
STAG: Smart Tools and Applications in Graphics (2021)
P. Frosini, D. Giorgi, S. Melzi, and E. Rodolà (Editors)

Visual Analysis of Popping in Progressive Visualization

E. Waterink, J. Kosinka , and S. Frey

Bernoulli Institute, University of Groningen, the Netherlands

Abstract
Progressive visualization allows users to examine intermediate results while they are further refined in the background. This
makes them increasingly popular when dealing with large data and computationally expensive tasks. The characteristics of how
preliminary visualizations evolve over time are crucial for efficient analysis; in particular unexpected disruptive changes between
iterations can significantly hamper the user experience. This paper proposes a visualization framework to analyze the refinement
behavior of progressive visualization. We particularly focus on sudden significant changes between the iterations, which we
denote as popping artifacts, in reference to undesirable visual effects in the context of level of detail representations in computer
graphics. Our visualization approach conveys where in image space and when during the refinement popping artifacts occur. It
allows to compare across different runs of stochastic processes, and supports parameter studies for gaining further insights
and tuning the algorithms under consideration. We demonstrate the application of our framework and its effectiveness via two
diverse use cases with underlying stochastic processes: adaptive image space sampling, and the generation of grid layouts.

CCS Concepts
• Human-centered computing → Visualization design and evaluation methods;

1. Introduction

Datasets generated by simulations and experiments are becoming
increasingly large and complex, requiring advanced visualization
methods for their analysis. This means that a long time can pass
until the final result is produced with standard approaches, which
can significantly impede user exploration. Progressive visualizations
help users analyze these large volumes of data by allowing them
to examine intermediate results of computationally expensive prob-
lems without having to wait for the computation to complete. This
paradigm means splitting long computations into a series of approx-
imate results improving with time and conveying this progress. It
addresses scalability problems, as analysts can keep their attention
on the results of long analyses as they continuously arrive. Progres-
sive visualization is becoming increasingly popular, with promising
results across various scenarios [FFNS19, PMS∗21, FP16], but it
also comes with various challenges [TPB∗19].

Smooth refinement without a large number of disruptive changes
to the visualization would be desirable for a good user experi-
ence in the simultaneous analysis. We denote such large changes
from one iteration to another as popping artifacts, in relation to
undesirable visual effects occurring with level of detail represen-
tations [XESV97, Hop98, SS09]. Popping artifacts in progressive
visualization are generally expected to happen early on in a refine-
ment process, but depending on the method and its parameters they
might also be introduced—surprisingly for a user—after longer pe-
riods of comparably minor changes. This disruptive behaviour is

important to understand for experts and users of progressive visual-
ization techniques.

In this work we propose a framework for the analysis of pro-
gressive visualization techniques with a focus on popping artifacts,
which we consider to be our main contribution. It combines several
aspects of the process which allow the user to gain insight into
its stability. In particular, we identify and explicitly consider four
characteristics shared among progressive visualization techniques,
which provides the basis for our proposed framework. First, these
approaches exhibit some kind of measure or metric to assess the
progress, e.g., via an objective function for optimization and ma-
chine learning-based approaches. Showing them for instance as a
chart can provide some insights regarding refinement characteristics
as a whole, but popping artifacts are often not clearly visible (e.g.,
averaged out or not apparent due to overdraw). This is the main
motivation for the proposed explicit detection of popping artifacts,
which the following components are directly based on. Second, pro-
gressive visualization methods often employ stochastic processes,
i.e., refinement behavior and results vary across runs (this is com-
monly seen in optimization and machine learning-based techniques,
but is also often the case with adaptive sampling to avoid systematic
biases). The analysis requires the consideration of multiple runs
for comprehensive assessment of the properties. Third, progressive
methods typically exhibit parameters with a strong impact on re-
finement behavior, and a respective analysis can greatly help in
determining adequate choices. Fourth, in particular in techniques for
scientific visualization like volume rendering, the absolute spatial

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/stag.20211485 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-8859-2586
https://orcid.org/0000-0002-1872-6905
https://doi.org/10.2312/stag.20211485


E. Waterink, J. Kosinka & S. Frey / Visual Analysis of Popping in Progressive Visualization

location, i.e., where something happens, is of high relevance. In
this work, we demonstrate our approach via two concrete stochastic
iterative refinement processes: 1) an adaptive image space sampling
scheme simulating a ray tracer application which iteratively samples
pixels, and 2) a process of tile grid generation for placing similar
objects close to each other.

In Sec. 2 we give an overview of (different types of) progressive
visualization. Sec. 3 introduces our framework for the visual analysis
of popping in progressive visualization. Then, we describe the two
use cases in detail in Sec. 4 and Sec. 5, respectively, and discuss how
the generic visualization applies to them as well as some dedicated
visualizations. Finally, we conclude this work in Sec. 6 and provide
directions for future work.

2. Related Work

Rosenbaum and Schumann [RS09] identify a high potential of pro-
gressive refinement far across a large variety of application con-
texts. Zgraggen et al. [ZGC∗17] study how progressive visualiza-
tions affect users in exploratory scenarios. They find that users
perform equally well with either instantaneous (a hypothetical con-
dition where results are shown almost immediately) or progres-
sive visualizations in key metrics, such as insight discovery rates
and dataset coverage, while blocking visualizations have detrimen-
tal effects. Fisher et al. [FPDs12, FDK12] have explored whether
interaction techniques presenting query results from only incre-
mental samples in a database scenario are sufficiently trustwor-
thy for analysts. Stolper et al. [SPG14] define design goals for
both the algorithms and visualizations in progressive visual an-
alytics systems as well as an example progressive visual analyt-
ics system (Progressive Insights) for analyzing common patterns
in a collection of event sequences in a clinical scenario. Various
works in recent years have discussed the paradigm of progressive
data analytics in detail along with respective potentials and chal-
lenges [FFNS19, PMS∗21, FP16, TPB∗19].

Progressiveness naturally provides approximate uncertain results
[HAC∗99, FPDs12] that may contain errors [DHC∗16] which are
potentially corrected at a later step (resulting in a popping artifact
for more substantial corrections). Analysts working in progressive
scenarios thus need to understand and work effectively under these
circumstances. Turkay et al. [TPB∗19] conclude that research on
progressive approaches needs to consider this uncertainty challenge
carefully. Uncertainty in this regard is often communicated via error
bars with confidence intervals [HAC∗99, FPDs12], and we employ
similar means to convey the variance in popping artifacts.

A variety of progressive approaches have been proposed to date,
including, among many others, adaptive sampling [ELPZ97,CKK18,
PS89, FP04], graph layouting [BP07], and multidimensional scal-
ing [WM04]. Generally, in our work, we consider processes that
generate something “spatial”, like an image, a volume, or a grid,
and in the remainder of this section we outline some of these tech-
niques to demonstrate their breadth and general applicability for
many visualization-related tasks. In progressive volume rendering,
renderings are increasingly updated by improving the sampling and
yielding a more concise representation of the data with fewer errors.
In his seminal work, Levoy implemented a volume-rendering algo-
rithm in which image quality is adaptively refined over time [Lev90].

Figure 1: Iterative refinement process in progressive visualization.

