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Figure 1: Example of shape matching between the source man (a) and the target women (b) comparing PC-GAU (ours) and the standard
basis Laplace Beltrami eigenfunctions (LB). (b) the obtained point-wise maps between the woman and the man, encoded through color
coding (correspondent points share the same color). (c) the respective geodesic errors encoded by the colormap (white means 0 error while
dark colors are larger ones). (d) shows the spatial distribution of the energy of the basis. The energy of our basis is uniformly distributed on
the mesh, which reflects in the error distribution.

Abstract
Shape matching is a central problem in geometry processing applications, ranging from texture transfer to statistical shape
analysis. The functional maps framework provides a compact representation of correspondences between discrete surfaces,
which is then converted into point-wise maps required by real-world applications. The vast majority of methods based on
functional maps involve the eigenfunctions of the Laplace-Beltrami Operator (LB) as the functional basis. A primary drawback
of the LB basis is that its energy does not uniformly cover the surface. This fact gives rise to regions where the estimated
correspondences are inaccurate, typically at tiny parts and protrusions. For this reason, state-of-the-art procedures to convert
the functional maps (represented in the LB basis) into point-wise correspondences are often error-prone. We propose PC-
GAU, a new functional basis whose energy spreads on the whole shape more evenly than LB. As such, PC-GAU can replace
the LB basis in existing shape matching pipelines. PC-GAU consists of the principal vectors obtained by applying Principal
Component Analysis (PCA) to a dictionary of sparse Gaussian functions scattered on the surfaces. Through experimental
evaluation of established benchmarks, we show that our basis produces more accurate point-wise maps — compared to LB —
when employed in the same shape-matching pipeline.

CCS Concepts
• Computing methodologies → Shape analysis; • Theory of computation → Computational geometry; • Mathematics of
computing → Functional analysis;

1. Introduction

Shape matching is a key problem in Computer Graphics and ge-
ometry processing. From an intuitive point of view, its goal is to
estimate correspondences between points on a pair of 3D shapes,

as shown in Figure 1. Shape matching has a wide range of applica-
tions, including texture and deformation transfer [PLPZ12, SP04],
object retrieval [GBP08], and statistical shape analysis [BRLB14].
The problem is particularly challenging when a non-rigid deforma-
tion occurs between the shapes in the pair, such as a pose variation
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in human bodies. In this case, the space of possible point-wise cor-
respondences is exponential in size.

Functional maps, the seminal work of Ovsjanikov et al.
[OBCS∗12], represented a breakthrough in the field. The key in-
tuition behind functional maps is that it is easier to establish a cor-
respondence among functions defined on the surfaces than directly
finding a point-wise map between shapes. More specifically, func-
tional maps builds upon a basis spanning a subspace of the func-
tional space of each 3D shape, such that a small matrix C can com-
pactly encode the functional correspondence. The matrix C, which
describes a linear mapping between the functional subspaces, has
dimensions equal to the number of basis functions in each shape,
and it is estimated by solving an optimization problem exploiting
linear constraints. Therefore, functional maps provide a compact
representation for shape correspondence and at the same time a
convenient tool to transfer functions from one shape to another.
However, for many applications, it is necessary to recover a dense
point-wise map [EBC17], for instance, when we want to collect
data variations in statistical shape analysis.

Recovering a point-wise map from a functional map is not
straightforward, and many works, starting from the seminal pa-
per [OBCS∗12] itself, have proposed different methods to accom-
plish this task. Recently, a few works tried to improve point-wise
accuracy, focusing mainly on improving the estimation of matrix
C [NO17,RPWO18,MRR∗19], or the algorithm applied to convert
functional maps into point-wise maps [RMC15,EBC17,RPWO18].

As mentioned before, any method involving functional maps re-
quires a basis for a functional space defined on a surface. The
choice of the basis is a critical aspect, which heavily affects the fi-
nal result. The vast majority of methods, starting from [OBCS∗12]
itself, have adopted the eigenfunctions of the Laplace-Beltrami op-
erator (LB for brevity) to define the functional bases. These eigen-
functions are the equivalent of the harmonic basis [VL08] for non-
Euclidean surfaces, and their subset associated with the eigenvalues
having the smallest absolute values are optimal for approximating
smooth functions with limited variations [ABK15]. Nonetheless,
LB presents a significant limitation for the point-wise conversion:
these functions do not uniformly cover the mesh. In particular, the
energy concentrates on the flat regions at the expense of narrower
extremities. In other words, LB’s capability of discriminating be-
tween vertices and providing them with a meaningful representa-
tion is uneven across the surface.

In the same spirit as previous works [KBB∗13, NVT∗14,
MRCB18], we propose a new basis for the functional space de-
fined on surfaces designed for functional map pipelines. A primary
characteristic of our basis is that it is evenly distributed on the sur-
face, which we recognize as a limitation of LB. We construct our
basis by generating a collection of Gaussian functions scattered on
the shape, and then applying Principal Component Analysis (PCA)
to obtain a compact set of orthogonal generators. The atoms of our
basis are the Principal Components of a dictionary made of GAUs-
sians, thus the name PC-GAU. The core idea of PC-GAU is that by
minimizing the reconstruction error on the samples, PCA produces
a basis of a subspace that reflects the distribution of the Gaussians
in the initial dictionary and, as we will show, it is easy to enforce
the uniform distribution of such Gaussians.

