelizing Pixel
Art”. ACM Trans. Graph. 30.4 (July 2011). ISSN: 0730-0301 2.

[LCH*17] LIU, Y., CHENG, M., HU, X., et al. “Richer Convolutional Fea-
tures for Edge Detection”. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2017, 5872–5881 3.

[LHFY12] LIAO, ZICHENG, HOPPE, HUGUES, FORSYTH, DAVID, and
YU, YIZHOU. “A subdivision-based representation for vector image
editing”. IEEE transactions on visualization and computer graphics
18.11 (2012), 1858–1867 2, 5, 7–10.

[LHM09] LAI, YU-KUN, HU, SHI-MIN, and MARTIN, RALPH R. “Auto-
matic and topology-preserving gradient mesh generation for image vec-
torization”. ACM Transactions on Graphics (TOG). Vol. 28. 3. ACM.
2009, 85 2, 9.

[Lin96] LINDEBERG, T. “Edge detection and ridge detection with auto-
matic scale selection”. Proceedings CVPR IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition. 1996, 465–470 3.

[LJD*19] LU, SHUFANG, JIANG, WEI, DING, XUEFENG, et al. “Depth-
aware image vectorization and editing”. The Visual Computer (2019), 1–
13 2.

[LJG14] LIU, SONGRUN, JACOBSON, ALEC, and GINGOLD, YOTAM.
“Skinning cubic Bézier splines and Catmull-Clark subdivision surfaces”.
ACM Transactions on Graphics (TOG) 33.6 (2014), 1–9 7.

[LJH13] LI, XIAN-YING, JU, TAO, and HU, SHI-MIN. “Cubic mean value
coordinates.” ACM Trans. Graph. 32.4 (2013), 126–1:10 2.

[LKSD17] LIENG, HENRIK, KOSINKA, JIŘÍ, SHEN, JINGJING, and
DODGSON, NEIL A. “A Colour Interpolation Scheme for Topologically
Unrestricted Gradient Meshes”. Computer Graphics Forum. Vol. 36. 6.
Wiley Online Library. 2017, 112–121 2.

[LL06] LECOT, GREGORY and LEVY, BRUNO. “Ardeco: automatic region
detection and conversion”. 17th Eurographics Symposium on Rendering-
EGSR’06. 2006, 349–360 2.

[LLGR20] LI, TZU-MAO, LUKÁČ, MICHAL, GHARBI, MICHAËL, and
RAGAN-KELLEY, JONATHAN. “Differentiable Vector Graphics Rasteri-
zation for Editing and Learning”. ACM Trans. Graph. 39.6 (Nov. 2020).
ISSN: 0730-0301 2.

[MA09] MAINI, RAMAN and AGGARWAL, HIMANSHU. “Study and com-
parison of various image edge detection techniques”. International jour-
nal of image processing (IJIP) 3.1 (2009), 1–11 3.

[MC20] MANDAD, MANISH and CAMPEN, MARCEL. “Bézier Guard-
ing: Precise Higher-Order Meshing of Curved 2D Domains”. 39.4 (July
2020). ISSN: 0730-0301 4.

[MSY19] MALLETT, IAN, SEILER, LARRY, and YUKSEL, CEM.
“Patch Textures: Hardware Implementation of Mesh Colors”. High-
Performance Graphics (HPG 2019). Strasbourg, France: The Eurograph-
ics Association, 2019. ISBN: 978-3-03868-092-5 2, 4, 6.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

149

https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdf_reference_archive/pdf_reference_1-7.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdf_reference_archive/pdf_reference_1-7.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdf_reference_archive/pdf_reference_1-7.pdf
https://helpx.adobe.com/illustrator/using/image-trace.html
https://helpx.adobe.com/illustrator/using/image-trace.html
https://helpx.adobe.com/illustrator/using/meshes.html
https://helpx.adobe.com/illustrator/using/meshes.html


G. J. Hettinga, J. Echevarria & J. Kosinka / Efficient Image Vectorisation Using Mesh Colours

[MSY20] MALLETT, IAN, SEILER, LARRY, and YUKSEL, CEM. “Patch
Textures: Hardware Support for Mesh Colors”. IEEE Transactions on
Visualization and Computer Graphics (2020). ISSN: 1077-2626 6.

[NS19] NAJGEBAUER, PATRYK and SCHERER, RAFAŁ. “Inertia-based
Fast Vectorization of Line Drawings”. Computer Graphics Forum 38.7
(2019), 203–213 3.

[OBW*08] ORZAN, ALEXANDRINA, BOUSSEAU, ADRIEN, WIN-
NEMÖLLER, HOLGER, et al. “Diffusion Curves: A Vector Representa-
tion for Smooth-Shaded Images”. ACM Transactions on Graphics 27.3
(2008), 92–1 2, 3, 5.

[PB06] PRICE, BRIAN and BARRETT, WILLIAM. “Object-based vec-
torization for interactive image editing”. The Visual Computer 22.9
(2006), 661–670 2.