For evaluation, a visualization of an array shows where rays were
cast, where each white pixel corresponds to a single ray. Consid-
ering both the spatial domain (the image) as well as the temporal
domain (changes over time, e.g., due to user interaction), a method
was introduced to dynamically steer the visualization process based
on an approximation of respective spatio-temporal errors to achieve
interactive frame rates in the visualization of large (time-dependent)
volume data sets [FESM14]. Conceptually, a frame is progressively
refined by sending additional rays until the temporal error due to
changes exceeds the spatial error due to undersampling. A different
use case is for time-step selection, which is an iterative optimiza-
tion process selecting time-steps such that they best cover the full
(spatio-temporal) volume data, which allows for an integrated and
comprehensive visualization [FE17a]. Supporting selection, pro-
gressive approaches have also been used to generate transforma-
tions between arbitrary volumes to quickly provide both expressive
distances and smooth interpolation [FE17b]. For generating grid
layouts, Self-sorting Map uses a permutation procedure to maxi-
mize the cross-correlation between member and cell distances by
swapping cells in different (sub)quadrants [SG14]. In our research
prototype, we use a conceptually similar optimization procedure
that also partitions the considered members into sub-groups and
locally solves optimization problems.

Ventocilla et al. [VR20] present a model for the progressive visu-
alization and exploration of the structure of large data sets. That is,
an abstraction on different components and relations which provide
means for constructing a visual representation of a dataset’s struc-
ture. Visualizations created from corrupt data often mislead users,
leading to wrong decisions. Luo et al. [LCQ∗20] present a system
that progressively visualizes data with improved quality through in-
teractive and visualization-aware data cleaning. Fekete et al. [Fek15]
implemented a toolkit which allows analysts to see the progress of
their analysis and to steer it while the computation is running.

3. Popping Analysis in Progressive Visualization

Progressive techniques employ iterative methods which improve
the result in a step-wise manner and regularly convey a preliminary
result to the user (Fig. 1). This process of iterative visualization is
what we aim to analyze. For this, we consider a visual outcome to
be a 2D spatial object as well as further information associated with
it (like metrics or measures from the respective application).

Analysis Questions. In this work, based on own experience as well
as our review of related work (as discussed above), we identified
four questions that we consider to be relevant:
• How does the refinement generally progress as quantified by

expressive metrics and measures?
• When and where do popping artifacts occur across different runs?
• What is the impact of method parameters on popping artifacts?
• What locations are more prone to experience popping artifacts?

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

152



E. Waterink, J. Kosinka & S. Frey / Visual Analysis of Popping in Progressive Visualization

multi-run progressive visualization data

analysis of 
metrics and 
measures

(Sec. 3.1) extraction of popping artifacts


(Sec. 3.2)

comparison 

across runs


(Sec. 3.3)

parameter 

study


(Sec. 3.4)

spatial 

analysis

(Sec. 3.5)

Figure 2: Framework for the visualization of progressive visualiza-
tion data (black). Custom metrics and measures regarding provided
data can be visualized (Sec. 3.1), but popping artifacts are generally
hard to spot in these. For a detailed analysis we explicitly extract
popping events (Sec. 3.2), and analyze when and where popping
occurred across runs (Sec. 3.3) as well as check the impact of param-
eters (Sec. 3.4). For scenarios with meaningful absolute positioning,
we further analyze popping events in different locations (Sec. 3.5).

Design Considerations. To address these questions, we introduce
a novel visualization framework that provides different perspectives
on the runtime characteristics of progressive visualization via differ-
ent views. For this, we aim to build on simple standard visualization
components and concepts as far as possible (like line charts, box
plots), while also introducing new custom-tailored visual mappings
where necessary. For the development of new designs, we especially
consider the special role of spatial positions which constitute the
strongest visual cue [Mac86]. The location where popping happens
in the visualization space is of importance, but the consideration of
parameter spaces and the influence of stochasticity is highly relevant
as well. To achieve visual comparison, we employ all three types of
comparative visualizations identified by Gleicher et al. [GAW∗11]:
superimposition (display additional information in the image space),
juxtaposition (place visuals side by side to compare across stochas-
tic runs or parameter spaces), and explicit encoding (assess the
differences between subsequent iterations). We aim to provide a
combination of different views to address our analysis questions in
this work. A tighter integration of the proposed components and the
integration into an interactive system remains as future work (see
Sec. 6). Advanced progressive visualizations are typically adaptive
to the data, and with this the concretely observed changes depend
on the considered scenario. To get a comprehensive impression of
the characteristics of a respective algorithm, different representative
examples need to be investigated, and comparisons across them need
to be supported (see Sec. 4).

Framework. Our proposed framework consists of dedicated com-
ponents for yielding new insights regarding progressive visualization
characteristics (Fig. 2). Progressive approaches typically have some
associated metrics and measures quantifying the progress, like a
cost function or difference to the ground truth (Sec. 3.1). While
their direct analysis generally conveys an outline of the refinement
behavior, the identification of popping artifacts directly from cor-
responding charts is difficult for various reasons, as exemplified in
the use case discussions below. To address this, we particularly aim
to provide means for the direct analysis of popping artifacts due
to their disturbing nature for simultaneous analysis (see Sec. 3.2
for a discussion on their definition and detection). In our analysis,

we consider stochastic refinement schemes which are common in
many types of progressive schemes, e.g., to avoid systematic bi-
ases in image generation or when using popular randomized search
optimization methods (like simulated annealing or evolutionary al-
gorithms). For this, we propose a visualization design that shows
the progress of the refinement across different runs (Sec. 3.3). Many
approaches typically also depend on parameters, and analyzing their
impact regarding popping artifacts is crucial for making an informed
choice (Sec. 3.4).

There are some differences between visualization approaches
related to the meaning of position. For instance in image generation,
the absolute position is meaningful as the value of a pixel is specified
by the (camera) setup. For such cases, we introduce an overlay to
spatially show popping artifacts (Sec. 3.5). In contrast, in other cases
only the relative position with respect to other objects is important,
but not exactly where it is placed in the visualization (e.g., in graph
visualization, high-dimensional projection, or tile grids).

3.1. Direct Visualization of Metrics and Measures

Progressive approaches generally come with associated metrics and
measures quantifying progress. When considering rendering, image
quality metrics give good sense of the state of the refinement (see
the use case in Sec. 4). For optimization problems, an objective
function that is to be minimized or maximized is a prime example
of this (see Sec. 5). Measures provide a good initial impression of
refinement behavior and some characteristics thereof, as exemplified
in the use cases below. Typically, they are displayed as line charts
against time or the number of conducted iterations.

Differences (or the lack thereof) in value can readily be observed
in these line charts. In particular, a sudden (between consecutive
iterations) significant increase/decrease in the measure can be asso-
ciated with popping artifacts (assuming the jump is large enough). It
can thus give an indication of when to expect popping artifacts. How-
ever, in many practical cases popping artifacts are often not clearly
visible (e.g., obfuscated by many other parts considered in the metric
or not apparent due to overdraw for fine-grained measures).

3.2. Types and Detection of Popping Artifacts

We focus on significant changes between iterations in the visual-
ization results, which we call popping artifacts. Popping artifacts
are relevant because they introduce disruptive changes to the vi-
sualization. A desirable property of progressive/iterative rendering
schemes is that changes become continuously less disruptive the
longer the process goes on (avoiding popping artifacts later on, if
possible). From a developer’s perspective, this can be interesting to
understand the characteristics of the approach, identify potential for
improvement, or to present this as some kind of evaluation. For an
end user, this might also be interesting to indicate to what extent
further changes might be expected or how stable the results are. In
this work, we do not take into account the application context in
which the popping occurred or perceptional aspects (see Sec. 6).

Types. We distinguish between three types of popping:

• In local popping we consider the change in value of a single
element e in the visualization.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

153



E. Waterink, J. Kosinka & S. Frey / Visual Analysis of Popping in Progressive Visualization

• In semi-local popping we check whether a group of elements c
have popped for at least Gpop elements.