We quantitatively show that the embedding space generated by
our basis provides a good representation for all the points of the sur-
face. More specifically we assess the quality of the representation in
the embedding space as the following properties: (1) the capability
of discriminating between different vertices and (2) the preserva-
tion of vertices locality. At the same time, our basis inherits good
properties from LB: it is orthonormal and invariant to isometries
by construction, and empirically exhibits a weak frequency order,
thus being a suitable and direct replacement for LB. These proper-
ties make our representation ready to be combined with other ap-
proaches proposed to improve the results achieved by the standard
LB, tackling different aspects of the functional map framework and
achieving significant benefits.

Through numerous experiments on established datasets, we
show that the properties of our basis actually improve the qual-
ity of the final point-wise map. The similarity between our ba-
sis and LB enables us to compare them in the same setting di-
rectly. Thus, we test PC-GAU and LB when injected in dif-
ferent shape-matching pipelines [NO17, MRR∗19] and also us-
ing functional maps computed from ground-truth correspondence.
In these experiments we see that our basis reaches significantly
higher values of point-wise accuracy in all the analyzed set-
tings. Our code is publicly available at https://github.com/
michele-colombo/PC-Gau_STAG2022.

2. Related work

In this Section, we briefly overview the existing shape matching
methods that fall, similarly to ours, into the functional map frame-
work [OBCS∗12]. For other approaches to shape matching, refer to
the survey [VKZHCO11].

The functional map framework was proposed by Ovsjanikov et
al. in [OBCS∗12]. Its core idea is first to estimate the correspon-
dence between functional spaces defined on the meshes and then
extract a point-wise map from it. Given a basis for the functional
space, the functional correspondence is represented compactly as
a matrix C, which is found by imposing the preservation of lin-
ear functional constraints. These constraints express the correspon-
dence between the two shapes of landmarks, segments, and descrip-
tors. The most used descriptors in this context are invariant to near-
isometric deformations, like heat diffusion [SOG09] or quantum
mechanical properties [ASC11].

Additional constraints can improve the estimation of the ma-
trix C. The commutativity with the LB operator, which forces
the functional map to represent isometries, was firstly proposed
in [OBCS∗12] and then refined in [RPWO19]. In [NO17], the au-
thors show that imposing the preservation of point-wise products
is an additional, beneficial, constraint. In shape with symmetries,
the preferred maps are those that do not mix up symmetries. This
property has been promoted by introducing a new term in the op-
timization [RPWO18], or considering the complex counterpart of
the functional map [DCMO22]. ZoomOut [MRR∗19] is an iter-
ative method for extending the size of an initial functional map.
It works by alternating conversions to point-wise maps and back
to functional maps of increased size. Many different alternatives
build upon the ZoomOut procedure, such as [HRWO20,RMOW20,
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PRM∗21, RMWO21, PKO]. An efficient method for converting a
functional map into a point-wise map coupled with the ICP-like
refinement were proposed in the original framework [OBCS∗12].
Subsequent works have proposed alternative methods for extracting
better point-wise maps from functional maps [RMC15], by consid-
ering a probabilistic model [RMC17], by introducing a smoothness
prior on the point-wise map [EBC17], or by devising a complex re-
finement scheme to promote continuity, coverage and bijectivity of
the obtained map [RPWO18]. Despite pursuing the general goal of
improving the quality of shape-matching via functional maps, all
these methods differ radically from our approach since they focus
either on the estimation of C or on the method to extract the point-
wise map from C. They make the implicit choice, which is ubiq-
uitous since [OBCS∗12], of using eigenfunctions of the Laplace-
Beltrami operator [Lev06, VL08] as the functional basis. However,
they are agnostic to the basis adopted. This fact makes these meth-
ods complementary to our proposal, as they can be used in combi-
nation with our basis.

Other works followed an approach more similar to ours and
proposed new bases for the functional space of a mesh. Some of
them target specific tasks, like the transfer of tessellation struc-
ture [MMM∗20] or step functions [Mel19] from one mesh to an-
other. The method in [MMM∗20] has also been used for shape
matching, showing specific improvements in parts of the human
body such as hands and feet. This solution, however, requires the
meshes in the pair to be in similar poses, severely limiting its use in
the general context. A different solution is pursued in [NVT∗14],
which proposes a basis whose atoms have local support, thus pro-
moting the sparsity of C, but without improving the point-wise ac-
curacy with respect to the standard LB. Kovnatsky et al. [KBB∗13]
built a coupled pair of bases by joint diagonalization to over-
come the instability of LB in non-isometric pairs. Since the atoms
of these coupled bases approximately diagonalize the Laplace-
Beltrami operator, their energy will distribute similarly to the one of
LB. Furthermore, a functional basis obtained with [KBB∗13] also
depends on the other mesh in the pair and the landmarks used. With
a purpose more similar to ours, Melzi et al. [MRCB18] proposed a
basis that can extend LB and improve its expressive powers in spe-
cific mesh regions. Their approach is, however, different from ours:
the atoms of their bases localize in predefined regions, which must
be provided as input. This is not a trivial information, as it requires
the knowledge of at least coarse correspondences between the two
shapes. Our basis, on the contrary, does not require any input other
than the mesh itself.