[PJS15] PRÉVOST, ROMAIN, JAROSZ, WOJCIECH, and SORKINE-
HORNUNG, O. “A Vectorial Framework for Ray Traced Diffusion
Curves”. Computer Graphics Forum 34 (2015) 2.

[RLB*14] RICHARDT, C., LOPEZ-MORENO, J., BOUSSEAU, A., et al.
“Vectorising Bitmaps into Semi-Transparent Gradient Layers”. Com-
puter Graphics Forum 33.4 (2014), 11–19 2.

[SBBB20] STANKO, TIBOR, BESSMELTSEV, MIKHAIL, BOMMES,
DAVID, and BOUSSEAU, ADRIEN. “Integer-Grid Sketch Simplification
and Vectorization”. Computer Graphics Forum 39.5 (2020), 149–161 3.

[Sch90] SCHNEIDER, PHILIP J. “An Algorithm for Automatically Fitting
Digitized Curves”. Graphics Gems. USA: Academic Press Professional,
Inc., 1990, 612–626. ISBN: 0122861695 4.

[SKFS20] SHUGRINA, MARIA, KAR, AMLAN, FIDLER, SANJA, and
SINGH, KARAN. “Nonlinear Color Triads for Approximation, Learning
and Direct Manipulation of Color Distributions”. ACM Trans. Graph.
39.4 (July 2020). ISSN: 0730-0301 2.

[SLWS07] SUN, JIAN, LIANG, LIN, WEN, FANG, and SHUM, HEUNG-
YEUNG. “Image vectorization using optimized gradient meshes”. ACM
Transactions on Graphics (TOG). Vol. 26. 3. ACM. 2007, 11 2.

[SMC*13] SILVA, M. A. G., MONTENEGRO, A., CLUA, E., et al. “Real
Time Pixel Art Remasterization on GPUs”. 2013 XXVI Conference on
Graphics, Patterns and Images. 2013, 274–281 2.

[VK18] VERSTRAATEN, TEUN W. and KOSINKA, JŘÍ. “Local and Hierar-
chical Refinement for Subdivision Gradient Meshes”. Computer Graph-
ics Forum 37.7 (2018), 373–383 2.

[WZG*19] WEI, GUANGSHUN, ZHOU, YUANFENG, GAO, XIFENG, et
al. “Field-aligned Quadrangulation for Image Vectorization”. Computer
Graphics Forum. Vol. 38. 7. Wiley Online Library. 2019, 171–180 2, 10.

[XLY09] XIA, TIAN, LIAO, BINBIN, and YU, YIZHOU. “Patch-based im-
age vectorization with automatic curvilinear feature alignment”. ACM
Transactions on Graphics (TOG). Vol. 28. 5. ACM. 2009, 115 2–4, 9,
10.

[XSTN14] XIE, GUOFU, SUN, XIN, TONG, XIN, and
NOWROUZEZAHRAI, DEREK. “Hierarchical diffusion curves for
accurate automatic image vectorization”. ACM Transactions on
Graphics (TOG) 33.6 (2014), 230 2, 9.

[XT15] XIE, SAINING and TU, ZHUOWEN. “Holistically-Nested Edge
Detection”. Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV). Dec. 2015 3.

[XWLS17] XIE, JUN, WINNEMÖLLER, HOLGER, LI, WILMOT, and
SCHILLER, STEPHEN. “Interactive Vectorization”. Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. CHI
’17. Denver, Colorado, USA: Association for Computing Machinery,
2017, 6695–6705. ISBN: 9781450346559 2.

[YCZ*16] YANG, M., CHAO, H., ZHANG, C., et al. “Effective Cli-
part Image Vectorization through Direct Optimization of Bezigons”.
IEEE Transactions on Visualization & Computer Graphics 22.02 (Feb.
2016), 1063–1075. ISSN: 1941-0506 1.

[YKH10] YUKSEL, CEM, KEYSER, JOHN, and HOUSE, DONALD H.
“Mesh Colors”. ACM Trans. Graph. 29.2 (Apr. 2010). ISSN: 0730-
0301 2, 4.

[YLT19] YUKSEL, CEM, LEFEBVRE, SYLVAIN, and TARINI, MARCO.
“Rethinking Texture Mapping”. Computer Graphics Forum (Proceed-
ings of Eurographics 2019) 38.2 (2019), 535–551 4, 6.

[Yuk16] YUKSEL, CEM. “Mesh Colors with Hardware Texture Filtering”.
ACM SIGGRAPH 2016 Talks. SIGGRAPH ’16. Anaheim, California:
Association for Computing Machinery, 2016. ISBN: 9781450342827 5,
6.

[ZDZ17] ZHAO, SHUANG, DURAND, FREDO, and ZHENG, CHANGXI.
“Inverse Diffusion Curves using Shape Optimization”. IEEE transac-
tions on visualization and computer graphics (2017) 2.

[ZZW14] ZHOU, HAILING, ZHENG, JIANMIN, and WEI, LEI. “Represent-
ing images using curvilinear feature driven subdivision surfaces”. IEEE
Transactions on Image Processing 23.8 (2014), 3268–3280 2.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

150