• In global popping we consider the change in value of a metric that
is measured/computed from the spatial object O or by aggregating
the individual element values.

Detection. Essentially, we detect popping artifacts when a consid-
ered value or metric changes above some threshold Tpop. For local
or global popping, a popping artifact P for L occurs at iteration n
if its metric M at that iteration has changed more (based on some
distance function d) than the specified threshold Tpop compared to
the previous iteration n−1:

Pn(L) := d(Mn(L),Mn−1(L))> Tpop. (1)

The threshold Tpop is defined by the user to be meaningful for the
respective application context. L can be either a single element e
(local) or the full visualization O (global) with M evaluating the
object’s value or the aggregate function, respectively. For semi-local
popping we apply Eq. 1 for each element in c:

Pn(c) :=

(
∑
e∈c
Pn(e)

)
≥ Gpop. (2)

Note that Eq. 2 is a generalization of Eq. 1, where we sum over a
single object and Gpop = 1.

By applying P at each iteration, we can produce an array of
iterations of when popping artifacts occurred:

D(L) := [n | 1≤ n≤ nmax,Pn(L) = True],

where D is the popping distribution of L, which can be either for e
(local), c (semi-local), or O (global). These distributions can neatly
be visualized by boxplots. All in all, this establishes when and where
popping artifacts occur.

3.3. Multi-Run Overview Visualization of Popping Artifacts

In general, the results of a single stochastic run are not too meaning-
ful for the analysis, and many runs need to be considered to get a
stable overall impression. We propose a generic visualization design
for popping artifacts across multiple runs (Fig. 3). In this visualiza-
tion, multiple runs are stacked on top of each other for comparison.
The visualization consists of the following components.

The metric bar is a scalar value measured/computed from the
intermediate results and is specified by the user. It is visualized as a
color bar by mapping the metric to color using a color map, and in
order to achieve this the values have to be normalized. Because we
consider several different runs, the normalization has to be applied
to the matrix (as opposed to each run individually) so that the same
color corresponds to the same metric value. While the changes
between consecutive iterations may be difficult to see, it still gives a
general impression of the changes in the metric. The advantage over
line plots is that they scale much better to a larger number of runs.

The triangles indicate iterations at which global/semi-local/local
popping artifacts occurred, which is essentially the distribution D.

The boxes of spatial changes (a.k.a. blocks) show where signifi-
cant changes occurred and with this caused the popping. If the user
decides to visualize local popping, all the individual elements that

Figure 3: Multi-run visualization for popping artifacts of R different
runs. Small images (orange) highlight spatial changes after popping
artifacts (triangles). The metric bar (purple) shows the metric value
at all steps. The runs are reordered such that similar ones are next
to each other. The last row aggregates all aspects of the runs.

popped are highlighted. In the case of global popping all changes to
the visualization are shown. In any case, it shows when and where
popping occurred. As space is limited, we can only display some
number of blocks for each run. To still convey spatial popping in
a way that is comparable across runs, we divide the iterations into
intervals of size b and aggregate popping artifacts within. Our pri-
mary focus in this component is to show how often popping artifacts
occurred in certain places. To convey this, we count all popping
artifacts at each position and finally normalize within each box with
respect to the maximum. This gives values in [0,1], which are color
mapped. Note that this means that the same color between different
blocks does not necessarily correspond to the same frequency, but it
yields a much clearer impression for each block individually.

The popping of a single element might be difficult to see, espe-
cially for higher resolution structures, unless zoomed in. Therefore,
the elements indicating popping are enlarged by taking the maxi-
mum value of a certain radius for each element.

Reordering the runs improves the visual clarity and allows for
better comparability if looking at larger numbers of runs. They are
reordered using hierarchical clustering based on the iterations at
which popping occurred (represented by a binary vector). A distance
function computes the similarity between two popping vectors of
different runs, such the cosine or Hamming distance.

In some scenarios developers might choose to consider a signif-
icant number of runs to get a comprehensive overall impression.
While the visual representation discussed so far could be extended
in a straight-forward way, this would lead to issues regarding visual
scalability. To address this, we include another row which aggre-
gates all the runs to summarize them, e.g. by averaging or taking
the median. To distinguish the aggregate row from the runs we apply
a different color map (although the same one could be used as well
because each block is normalized locally). Similarly, aggregates are
also computed for metrics, and we add a dedicated metric bar as
the value range can differ (e.g., when considering variance).Then,
aggregated popping is computed by aggregating all popping artifacts

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

154



E. Waterink, J. Kosinka & S. Frey / Visual Analysis of Popping in Progressive Visualization

1

Figure 4: Parameter space analysis for parameters P and Q, with
k and m different values, respectively. The bottom row (resp. right
column) aggregates the distributions of the respective columns q
(resp. rows p), and the bottom right aggregates all the distributions.

for each step across runs. Depending on the concrete question, we
can, e.g., take the union of all the popping artifacts to indicate that
in at least one run popping happened, or take the intersection to
indicate that popping artifacts occurred in all runs.

This visualization is flexible in the sense that the user can specify
two metrics: one for the color bar and one for the popping; and they
can choose between local and global popping.

3.4. Parameter Space Analysis of Popping Artifacts

Progressive visualizations have parameters which can attain a range
of different values. Naturally, the choice of the parameter values
influences the popping behaviour as they change the output of the
intermediate results. Besides the algorithm parameters, the popping
analysis requires the user to set the popping threshold Tpop (and
Gpop for semi-local popping). Generally, there are many parameters
to consider, but some have more influence than others.

To visualize the impact of the parameter space on the popping
behaviour, we visualize the popping distribution per parameter com-
bination for several values each (Fig. 4). That is, we create a rect-
angular grid whose dimensions depend on the number of specified
parameter values, and within the cells for each parameter combina-
tion show a box plot depicting the occurrence of popping artifacts.
An individual 2D grid can visualize the impact of two parameters
(this could easily be extended to more parameters akin to scatterplot
matrices [EGS∗13]). Besides the box plots, three colour bands are
vertically stacked in the cells’ background to provide additional
visual cues: the bottom one corresponds to the minimum popping
iteration, the middle color to the median popping iteration, and the
top color to the maximum popping iteration. This allows for easier
comparison between box plots on different rows.

Including a large number of parameter values could lead to an
explosion of distributions, complicating the analysis of a single
parameter combination. Therefore, an additional row/column aggre-
gates the distributions of the respective columns/rows to summarize
them. Moreover, the bottom-right block aggregates all distributions.

1

Figure 5: Structure (represented
by shapes) overlaid with a 5×
5 uniform grid, where each cell
shows the popping distribution D
and a colored background accord-
ing to its median popping time
step.

3.5. Spatial Popping Artifacts

Popping artifacts are caused by the spatial objects, which have a
position in the structure. Spatial objects with an absolute position
are always in the same location, as opposed to ones with a relative
position. That is, for the former, if a popping artifact occurred at
the same location between two different runs, we know the same
spatial object popped, which is not the case for the latter. Hence, we
overlay the structure with cells and box plots over the spatial objects
to spatially show their popping distributions (Fig. 5). Moreover, the
grid cells’ backgrounds are colored with respect to their median
time step. Combining this with a grey-scale version of the structure
(if applicable) allows for easier interpretation of the popping. Cells
where no popping occurred do not have a color or show a distribution.
This shows the user where the popping artifacts occurred in addition
to when. Note that, while one could apply this visualization to the
latter case too, this would in general not be meaningful.