Finally, [NMR∗18] and [MMO∗21] showed that it is possible to
extend a functional basis by adding point-wise products of atoms
to the original basis. This method provides great benefits to the
obtained point-wise maps and can be applied, in principle, to any
basis, including ours.

3. Background

In this section, we introduce the notation and some background
notions used in the paper.

3.1. Discrete surfaces

In this paper, we refer to shapes as 2-dimensional surfaces embed-
ded in R3. In the continuous setting, we can represent these sur-
faces as a compact and connected smooth 2-dimensional Rieman-
nian manifold M⊂ R3. We refer to [dC92] for the notions of dif-
ferential geometry that are necessary to deal with this continuous
representation of M. In the discrete setting we represent M as a
triangular mesh M = (VM,EM), where VM is the set of n ver-
tices and EM is the list of edges which means that ex j ∈ EM ⇐⇒
exists an edge that connect x and j,∀x, j ∈VM.

3.2. Shape matching

The input of shape matching are usually two discretized meshes
M and N , having sets of vertices VM and VN . Here we consider
|VM| = |VN | = n for simplicity of notation, but this is not a nec-
essary assumption. We assume that an unknown correspondence
T : VN → VM between M and N exists without specific require-
ments on the function T . For instance, M can be a non-rigid defor-
mation of N . We will refer to T as the ground truth point-wise map
and we represent it either as a vector of vertex indices of size n or
as an n×n matrix Π such that Πi j = 1 if T (i) = j and 0 otherwise,
∀i ∈VN and ∀ j ∈VM.

The goal of shape matching is, given M and N , to estimate the
unknown map T . The estimated map T̄ has to be as close as possi-
ble to T , which means that T̄ should assign to each vertex y ∈ VN
a vertex on M that is geodesically close, ideally coincident, to the
one associated by T . When the ground truth map T is available, we
assess the mapping error of each vertex y ∈VN as:

e(y) = GeoDistM(T̄ (y),T (y)), (1)

where GeoDistM is the geodesic distance on the surface M.
Figure 1b presents an example of two point-wise maps rendered
through color correspondence, where we depicted correspondent
points with the same color. Moreover, in Figure 1c, we visualize
their respective geodesic errors, encoded by the colormap where 0
error corresponds to white while dark colors denote larger ones.

Some shape matching pipelines require a set of input landmarks.
A landmark is a couple of points (y ∈ VN ,x ∈ VM) in known cor-
respondence, namely T (y) = x. In some of the experiments in Sec-
tion 5, we will refer to landmarks, which are not required to build
the bases but only for the specific matching pipelines.

3.3. Functional maps

When we discretize a bi-dimensional surface M, a real-valued
function f on M is given by a vector that associates to each vertex
x ∈ VM a value f (x) in R. We call F(M,R) the space of such
functions. A basis for F(M,R) is a set of orthonormal functions
belonging to F(M,R), an example of basis is shown in Figure 2.
Given a pair of discrete surfaces M and N related by a ground
truth point-wise map T : VN → VM, the functional map frame-
work [OBCS∗12], instead of estimating T directly, searches for
a functional correspondence between M and N . Then, once the
functional correspondence has been estimated, it extracts the corre-
sponding point-wise map.
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Figure 2: Atoms of our basis (top) compared to LB basis (bottom)
atoms. Each element of the bases is a function defined on the mesh,
represented here through color. Positive values are red, negative
values are blue, and white corresponds to zero.

Functional maps builds upon the observation that a point-wise
map T induces a linear operator TF : F(M,R) → F(N ,R) that
maps functions defined on M to functions defined on N via the
composition:

TF ( f ) = f ◦T ∀ f ∈ F(M,R) (2)

Given a pair of bases Φ = {φ}i and Ψ = {ψ} j for F(M,R) and
F(N ,R) respectively, we can write

g = TF ( f ) = TF

(
∑

i
aiφi

)
= ∑

i
aiTF

(
φi
)
=

= ∑
i

ai ∑
j

c jiψ j = ∑
ji

aic jiψ j = ∑
j

b jψ j

where a = [ai] and b = [b j] are the projections of f and g on Φ

and Ψ respectively. c ji is the projection of TF (φi) on ψ j and de-
pends only on TF and the two bases. Therefore TF is compactly
represented by the matrix C = [ci j] and b =C ·a.

In practice, we consider only the first k atoms of the bases, trun-
cating the previous series after the first k coefficients. As a matter of
fact, k is independent of the number of vertices n of the meshes and
usually k ≪ n. Therefore, matching two shapes in the functional
map framework consists in estimating a matrix C of size k× k. We
can represent landmarks, corresponding segments, and descriptors
as functions defined on M and N and find the functional map C
that best preserves these functional constraints (in the least square
sense) introduced by these matches. Note that, in principle, we can
truncate the basis of M and N at a different number of atoms kM
and kN , thus producing a rectangular C ∈RkN×kM . However, for
the sake of simplicity, we consider kM = kN = k in this paper.