In our implementation, the structure is overlaid with a uniform
rectangular grid that precisely fits it. This visualization could be
extended to work with non-uniform rectangular grids or other grid
shapes (e.g. hex-grids) for that matter. Further, adaptive grids could
be employed with smaller grid cells in regions of interest and larger
ones for less interesting areas. When combining multiple runs, the
naive approach would be to create the popping distribution image
for all of them and compare them as is. However, the presented
distributions can also be combined directly to allow to scale to a
larger number of runs. An alternative could be to compute some
metric for this comparison (i.e., explicit encoding [GAW∗11]). There
is a trade-off between the scaling/visibility of the boxplots (related
to the cell size) and popping localization. Increasing the dimensions
of the grid cells improves the visibility of the boxplots, but larger
grid cells capture popping at a coarser granularity over a greater
area, impeding the precise localization of popping artifacts.

4. Adaptive Sampling in Image Space

The adaptive image space sampling use case simulates a ray-tracing
application with Monte Carlo-based sampling (see Zwicker et
al. [ZJL∗15] for a comprehensive overview). Starting from a coarse
uniform sampling, a certain number of samples is added in each
iteration (we use 1% of the number pixels, i.e., 655 for 256×256
images). A full image can be reconstructed at each iteration via inter-
polation (Fig. 6). Sampling locations are determined in a stochastic
manner based on the color variation of the pixels. The process
completes when all pixels have been sampled (after 100 iterations).
Pixels are considered to be individual elements e and the (recon-
structed) images are spatial objects O.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

155



E. Waterink, J. Kosinka & S. Frey / Visual Analysis of Popping in Progressive Visualization

R_n: 1/100
(NN=4, p=3.00, T_pop=38.00, G_pop=3)

R_n: 1/100
(NN=4, p=3.00, T_pop=25.00, G_pop=3)

R_n: 1/100
(NN=4, p=3.00, T_pop=25.00, G_pop=3)

R_n: 1/100
(NN=4, p=3.00, T_pop=38.00, G_pop=3)

Figure 6: Image pairs of the initial and final reconstruction (top
left to bottom right: maximum intensity projection of a human
head [Ros21]; photo-realistic scene with translucent and reflective
objects created by a ray-tracing application; photo of some fruit; a
still frame of the 2011 computer-animated film Rango [Ver11].)

4.1. Refinement Characteristics

To get an initial impression on the refinement behavior, we com-
pute the similarity between two consecutive reconstructed images:
sim(Rn,Rn−1), where sim(·, ·) could be any similarity metric. This
is a global metric of the reconstructed image and takes into account
the values of all individual pixels. We further compute sim(Rn, I) to
compare the intermediate results with the final result. We can easily
combine the similarity graphs for several runs into a single figure,
which shows quite similar refinement characteristics overall.

Image differences (Fig. 7). We first assess the progress globally via
the structural similarity index (SSIM) [WB09], which considers the
perceived change in structural information. The first graph for com-
paring consecutive reconstructed images shows a sharp increase for
the first few iterations. This is because the images are reconstructed
from a relatively small number of pixels, and with each new sample
we can reconstruct the images considerably better. After that, it sta-
bilizes (with small fluctuations) because the images remain similar
as the new samples do not add much new information. Near the end,
however, there is a small drop, indicating a change in structure. This
is caused by the constant regions in the image, such as the teeth.
They are the last to be sampled, meaning that up till then, they are
reconstructed from pixels far away, and the interpolated color does
not have to be close to their true color. Once they are sampled, their
reconstruction could thus cause a change in structure large enough
to cause the similarity to drop.

The second graph for comparing reconstructed images with the
final image is different. It also increases, but not as sharply. Un-
like the first graph, the second one does not experience the sudden
change in structure, because it is not revealed during the iterations,
but already known beforehand. This is also why the similarity is
predominantly lower for the second graph. Near the end, the rapid
increase in similarity indicates that the adaptive sampling scheme
could be improved (either by tuning parameter values or employ-
ing a totally different sampling scheme). Afterwards, the image is
perfectly “reconstructed” with a structural similarity index of 1.

(Reconstructed) pixel differences (Fig. 8). While the graphs dis-
cussed above demonstrate general refinement characteristics, pop-

0 20 40 60 80 100
step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

Reconstructed image similarity
(NN=4, p=3.00, T_pop=38.00, G_pop=3)

Consecutive
Final

Figure 7: Structural similarity of reconstructed images against their
predecessor (consecutive) and the final image (of the head).

Figure 8: Plot of the color distance between two consecutive recon-
structed images for every pixel for the head input image.

ping artifacts cannot be identified individually as they get averaged
out in the global view. To address this, we compute the color dis-
tance between the reconstructed pixels, i.e., the Euclidean distance
between the color channels, at time step n and the previous time
step n−1: d(Rn(p),Rn−1(p)). We then plot these distances versus
the iterations, which gives an idea of how the pixel colors change
over time. We add a horizontal line at Tpop in the signal plot to show
that all peaks above this line are considered local popping artifacts.

First of all, we observe that the overall distance decreases with
each iteration, meaning that consecutive reconstructed images be-
come more alike. Moreover, many pixels spike each iteration. The
black horizontal line shows the popping threshold, and so all spikes
above this line are considered popping artifacts. The lines continue
to spike even near the final iterations, but below the threshold, and
so they are not considered as popping artifacts.

In general, we see many spikes: the lines go from low values
to high values, and back to low values. However, in the first few
iterations some of the lines stay at high values. This means that
drastic changes happen and pixels pop several times. These changes
in the first few iterations can also be observed in Fig. 7 for the
similarity between consecutive images. However, this visualization
quickly becomes cluttered because of the large number of pixels.

4.2. Popping detection

We now explicitly detect popping artifacts, addressing the above
issues of them being either averaged out or resulting in serious
overdraw. We are interested in groups of popped pixels. Hence, we

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

156



E. Waterink, J. Kosinka & S. Frey / Visual Analysis of Popping in Progressive Visualization

Figure 9: Image overlaid with a 5×5 uniform rect-
angular grid. The gray cell under consideration is
expanded by 50% in all directions for popping detec-
tion.

utilize Eq. 2 and replace the spatial object e with pixel p and the
metric M is the pixel (reconstructed) color value. The regions c are
created by overlaying the image with a uniform rectangular grid
with cells. Then, we check for popping artifacts inside those grid
cells. The popping detection is based on the sum of changes within a
region, but using the grid cells directly might lead to results that are
heavily dependent on the positioning of the grid (i.e., unfortunate
positioning could split an area of substantial change into four parts
and it might not be detected). To address this, the grid cells are
uniformly expanded by 50% so that we cover larger areas and every
part of the image is captured twice; see Fig. 9. Semi-local popping
for this use case is thus defined as a threshold for the change of color
value for a group of pixels.

In our experiments, we identified meaningful parameters for pop-
ping detection as follows: the popping threshold is set to 38 and the
popping group size to 3. The grid resolution is 16× 16, so every
grid cell is 16×16.

4.3. Multi-Run Overview Visualization of Popping Artifacts

For our study, we perform 8 different runs of 100 iterations (Fig. 10).
For the color bar, we choose the similarity to the final image (as
shown in Fig. 7). The small images show individual pixels that
popped, i.e., local popping, while the triangles represent the semi-
local popping of groups of pixels. That way, missing triangles indi-
cate that no region had a sufficient number of popping, but the small
images might still show that locally pixels changed significantly.

We see that for all runs many popping artifacts occurred in the
first ≈ 60 iterations, after which the popping rate slows down. We
observe the same behavior in the small images, where especially
in the first block many pixels popped. For later iterations, we see
blocks which faintly show local popping but not enough for the
semi-local popping, as indicated by the missing triangles. All the
runs show similar results in terms of where and when popping hap-
pened, indicating that the process is stable after about 60 iterations.
However, it can be seen that with the considered adaptive sampling
strategy in some cases popping artifacts can still occur very close
toward the end with only few pixels left to sample. The popped
pixels are enlarged by taking the maximum in 5 pixel radius.