Embedding Once we truncate a basis for F(M,R) to size k, we
can store it in a matrix ΦM, where each column is a basis atom rep-
resented as a vector of real values. ΦM has thus size n× k, where
n is the number of vertices and k is the number of basis atoms con-
sidered. We call spectral embedding (or simply embedding) of a
vertex x the vector of values assumed by all the basis functions in
x: Emb(x) = [φi(x)] ∈ Rk. Emb(x) also corresponds to the coeffi-
cients, in the basis ΦM, of a Delta function centered in the vertex

x. Thus Φ
T
M contains the coefficients of all the Delta functions of

M (one for each vertex) as column vectors.

3.4. Conversion to point-wise map

We now consider the problem of converting a functional map C
from M to N into a point-wise map T̄ : VN → VM. A simple
and efficient method, proposed in [OBCS∗12], consists in finding,
for each column of Φ

T
N , the nearest neighbor in the columns of

CΦ
T
M. This procedure corresponds to transferring Delta functions,

and thus embeddings of vertices, from M to N through C and
putting similar points in the embedding space in correspondence.

Summarizing The complete functional-map pipeline for shape
matching, as detailed in [OBCS∗12], is: (1) find a truncated basis
of size k on each mesh, (2) find the C ∈ Rk×k that best preserves
some functional constraints, and (3) convert the functional map C
to a dense point-wise map T̄ . In Figure 3, you can find a visual rep-
resentation of the complete procedure, focusing on step (1) since it
is the one that our method addresses.

3.5. Standard basis

The Laplace-Beltrami operator ∆M : F(M,R) → F(M,R) as-
sociates to each function f ∈F(M,R) another function that is the
divergence of the gradient of f . For discrete meshes, this operator
corresponds to a n× n matrix ∆M and is usually computed using
the cotangent scheme [MDSB03, PP93]. ∆M admits an eigende-
composition: ∆Mφi = λiφi, where Φ = {φi} are its eigenfunctions
with corresponding real eigenvalues Λ = {λ1 ≤ λ2 ≤ . . .}. Φ forms
an orthonormal basis for F(M,R), namely LB. LB atoms are or-
dered in increasing frequencies which are encoded in the corre-
sponding eigenvalue. We depict this order qualitatively in Figure 2
(bottom row) and quantitatively in Figure 4. Here, by frequency
of a function f ∈ F(M,R), we intend the Dirichlet energy of f ,
which is a measure of its smoothness. LB is considered as the mesh
equivalent of the harmonic basis [Lev06, VL08]. By selecting only
the first k atoms we obtain an optimal [ABK15] low-pass filter ap-
proximation of functions in F(M,R). From [OBCS∗12] on, LB
has been the standard choice of the functional basis on meshes.

3.6. Motivation

Despite its many strengths, LB presents a significant limitation: the
basis energy is not evenly distributed on the mesh surface but is
concentrated in massive areas, leaving narrower extremities less
covered. To define the energy of a basis, we consider two properties
in particular:

– discrimination power between different vertices,
– locality preservation.

As we demonstrate through our experiments in Section 4.3, the lack
of these properties in some areas of the mesh produces bad assign-
ments in the point-wise map, affecting its overall accuracy. Instead,
the shape matching task requires a functional basis whose energy
is evenly distributed on the mesh, i.e., the value of the previous two
properties is similar across different areas of the mesh and better
overall.
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Algorithm 1 Construction of PC-GAU

1: input: M, VM, AM, σ, q, normalize, k
2: Q = FPS(M,q)
3: for i ∈VM, j ∈ Q do
4: Di j = GeoDistM(i, j)

5: Gi j = exp
(
−D2

i j/σ

)
6: end for
7: if normalize then
8: for i ∈VM, j ∈ Q do
9: Gi j = Gi j/

√
(G∗ j)T AMG∗ j

10: end for
11: end if
12: P = PCA

(
GT ,variableWeights = AM

)
13: Pk = P(:,1:k)
14: output: Pk

4. Proposed Solution: PC-GAU

In this section, we present the core contribution of this paper: a
new basis for the space of functions defined on a mesh. We design
such a basis to fit the role of truncated basis in functional maps
pipelines for shape matching. PC-GAU works as a replacement of
LB to obtain more accurate point-wise maps.

We first illustrate the procedure to build the basis. Then, we ana-
lyze the properties that directly arise from its construction. In Sec-
tion 4.3, we analyze the main properties of PC-GAU, with reference
to the desiderata expressed in Section 3.6.

4.1. Building procedure

The proposed method to construct the basis derives from signal
processing [DPBR14]. In particular, it consists in building a dic-
tionary of Gaussian functions scattered on the mesh and then per-
form dimensionality reduction through Principal Component Anal-
ysis (PCA). PCA produces an orthogonal set of generators for the
functional space spanned by the Gaussians. Generators are ordered
according to their capability to approximate the initial dictionary of
Gaussians. The idea is to obtain an even distribution of basis energy
by controlling the uniformity of scattering of the Gaussians in the
dictionary, since uniform sampling is rather easy to enforce. In the
following, we present the procedure to build our basis on a mesh M
with n vertices. We provide in Figure 3 and in Algorithm 1 a visual
and a compact description of the proposed method, respectively,
and we refer each step to the corresponding line in Algorithm 1.