In addition, Fig. 10 shows the aggregated rows for the other
three input images (see the supplementary material). We observe
similarities (all popping continues to occur around edges and the
head/fruit-rows pop until the final iterations) and some differences
(the Rango-row stops early with popping, and the glasses-row pops
again after a period of no popping).

4.4. Parameter Study

We now investigate the impact of two crucial parameters (Fig. 11).
First, the number of nearest neighbors (in {2,4,8} with 4 being the

Figure 10: Multi-run comparison of the adaptive image space sam-
pler. It is applied to 8 different runs of 100 iterations with interval
size b = 6 using the cosine distance for reordering, with Tpop = 25.
The last row aggregates the small images and metrics by averaging,
and the popping by taking the union. Moreover, the aggregated rows
of the other three input images are included

default) is used in the sampling scheme and indicates how many
nearest neighbors are to be considered for determining the color vari-
ation and deciding which pixels to sample next. Second, the power
parameter (in {1.5,3,6,12} with 3 as the default) is used in the
reconstruction scheme in the inverse distance weighting method for
multivariate interpolation, where it controls how much the distance
(inversely) affects the weight. Higher values assign greater influence
to values closest to the interpolated point, while lower values cause
the interpolated values to be dominated by points far away. For each
parameter combination 4 different runs are performed.

Overall, we can observe that the power parameter has the most
substantial impact. For power parameter 1.5, popping artifacts oc-
curred for all time steps, and afterwards get increasingly smaller
for larger values. The number of neighbors also has a significant
impact, however, not as prominent. The parameter combination with
the least amount of popping appears to be for number of nearest
neighbors 2 and power parameter 12.

With respect to the adaptive sampling method, this indicates that
popping behaviour depends more on the reconstruction scheme
(influenced by the power parameter) than the sampling scheme
(influenced by the number of nearest neighbours). Nevertheless, one
would ideally include more parameter values and runs for a more
detailed parameter study.

4.5. Positional Analysis: Popping & Sampling Time

We now investigate where in an image popping tends to happen.

Popping distribution. As described in Sec. 4.2, we look for semi-
local popping of the pixel colors in expanded grid cells. Fig. 12
shows the popping distribution image with a gray-scale version of
Rn to clearly show where and when the popping occurred. As ex-
pected, a lot of popping happened in the early stages of the process,

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

157



E. Waterink, J. Kosinka & S. Frey / Visual Analysis of Popping in Progressive Visualization

1.5 3.0 6.0 12.0 agg(PP)
power parameter

2

4

8

agg(NN)

nu
m

be
r o

f n
ea

re
st

 n
ei

gh
bo

ur
s

Popping distribution parameter space
(T_pop=38.00, G_pop=3.00)

0

20

40

60

80

100

st
ep

Figure 11: 2D parameter space analysis of adaptive image space
sampling for the number of nearest neighbors and power parameter
for the head input image. The aggregation is done through merging.

Popping distribution image space
(NN=4, p=3.00, T_pop=38.00, G_pop=3)

0

20

40

60

80

100

m
ed

ia
n 

st
ep

Figure 12: Temporal distribution of popping artifacts on a 16×16
grid (Tpop = 38, Gpop = 3).

as indicated by the yellow colors. For some of those, the popping
happened only at the the early stages, as indicated by the thin box-
plots. This mainly happens in smoother and more constant regions.

Judging from the green colors, most popping artifacts occurred in
the neck and middle part of the skull where there is a lot of color
variation. Moreover, the wider boxplots indicate that they happened
at many time steps, from the early stages until the late stages. No
popping happened in the background regions.

Sampling. For a close analysis, we check when each pixel p was
sampled. While it does not visualize the popping itself, it shows the
sampling behaviour of the iterative process which can be used to
infer this information. In this image, the time step is mapped to a
color so that we can see when it was sampled. Moreover, to give a
better understanding of why those pixels were sampled, this image
is overlaid on a gray-scale version of the reconstructed image (as to
not interfere with the colors of the sampling).

W_n: 1/100
(NN=4, p=3.00, T_pop=38.00, G_pop=3)

W_n: 34/100
(NN=4, p=3.00, T_pop=38.00, G_pop=3)

W_n: 67/100
(NN=4, p=3.00, T_pop=38.00, G_pop=3)

W_n
(NN=4, p=3.00, T_pop=38.00, G_pop=3)

0

20

40

60

80

100

st
ep

Figure 13: Left column: When pixels were sampled with gray-scale
version of reconstructed image for W1, W34 and W67. Right: Final
visualization W100 showing when pixels are sampled with a color
bar (without gray-scale).

Fig. 13 shows when and which pixels were sampled on top of
a gray scale image of the intermediate results. The randomness in
the sampling is clearly visible, but we also find the structures of the
image. Note how the sampling favors edges because of their sharp
transitions, i.e., high color variation, meaning they are sampled
first. The sampling then continues on other parts of the skull, which
contain smoother color transitions. Occasionally we see pixels being
sampled in the background regions, but they are sampled last for the
most part. In the intermediate results (Fig. 6) we see that the teeth
are only reconstructed correctly near the final iteration. We infer
from this visualization that that is because they are sampled very
late, and so up till then their reconstruction is off.

5. Tile Grid Generation

In the second use case, we consider a current research prototype
for the placement of images in a grid such that they are as similar
as possible to their neighbors [SG14, FDH∗15, QSST10]. In each
of 1024 considered iterations, images are randomly partitioned into
groups of size k, maximizing neighborhood similarity by swapping
tiles within. We aim to identify when and how often larger changes
occur, how stable this is across runs, and what the impact of group
size k is on this behavior. This can further indicate when a run can
be deemed to be sufficiently stable, as there is no inherent criterion
for convergence of the procedure. Note that in this use case, absolute
positions are not meaningful—only relative positioning between
tiles is—and accordingly we omit location-based analysis here.

As exemplified in Fig. 14, generally a large number of changes in-
duces popping artifacts early on (G1,G2,G3), while later iterations
appear more stable with fewer popping (G64,G128, G1024).

5.1. Refinement Characteristics

Cost progression resembles exponential decay, which is caused
by the random initialization and the nature of stochastic pro-
cesses (Fig. 15). It is clear that popping artifacts occur in the first

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

158



E. Waterink, J. Kosinka & S. Frey / Visual Analysis of Popping in Progressive Visualization

Figure 14: Intermediate results of grid layout generation for 1024 images from the Caltech 101 database [LAR03] (from left to right): G1
(initialization), G2,G3,G64,G128 and G1024 (“final” grid).

Figure 15: Cost of the tile grid generation process versus the itera-
tion, imposed with a zoom in on the final 256 iterations.

iterations (in the drop). However, this is not obvious later on where
the graph shows little change. Once zoomed in, it is clear that the
graph continues to fluctuate, albeit in much smaller magnitude.

5.2. Popping Detection

In the optimization the cost is minimized and is thus an important
metric to consider. (Global) popping for this use case is defined as a
threshold regarding changes of cost. If the user has a priory knowl-
edge about the cost values, they can readily set the threshold. Other-
wise, it can be determined by examining the direct cost (Fig. 15) in
connection with the actual grids (Fig. 14). As the changes are small
later on, the popping threshold is small as well, namely Tpop = 0.02.