Subset of vertices We start by selecting a subset Q of q vertices
on the mesh with Farthest Point Sampling [MD03] (line 2), using
Euclidean distance for efficiency reasons. This selection is not the
only possible, as discussed in Section 5.1. The orange box in Fig-
ure 3 shows that the sampled points evenly cover the mesh surface.

Dictionary of Gaussians We compute q Gaussian functions, each
one centered in a vertex of Q. To do so, for each vertex j ∈ Q (line
3) we compute the geodesic distance Di j = GeoDistM(i, j) to any

other vertex i ∈VM (line 4) and then define the value of the Gaus-
sian Gi j as Gi j = exp

(
−(D2

i j/σ)
)

(line 5). We approximate the
geodesic distance as the length of the shortest path on the edges
of the mesh [MMP87]. The parameter σ is arbitrarily chosen and
sets the amplitude of the Gaussians. We store the Gaussian func-
tions as columns of the matrix G = [Gi j], of size n × q. In lines
7-11, we can also normalize each column G∗ j of G by division

with its norm, computed as
∥∥G∗ j

∥∥
M =

√
GT
∗ jAMG∗ j, where AM

is the mass matrix of M. In all the experiments we use q = 1000,
σ = 0.05 and we apply normalization. In the green box in Figure 3,
we report some examples of the resulting Gaussian functions.

Dimensionality reduction We then compute the PCA of GT (line
12), meaning that each Gaussian function is considered a sample
and each vertex of the mesh a variable. We do not center the vari-
ables, but we weigh them for the element of the area associated with
each vertex. The result of PCA is a set of q vectors of size n, called
Principal Components (PCs). We can interpret these vectors as the
q generators of the functional space S spanned by the Gaussians.
Since q < n, S is a proper subspace of F(M,R) and, assuming the
Gaussians are linearly independent, S has dimension q.

Finally, we select the first k PCs to form our basis, and we store
them in a matrix Pk of size n×k (line 13). The columns of this ma-
trix are a truncated basis of F(M,R) or, equivalently, a basis of
a k-dimensional subspace R ⊂ S ⊂ F(M,R). In particular, PCA
transform guarantees that the first k PCs form the set of the k or-
thonormal generators with the lowest approximation error on the
initial samples [AK17]:

Pk = argmin
Pk∈Rn×k

{
q

∑
i=1

∥∥∥G∗i −PkPT
k AMG∗i

∥∥∥2

2

}
(3)

s.t. PT
k AMPk = Ik

where G∗i is the i-th column of G, namely the i-th Gaussian func-
tion. Note that orthonormality and projection in (3) are expressed
with respect to the inner product defined on the mesh. Providing a
good approximation of the Gaussian functions, and thus of S, and
satisfying (3), the truncated basis Pk inherits implicitly the uniform
distribution owned by the Gaussian functions.

4.2. Properties of PC-GAU

The basis obtained in such a way shares many of the good proper-
ties of LB, which makes PC-GAU a suitable replacement for LB in
existing functional map pipelines.

4.2.1. Frequency ordering

Figure 4 compares the Dirichlet energy of the atoms of PC-GAU

and LB. The Dirichlet energy measures the smoothness of a func-
tion and can be interpreted as its frequency. We observe that, al-
though not perfectly, atoms of ours are approximately ordered in
frequency. Even if not explicitly imposed, this order arises naturally
in our basis as we empirically observe. We can also evaluate this
qualitatively in the example atoms shown in Figure 2. Frequency
ordering means that, similarly to LB, we operate a low-pass filter
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M

N

PCA

PCA

T̄
:V

N
→

V M

functional
map

C

(1) (2) (3)

Figure 3: Complete shape matching pipeline with functional maps: (1) definition of a functional basis, (2) estimation of C and (3) conversion
to a point-wise map. Here, step (1) shows the building procedure of PC-GAU: selection of a subset of vertices (orange box), construction of
the dictionary of Gaussian functions (green box) and dimensionality reduction through PCA (blue box).

Figure 4: Comparison between the Dirichlet energy (frequency) of
atoms of our basis and LB, computed for an example mesh from
FAUST. Atoms of PC-GAU are approximately ordered by increas-
ing frequency.

approximation when we project a function f on our truncated ba-
sis. We consider the possibility of sorting our atoms with respect
to their frequency as an interesting direction. Still, we believe that
their natural order is sufficient for our goal, and we leave its explicit
constraint as future work.