5.3. Multi-Run Overview Visualization of Popping Artifacts

The multi-run overview visualization used the following parameter
settings for this use case: the interval size b= 16 and the hierarchical
cluster reordering uses the Hamming distance. The visualization for
the popping artifacts across multiple runs is shown in Fig. 16. No
enlargement of individual elements is used. We see that for all the
runs many popping artifacts occurred in the first 113 iterations. As
expected, later on the popping is less frequent. However, for several
runs (3,6,7) popping happened near the end, yielding disruptive
changes late in the refinement process. More notably, some runs
stop popping (in the given number of iterations, that is) relatively
early (after ≈ 256 iterations), while others sporadically pop later on.

Especially in the first few small images, the majority of the tiles
have swapped positions. The fact that the tile swapping happens
in groups is reflected by the apparent squares. That is, when two
such squares are swapped and caused a large enough change in

0 113 227 341 455 568 682 796 910 1024
iteration

13
10

1
15

2
3

16
6

12
5
7
9

11
8
4

14
agg

ru
n

Popping
(threshold = 0.02, metric = Hamming)

Figure 16: Multi-run visualization for the tile placement use case
featuring 16 different runs of 1024 iterations, each with interval
size b = 16 (the Hamming distance is used for reordering). The last
row aggregates the small images and metrics by averaging, and the
popping by taking the union.

cost, all tiles in those squares contributed to that popping and are
highlighted in the small image. Because this use case works with
relative positions, the small images show no underlying structure,
as opposed to Fig. 10.

5.4. Parameter study

For the grid layout generation we study the effects on the popping
behavior of parameter k. We further consider the impact of the
popping threshold parameter Tpop, which defines what degree of
popping we observe in the visualization. Note that these are two
different things that we are varying (e.g. in Fig. 11, both parameters
tweak adaptive sampling; for tile placement, only one is a method
parameter and the other one defines what degree of popping we
observe in the visualization).

Fig. 17 shows the parameter space visualization for k ∈
{2,5,10,20,40}, Tpop ∈ {0.005,0.01,0.02}. Overall, it can be seen
that larger k leads to much fewer changes later on, results in more fa-
vorable progression characteristics, and yields lower cost values, but
requires more computation time (see the supplementary material).

For all parameter values popping occurred in the first step(s).
More importantly, for all three values of Tpop (but mainly for 0.005)
we observe that the median popping time step decreases as k in-
creases in a qualitatively similar fashion, providing an important
indication regarding the stability and expressiveness of the visual-
ization results. This generally holds for the maximum popping time

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

159



E. Waterink, J. Kosinka & S. Frey / Visual Analysis of Popping in Progressive Visualization

2 5 10 20 40 agg(k)
k

0.005

0.01

0.02

agg(T_pop)

T_
po

p

Popping distribution parameter space

0

200

400

600

800

1000

st
ep

Figure 17: Parameter study of grid layout generation with group
size k and popping threshold Tpop (with aggregation via merging.)

step as well, although there are some changes of interest. In general,
considering different Tpop also provides an impression of the degree
of significance of occurring popping events.

6. Discussion and Conclusion

To the best of our knowledge, we have proposed the first dedicated
framework for analyzing popping artifacts—significant changes in
the visualization from one iteration to another—in progressive visu-
alization, a paradigm that has substantially gained in popularity in
recent years due to growing sizes of datasets and increasing com-
plexity of advanced methods. While our framework also considers
general refinement characteristics, we focus on popping artifacts
due to their high relevance for simultaneous user analysis. Progres-
sive visualization is employed in diverse settings, and the goal of
this work was to propose a framework that can adequately capture
commonalities across them while being flexible enough to account
for conceptual differences.

To exemplify this, we applied our framework (Sec. 3) to two
substantially different use cases: adaptive image space sampling
in Sec. 4 and the generation of grid layouts in Sec. 5. While they
share general similarities of progressive visualization approaches,
they also have some fundamental differences. For example, in the
adaptive image space sampler, once a pixel is sampled at a certain
location in the image it stays fixed. In contrast, the tiles have no final
position and can change at any time step in the tile grid generation.

In our framework, this is represented by the fact that some visual-
izations are specific to a class of use cases (e.g, for spatial analysis or
parameter studies), while we considers others to be generic, such as
our multi-run overview visualization. For example, the generic visu-
alization would also work on a third use case doing graph processing
or could be extended to approaches working on 3D datasets. As mo-
tivated and discussed in detail in Sec. 3, the different components
of our framework have been designed to provide a complementary
view on different perspectives. For example, regarding the adap-
tive sampling we see that it yields similar progression despite the
stochasticity involved, with popping artifacts occurring in regions
of high color variation all the way to the end when the final pixels
are sampled. From the parameter analysis we learned that the power

parameter has a much more significant influence on the popping than
the number of neighbors (with higher power values being beneficial).
For the tile grid generation, runs are much more heterogeneous in
comparison, with some runs exhibiting quite smooth refinement
from early on while another random initialization can result in (sev-
eral) later popping artifacts. The parameter study showed that larger
group sizes lead to fewer changes later on, and varying the popping
threshold shows both the occurrence of different degrees of popping
and crucially the qualitative stability of results.

Our presented framework currently consists of individual com-
ponents providing different perspectives. In future work, we aim to
integrate the visualizations into a generic and flexible interactive
visual analytics tool for the analysis of progressive visualization. In
particular, this would involve adding interaction modalities and link-
ing different views and components. We further aim to consider fur-
ther diverse use cases—like graph visualization or high-dimensional
data analysis—and on this basis determine further perspectives to
integrate into our framework. With the prospective visual analytics
tool we plan to conduct user and real-world evaluations. In partic-
ular, we aim to assess the added utility of different components in
comparison to standard alternatives, and collect feedback to further
improve our approach. In doing this, we also aim to consider ad-
ditional use cases from the workflow of (expert) users to yield a
representative set overall. This supplements the two currently con-
sidered use cases which were chosen to demonstrate the flexibility
of the framework while also being closely aligned with a commonly
used techniques (adaptive sampling) as well as a current research
prototype (tile placement).

How impactful popping artifacts are in general depends on the
application context, which we plan to consider explicitly in future
work. For example, there is a qualitative difference between pop-
ping in near-real-time renderers that use amortization/approximation
techniques to reduce latency for user interaction and the accelera-
tion of non-real-time solutions to reduce time of delivering of (first)
intermediate solutions. We further aim to explicitly account for hu-
man perceptional aspects regarding popping artifacts and how these
affect the user experience, e.g., by distinguishing between focus
and context regions as also implemented in foveated rendering ap-
proaches [GFD∗12, BSB∗19, FBB∗21]. We also plan to consider
advanced methods for mitigating popping effects, like smooth tran-
sitions or fading between levels of detail. While they reduce the
impact of popping, they also delay the improvement of the pre-
sented results with results from the latest iteration. Accordingly, this
could be reflected in the popping formulations (Eq. 1 & Eq. 2) and
visualizations as a transition instead of a singular event.

Regarding visual scalability, our multi-run visualization proposed
in this work has been demonstrated with up to 16 runs, with added
aggregation for a clear summary. We already reorder runs based
on similarity, and we could further combine the results and show
the most representative ones. For large parameter studies, the ag-
gregation of subsets of parameter value clusters could create larger
blocks and improve visibility. In addition, more than two parameter
dimensions could be considered and presented in a small multiples
layout [Tuf90, WBWK00].

Acknowledgment This paper is in part based on the first author’s
MSc research internship at the University of Groningen.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

160



E. Waterink, J. Kosinka & S. Frey / Visual Analysis of Popping in Progressive Visualization

References
[BP07] BRANDES U., PICH C.: Eigensolver methods for progressive mul-

tidimensional scaling of large data. In Graph Drawing (Berlin, Heidelberg,
2007), Kaufmann M., Wagner D., (Eds.), Springer Berlin Heidelberg,
pp. 42–53. doi:10.1007/978-3-540-70904-6_6. 2

[BSB∗19] BRUDER V., SCHULZ C., BAUER R., FREY S., WEISKOPF D.,
ERTL T.: Voronoi-Based Foveated Volume Rendering. The Eurographics
Association, 2019. doi:10.2312/evs.20191172. 10

[CKK18] CHRISTENSEN P., KENSLER A., KILPATRICK C.: Progressive
Multi-Jittered Sample Sequences. Computer Graphics Forum 37, 4 (2018),
21–33. doi:10.1111/cgf.13472. 2

[DHC∗16] DING B., HUANG S., CHAUDHURI S., CHAKRABARTI K.,
WANG C.: Sample + Seek: Approximating Aggregates with Distribution
Precision Guarantee. In Proceedings of the 2016 International Conference
on Management of Data (New York, NY, USA, June 2016), SIGMOD ’16,
Association for Computing Machinery, pp. 679–694. doi:10.1145/
2882903.2915249. 2

[EGS∗13] EMERSON J. W., GREEN W. A., SCHLOERKE B., CROW-
LEY J., COOK D., HOFMANN H., WICKHAM H.: The Gen-
eralized Pairs Plot. Journal of Computational and Graphical
Statistics 22, 1 (Jan. 2013), 79–91. Publisher: Taylor & Fran-
cis _eprint: https://doi.org/10.1080/10618600.2012.694762. doi:10.
1080/10618600.2012.694762. 5

[ELPZ97] ELDAR Y., LINDENBAUM M., PORAT M., ZEEVI Y.: The
farthest point strategy for progressive image sampling. IEEE Transactions
on Image Processing 6, 9 (Sept. 1997), 1305–1315. Conference Name:
IEEE Transactions on Image Processing. doi:10.1109/83.623193.
2

[FBB∗21] FRIESS F., BRAUN M., BRUDER V., FREY S., REINA G.,
ERTL T.: Foveated Encoding for Large High-Resolution Displays. IEEE
Transactions on Visualization and Computer Graphics 27, 2 (Feb. 2021),
1850–1859. Conference Name: IEEE Transactions on Visualization and
Computer Graphics. doi:10.1109/TVCG.2020.3030445. 10

[FDH∗15] FRIED O., DIVERDI S., HALBER M., SIZIKOVA E., FINKEL-
STEIN A.: Isomatch: Creating informative grid layouts. Computer Graph-
ics Forum 34, 2 (2015), 155–166. doi:10.1111/cgf.12549. 8

[FDK12] FISHER D., DRUCKER S. M., KÖNIG A. C.: Exploratory
Visualization Involving Incremental, Approximate Database Queries and
Uncertainty. IEEE Computer Graphics and Applications 32, 4 (July 2012),
55–62. Conference Name: IEEE Computer Graphics and Applications.
doi:10.1109/MCG.2012.48. 2

[FE17a] FREY S., ERTL T.: Flow-based temporal selection for interactive
volume visualization. Computer Graphics forum 36 (2017), 153–165.
doi:10.1111/cgf.13070. 2

[FE17b] FREY S., ERTL T.: Progressive direct volume-to-volume trans-
formation. IEEE Transactions on Visualization and Computer Graphics
23 (2017), 921–930. doi:10.1109/TVCG.2016.2599042. 2

[Fek15] FEKETE J.-D.: ProgressiVis: a Toolkit for Steerable Progres-
sive Analytics and Visualization. In 1st Workshop on Data Systems for
Interactive Analysis (Chicago, United States, Oct. 2015), p. 5. URL:
https://hal.inria.fr/hal-01202901. 2

[FESM14] FREY S., ERTL T., SADLO F., MA K.: Interactive pro-
gressive visualization with space-time error control. IEEE Transac-
tions on Visualization and Computer Graphics 20 (2014), 2397–2406.
doi:10.1109/TVCG.2014.2346319. 2

[FFNS19] FEKETE J.-D., FISHER D., NANDI A., SEDLMAIR M.: Pro-
gressive Data Analysis and Visualization (Dagstuhl Seminar 18411).
Dagstuhl Reports 8, 10 (2019), 1–40. Place: Dagstuhl, Germany Pub-
lisher: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.
4230/DagRep.8.10.1. 1, 2

[FP04] FARRUGIA J.-P., PÉROCHE B.: A Progressive Rendering Al-
gorithm Using an Adaptive Perceptually Based Image Metric. Com-
puter Graphics Forum 23, 3 (2004), 605–614. doi:10.1111/j.
1467-8659.2004.00792.x. 2

[FP16] FEKETE J.-D., PRIMET R.: Progressive Analytics: A Computation
Paradigm for Exploratory Data Analysis. arXiv:1607.05162 [cs] (July
2016). arXiv: 1607.05162. URL: http://arxiv.org/abs/1607.
05162. 1, 2

[FPDs12] FISHER D., POPOV I., DRUCKER S., SCHRAEFEL M.: Trust
me, I’m partially right: incremental visualization lets analysts explore
large datasets faster. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. Association for Computing Machinery,
New York, NY, USA, May 2012, pp. 1673–1682. doi:10.1145/
2207676.2208294. 2

[GAW∗11] GLEICHER M., ALBERS D., WALKER R., JUSUFI I.,
HANSEN C. D., ROBERTS J. C.: Visual comparison for information
visualization. Information Visualization 10, 4 (Oct. 2011), 289–309.
doi:10.1177/1473871611416549. 3, 5

[GFD∗12] GUENTER B., FINCH M., DRUCKER S., TAN D., SNYDER J.:
Foveated 3D graphics. ACM Transactions on Graphics 31, 6 (Nov. 2012),
164:1–164:10. doi:10.1145/2366145.2366183. 10

[HAC∗99] HELLERSTEIN J., AVNUR R., CHOU A., HIDBER C., OL-
STON C., RAMAN V., ROTH T., HAAS P.: Interactive data analysis: the
Control project. Computer 32, 8 (Aug. 1999), 51–59. Conference Name:
Computer. doi:10.1109/2.781635. 2

[Hop98] HOPPE H.: Smooth view-dependent level-of-detail control and
its application to terrain rendering. In Proceedings Visualization ’98 (Cat.
No.98CB36276) (1998), pp. 35–42. doi:10.1109/VISUAL.1998.
745282. 1

[LAR03] LI F.-F., ANDREETTO M., , RANZATO M. A.: Caltech
101, 2003. URL: http://www.vision.caltech.edu/Image_
Datasets/Caltech101/. 9

[LCQ∗20] LUO Y., CHAI C., QIN X., TANG N., LI G.: Visclean: Inter-
active cleaning for progressive visualization. Proc. VLDB Endow. 13, 12
(Aug. 2020), 2821–2824. doi:10.14778/3415478.3415484. 2

[Lev90] LEVOY M.: Volume rendering by adaptive refinement. The Visual
Computer: International Journal of Computer Graphics 6 (1990), 2–7.
doi:10.1007/BF01902624. 2

[Mac86] MACKINLAY J.: Automating the design of graphical presenta-
tions of relational information. ACM Transactions on Graphics 5, 2 (Apr.
1986), 110–141. doi:10.1145/22949.22950. 3

[PMS∗21] PROCOPIO M., MOSCA A., SCHEIDEGGER C. E., WU E.,
CHANG R.: Impact of cognitive biases on progressive visualization.
IEEE Transactions on Visualization and Computer Graphics (2021), 1–1.
Conference Name: IEEE Transactions on Visualization and Computer
Graphics. doi:10.1109/TVCG.2021.3051013. 1, 2