4.2.2. Orthonormality

PC-GAU, like LB, is an orthonormal basis. We say that a basis
Φ is orthonormal according to the inner product of a mesh M
if Φ

T AMΦ = Ik, where AM, the mass matrix, is a diagonal ma-
trix having as entries the area elements associated to each vertex,
and Ik is the identity matrix of size k. We can project a function
f on an orthonormal basis ΦM simply by matrix multiplication:

a = Φ
T
MAM f . Similarly, we can recover the function from its pro-

jection through f = Φa. This is useful, in particular, when convert-
ing a given point-wise map Π : N → M (represented here as a
matrix) to a functional map C:

C = Φ
T
N AMΠΦM. (4)

4.2.3. Isometry-invariance

Two meshes M and N are isometric if the underlying correspon-
dence T : VN →VM is an isometry, which means that it preserves
the geodesic distance of any pair of vertices on N :

GeoDistM(T (x),T (y)) = GeoDistN (x,y) ∀x,y ∈VN . (5)

Since we construct our basis purely on geodesic distances, if an
isometry occurs between N and M, then our basis, under the
assumption of equal distribution of the sample points, will be
isometry-invariant. As for the LB, the functional map is a diagonal
matrix with +1 or −1 on the diagonal when shapes are isometric. In
more general cases, the energy of C is funnel-shaped, approaching
diagonal as the relation between M and N gets closer to isometry.
See Figure 3 (2) for an example.

4.3. Spatial distribution of basis energy

We now consider the spatial distribution of the energy of the basis
on the mesh surface. Intuitively, by basis energy in a vertex x, we
mean the expressive power and the quality of the embedding space
in a neighborhood of x. More precisely, as we stated in Section 3.6,
we introduce two quantities to assess the quality of the embedding
space: (1) the discrimination power and (2) the preservation of lo-
cality.
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Figure 5: Spatial distribution of discrimination power of the basis
and geodesic error. Comparison between ours and LB. We visualize
the average results across 40 human meshes from SHREC19 (top)
and three cat meshes from TOSCA (bottom). Darker is worse in all
cases. The similarity between distributions suggests a correlation
between the error and the local quality of the embedding space.

4.3.1. Discrimination power

We define the discrimination power as the capability of a basis to
assign sufficiently different embeddings to different vertices. For
each vertex x ∈VM, we measure it with the following metric:

Dis(x) =
∥Emb(x)−Emb(yx)∥2

GeoDistM (x,yx)
(6)

where yx = argminz∈VM\{x}
{
∥emb(z)− emb(x)∥2

}
is the vertex

having the closest embedding to Emb(x) measured through Eu-
clidean distance. The normalization makes the metric independent
of vertex density and rewards geodesic proximity between x and yx.
According to the continuous nature of the surface, it is reasonable
to require that geodesically close points have similar embeddings.
For this reason, we penalize a vertex having as the nearest point in
the embedding a vertex that is geodesically far.

To assess the quality of PC-GAU embedding with respect to
LB, we compare their distribution of discrimination power over the
mesh. Moreover, we investigate the relation between discrimination
power and the average geodesic error, when the mesh is matched
to another. On the left of Figure 5, we report the average distribu-
tion of Dis(x) on meshes obtained across 40 human meshes from
SHREC19 (top row) and three cat meshes from TOSCA (bottom
row). On the right of Figure 5, we visualize the average distribu-
tion of the geodesic error on the corresponding datasets matched

using LB and PC-GAU as described in Section 5.1. We observe
that:

1. LB has a much lower discrimination power on narrow extrem-
ities (arms, feet, paws, and tail), while ours presents a uniform
discrimination power similar to the best level achieved by LB.

2. The error for LB is coherently localized in narrow extremities,
while our diffuses uniformly on the surface.

These observations support our claim that the errors in point-wise
correspondence localize in the areas where the basis provides a less
discriminative embedding. This result suggests that through PC-
GAU, we can improve such correspondences by making the quality
of the embedding space more uniform on the mesh.

4.3.2. Locality preservation

We define the following two metrics to quantitatively asses locality
preservation of a given embedding space.

Embedding/Geodesic Distance Correlation (EGDC) For each
vertex x, we select the set S of s ∈ N vertices having the embed-
ding closest to Emb(x), and estimate the correlation between the
Euclidean distances of the embeddings and their geodesic distances
from x:

EGDC(x) = corr
(

GeoDistM(x,y),∥Emb(x)−Emb(y)∥2

)
y∈S

This measure evaluates how much an embedding space preserves
the neighborhood of x in the geodesic sense. The higher EGDC,
the better. In our experiments we assess EGDC(x) using s = 80
vertices.

Mean Geodesic Distance (MGD) For each vertex x, we define
the set R of the t ∈ N vertices having the lowest embedding dis-
tance to Emb(x), and the set R̄ of the t vertices having the lowest
geodesic distance from x. Then, we compute the ratio between the
mean geodesic distance of the vertices in R and R̄:

MGD(x) =
Avgy∈R {GeoDistM(x,y)}
Avgz∈R̄ {GeoDistM(x,z)}

The more the embedding preserves the distance of the geodesic
neighbor, the lower the value of MGD(x), which approaches 1.
Therefore, the lower MGD(x) the better. In the evaluation we used
t = 10.