[PS89] PAINTER J., SLOAN K.: Antialiased ray tracing by adaptive
progressive refinement. In Proceedings of the 16th annual conference on
Computer graphics and interactive techniques (New York, NY, USA, July
1989), SIGGRAPH ’89, Association for Computing Machinery, pp. 281–
288. doi:10.1145/74333.74362. 2

[QSST10] QUADRIANTO N., SMOLA A. J., SONG L., TUYTELAARS T.:
Kernelized sorting. IEEE Transactions on Pattern Analysis and Machine
Intelligence 32, 10 (Oct 2010), 1809–1821. doi:10.1109/TPAMI.
2009.184. 8

[Ros21] ROSSI R. A.: Volume rendering, maximum intensity projection
and isosurfaces, 2021. URL: http://ryanrossi.com/sv3.php.
6

[RS09] ROSENBAUM R., SCHUMANN H.: Progressive refinement: more
than a means to overcome limited bandwidth. In Visualization and Data
Analysis 2009 (Jan. 2009), vol. 7243, SPIE, pp. 145–156. doi:10.
1117/12.810501. 2

[SG14] STRONG G., GONG M.: Self-sorting map: An efficient algorithm
for presenting multimedia data in structured layouts. IEEE Transactions
on Multimedia 16, 4 (June 2014), 1045–1058. doi:10.1109/TMM.
2014.2306183. 2, 8

[SPG14] STOLPER C. D., PERER A., GOTZ D.: Progressive Visual
Analytics: User-Driven Visual Exploration of In-Progress Analytics. IEEE

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

161

https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.2312/evs.20191172
https://doi.org/10.1111/cgf.13472
https://doi.org/10.1145/2882903.2915249
https://doi.org/10.1145/2882903.2915249
https://doi.org/10.1080/10618600.2012.694762
https://doi.org/10.1080/10618600.2012.694762
https://doi.org/10.1109/83.623193
https://doi.org/10.1109/TVCG.2020.3030445
https://doi.org/10.1111/cgf.12549
https://doi.org/10.1109/MCG.2012.48
https://doi.org/10.1111/cgf.13070
https://doi.org/10.1109/TVCG.2016.2599042
https://hal.inria.fr/hal-01202901
https://doi.org/10.1109/TVCG.2014.2346319
https://doi.org/10.4230/DagRep.8.10.1
https://doi.org/10.4230/DagRep.8.10.1
https://doi.org/10.1111/j.1467-8659.2004.00792.x
https://doi.org/10.1111/j.1467-8659.2004.00792.x
http://arxiv.org/abs/1607.05162
http://arxiv.org/abs/1607.05162
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1145/2366145.2366183
https://doi.org/10.1109/2.781635
https://doi.org/10.1109/VISUAL.1998.745282
https://doi.org/10.1109/VISUAL.1998.745282
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://doi.org/10.14778/3415478.3415484
https://doi.org/10.1007/BF01902624
https://doi.org/10.1145/22949.22950
https://doi.org/10.1109/TVCG.2021.3051013
https://doi.org/10.1145/74333.74362
https://doi.org/10.1109/TPAMI.2009.184
https://doi.org/10.1109/TPAMI.2009.184
http://ryanrossi.com/sv3.php
https://doi.org/10.1117/12.810501
https://doi.org/10.1117/12.810501
https://doi.org/10.1109/TMM.2014.2306183
https://doi.org/10.1109/TMM.2014.2306183


E. Waterink, J. Kosinka & S. Frey / Visual Analysis of Popping in Progressive Visualization

Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014),
1653–1662. Conference Name: IEEE Transactions on Visualization and
Computer Graphics. doi:10.1109/TVCG.2014.2346574. 2

[SS09] SCHWARZ M., STAMMINGER M.: On predicting visual popping
in dynamic scenes. In Proceedings of the 6th Symposium on Applied
Perception in Graphics and Visualization (New York, NY, USA, 2009),
APGV ’09, Association for Computing Machinery, p. 93–100. doi:
10.1145/1620993.1621012. 1

[TPB∗19] TURKAY C., PEZZOTTI N., BINNIG C., STROBELT H., HAM-
MER B., KEIM D. A., FEKETE J.-D., PALPANAS T., WANG Y., RUSU
F.: Progressive data science: Potential and challenges, 2019. arXiv:
1812.08032. 1, 2

[Tuf90] TUFTE E. R.: Envisioning Information. Graphics Press, 1990. 10

[Ver11] VERBINSKI G.: Rango, 2011. Feature film. 6

[VR20] VENTOCILLA E., RIVEIRO M.: A model for the progressive
visualization of multidimensional data structure. In Computer Vision,
Imaging and Computer Graphics Theory and Applications (Cham, 2020),
Cláudio A. P., Bouatouch K., Chessa M., Paljic A., Kerren A., Hurter C.,
Tremeau A., Farinella G. M., (Eds.), Springer International Publishing,
pp. 203–226. doi:10.1007/978-3-030-41590-7_9. 2

[WB09] WANG Z., BOVIK A.: Mean squared error: Love it or leave it?
a new look at signal fidelity measures. Signal Processing Magazine 26
(2009), 98–117. doi:10.1109/MSP.2008.930649. 6

[WBWK00] WANG BALDONADO M. Q., WOODRUFF A., KUCHINSKY
A.: Guidelines for using multiple views in information visualization. In
Proceedings of the working conference on Advanced visual interfaces
(New York, NY, USA, May 2000), AVI ’00, Association for Computing
Machinery, pp. 110–119. doi:10.1145/345513.345271. 10

[WM04] WILLIAMS M., MUNZNER T.: Steerable, Progressive Multidi-
mensional Scaling. In IEEE Symposium on Information Visualization
(Oct. 2004), pp. 57–64. ISSN: 1522-404X. doi:10.1109/INFVIS.
2004.60. 2

[XESV97] XIA J., EL-SANA J., VARSHNEY A.: Adaptive real-time
level-of-detail based rendering for polygonal models. IEEE Transactions
on Visualization and Computer Graphics 3, 2 (1997), 171–183. doi:
10.1109/2945.597799. 1

[ZGC∗17] ZGRAGGEN E., GALAKATOS A., CROTTY A., FEKETE J.-
D., KRASKA T.: How Progressive Visualizations Affect Exploratory
Analysis. IEEE Transactions on Visualization and Computer Graphics 23,
8 (Aug. 2017), 1977–1987. doi:10.1109/TVCG.2016.2607714.
2

[ZJL∗15] ZWICKER M., JAROSZ W., LEHTINEN J., MOON B., RA-
MAMOORTHI R., ROUSSELLE F., SEN P., SOLER C., YOON S.-E.:
Recent Advances in Adaptive Sampling and Reconstruction for Monte
Carlo Rendering. Computer Graphics Forum 34, 2 (May 2015), 667–681.
doi:10.5555/2816723.2816781. 5

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

162

https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1145/1620993.1621012
https://doi.org/10.1145/1620993.1621012
http://arxiv.org/abs/1812.08032
http://arxiv.org/abs/1812.08032
https://doi.org/10.1007/978-3-030-41590-7_9
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1145/345513.345271
https://doi.org/10.1109/INFVIS.2004.60
https://doi.org/10.1109/INFVIS.2004.60
https://doi.org/10.1109/2945.597799
https://doi.org/10.1109/2945.597799
https://doi.org/10.1109/TVCG.2016.2607714
https://doi.org/10.5555/2816723.2816781