We analyze the locality preservation of PC-GAU, compared to
LB exploiting EGDC and MGD. We claim that point-wise embed-
ding designed for shape matching should encode the neighbor in-
formation, preserving the relation of nearest and potentially simi-
lar points. Figure 6 shows the value of these metrics averaged on
the same shapes from SHREC19 (top) and TOSCA (bottom) in-
volved in Figure 5. The spatial distribution measured with EGDC
and MGD for LB closely mimics the distribution of discrimina-
tion power (see Figure 5, first column). These three similar results
support the choice of these measures that accurately encode the
embedding space quality across different mesh areas. In Table 1,
we present the overall value for EGDC and MGD (computed as
the average on the vertices of each mesh) for different datasets that
we introduce in the next section. These results support our claim:
a more even distribution of the energy of a basis, as exhibited by
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Figure 6: Spatial distribution of EGDC and MGD. Comparison
between ours and LB on average on human shapes from SHREC19
(top) and cats from TOSCA (bottom). Darker is worse in all cases.
LB presents low locality preservation on the extremities (arms, feet,
paws, and tail).

the one we propose, increases the overall quality of the embedding
space.

dataset EGDC MGD
ours LB ours LB

×10−2 ×10−2

FAUST 79,7 73,8 1,11 1,34
MWG 83,8 78,1 1,12 1,36
TOSCA 84,1 79,0 1,12 1,40
SHREC19 81,9 68,8 1,14 1,86

Table 1: Overall values of EGDC and MGD averaged on the
meshes of different datasets.

5. Experimental Evaluation

The purpose of PC-GAU is to improve the quality of the estimated
point-wise map when employed in a functional maps pipeline for
shape-matching. Therefore, the primary evaluation criteria consists
in assessing the accuracy of point-wise maps between pairs of
meshes. In the following, we compare the results between PC-GAU

and LB in different settings. Since PC-GAU and LB can be inter-
changeably used in the functional maps framework, it is easy to set
up the same pipeline and compare the final results obtained in the
same conditions.

Metrics We evaluate the overall accuracy of a point-wise map T̄ :
VN →VM by the average geodesic error:

AGE(T̄ ) = Avg
x∈VN

{e(x)}, (7)

where e(x) = GeoDistM(T̄ (x),T (x)) is computed with respect to
the ground-truth correspondence T provided by the dataset for eval-
uation. Since our goal is to improve the performance compared to
LB, we also consider the Relative Error of PC-GAU with respect to
LB to make the accuracy gain more explicit:

RE(T̄ours, T̄LB) =
AGE(T̄ours)−AGE(T̄LB)

AGE(T̄LB)
. (8)

To evaluate the overall performance on a dataset, we compute the
mean of AGE and RE over all the pairs considered in the dataset. A
negative value of MRE (Mean Relative Error) indicates that, on av-
erage, PC-GAU is performing better than LB on the given dataset.
Note that MRE does not coincide with the relative difference of the
mean AGE and the assessment provided by RE is less dependent
on the absolute complexity of the pairs considered.

Datasets We used random pairs of meshes taken from standard
datasets for our tests. We normalize all the meshes to the unitary
area, which is a standard practice to compare the errors among dif-
ferent datasets.

– FAUST [BRLB14] is a recent dataset composed of 10 human
subjects in 10 poses each. The dataset has been remeshed to en-
sure that no additional knowledge about the meshes is implicitly
used. We used 200 random pairs.

– MWG contains 25 meshes representing a man, a woman, and a
gorilla, in different poses and with different connectivities. We
indicate with MWG iso the dataset containing only the man and
woman meshes. We used 200 random pairs form MWG and 120
from MWG iso.

– TOSCA [BBK08] is a benchmark of 3D shapes divided in dif-
ferent classes. Meshes are high resolution (∼50K vertices), iso-
metric, and with vertices in 1:1 correspondence in each class. We
limit our quantitative analysis to 20 pairs involving five meshes
from the class Michael (one of the human subjects) in different
poses. Moreover, we perform the qualitative evaluation on three
different poses from the cat class.

– SHREC19 [MMR∗19] contains 40 human bodies. These
meshes largely differ in the number of vertices, type of tessella-
tion, and model style, making it a challenging dataset. We used
200 random pairs.

In MWG we only have a sparse set of ground truth correspondences
(around 1K correspondences). For all the other datasets, we instead
have a complete ground truth correspondence, namely there is al-
ways one point on the target that is corresponding to each vertex of
the source shape.

Implementation We implemented the procedure to build PC-
GAU and the entire experimental setting in MATLAB. We adopt the
code available online for ZoomOut [MRR∗19] and [NO17] pro-
vided by the authors. In all the following experiments, we fix the
number of atoms k = 60, and we generated our basis with q= 1000,
σ = 0.05, and using normalization. See Section 4.1 for the meaning
of these parameters.
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dataset GT NO17 ZoomOut
ours LB MRE ours LB MRE ours LB MRE
×10−3 ×10−3 ×10−2 ×10−3 ×10−3 ×10−2 ×10−3 ×10−3 ×10−2

FAUST 15,7 19,7 -20,3 28,0 30,6 -4,9 24,6 26,2 -5,7
MWG 20,8 24,9 -20,2 60,8 60,4 -8,4 49,6 69,6 -28,7
MWG iso 13,6 17,3 -25,5 25,9 27,6 -10,1 18,6 27,2 -28,3
TOSCA 7,7 12,3 -39,6 12,7 19,8 -39,3 10,7 17,8 -44,2
SHREC19 24,5 28,4 -14,0 43,4 65,9 -15,3 35,7 39,1 -6,9

Table 2: Average Geodesic Error (both absolute and relative) of point-wise maps converted from a C (from left to right): computed from
ground-truth correspondence, estimated with [NO17], and estimated with ZoomOut [MRR∗19].

5.1. C computed from ground-truth correspondence

To evaluate our basis independently of the quality of functional
mapping, we start by estimating C from the ground truth corre-
spondence provided by the dataset. In this case, C is computed as
in Equation 4 and can be considered the best possible functional
correspondence between ΦM and ΦN . For the conversion to point-
wise map, we adopt the original algorithm proposed in [OBCS∗12]
and presented in Section 3.4. The first three columns of Table 2
show the results on the different datasets: we observe that PC-GAU

provides substantially more accurate conversions. Results in terms
of MRE are consistent with the average geodesic error. The right
part of Figure 5 shows the average spatial distribution of the error
on the considered pairs from SHREC19 and cats from TOSCA.

Following the protocol proposed in [KLF11], Figure 7 shows
the curves of the cumulative geodesic error for each dataset (more
details in the caption). Note that the percentage of vertices with a
low geodesic error is similar between PC-GAU and LB, but PC-
GAU has a considerably lower percentage of vertices with a large
error. This result is consistent with our analysis: the embedding
space of LB is not poor in general but only in specific areas of the
mesh. The vertices in the weakly-represented regions have a large
geodesic error when using LB, while the quality of point-wise maps
is similar between PC-GAU and LB in the well-covered areas.

Random sampling of Q The quality of our basis does not depend
on the exact composition of the subset of points where the Gaus-
sians are initially computed, as far as the scattering of vertices in
Q is sufficiently uniform on the mesh surface. To verify this claim,
we build PC-GAU by randomly selecting Q (without replacement)
instead of using Farthest Point Sampling [MD03], as described in
4.1. Figure 8 compares the bases obtained with the two methods re-
garding both discrimination power and accuracy of the final point-
wise map. Discrimination power shows a similar distribution be-
tween the two, with PC-GAU computed from FPS being slightly
more uniform over the surface (look at the difference in value be-
tween chest and feet, for instance). This difference, however, does
not impact the point-wise maps obtained, which show almost iden-
tical geodesic errors. Therefore, PC-GAU is robust to the algorithm
used for selecting Q. We still prefer using FPS over random sam-
pling, because this makes the basis less dependent of vertex density
and ensures uniform scattering also when q is low.

(a) FAUST (b) TOSCA

(c) MWG (d) SHREC19

Figure 7: Curves of the cumulative geodesic error of point-wise
maps converted from ground-truth C for the four datasets. For each
curve point, the y-axis represents the percentage of vertices with a
geodesic error lower than the error threshold corresponding to the
x-axis: the higher the curve, the more precise the estimated corre-
spondence.

5.2. C estimated with product preservation

In a real world setting, we cannot compute C from the ground-
truth correspondence, but we need to estimate it. Columns 4,5,6
of Table 2 present the results when C is estimated using product
preservation as functional constraints [NO17]. In these tests, we
used functional constraints based on six landmarks (feet, hands,
head, and chest) and the WKS descriptor [ASC11]. PC-GAU still
gets better results than LB, except in MWG. Removing the gorilla
meshes from the dataset brings the advantage back (see row MWG
iso), suggesting that PC-GAU is more susceptible to the error raised
by non-isometries when we compute the C adopting [NO17] and
WKS as descriptors. In all the cases, MRE, which is less sensitive
to the single pair challenges, is always negative, confirming that our
basis outperforms LB.
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(a) discrimination power (b) geodesic error

Figure 8: Comparison between random sampling and FPS for the
selection of Q on the FAUST dataset. (a) shows the average dis-
tribution of the discrimination power of the obtained bases. (b)
shows the distribution and the overall value of the geodesic error
for point-wise maps obtained from the two bases. We compute C
exploiting the provided ground-truth correspondence.

5.3. C estimated with ZoomOut

Finally, we tested our basis with the iterative refinement introduced
in [MRR∗19]. The last three columns of Table 2 contain these re-
sults. This technique heavily takes advantage of the conversions
from functional to point-wise maps and vice-versa. The results
show that PC-GAU outperforms LB. In these experiments we used
an initial map of size kini = 16, estimated with [NO17] with the
same constraints as in Section 5.2. We then adopt the same param-
eters from [MRR∗19] increasing the size of the functional map to
kfinal = 60 with step equal to 2. The great performance achieved
by our basis, when combined with ZoomOut, confirms that PC-
GAU is better suited to represent point-wise correspondences in the
functional paradigm. Moreover, with ZoomOut, our method seems
more stable also in the presence of non-isometries.

6. Conclusions

We presented the procedure to build PC-GAU, a new basis for
the space of real-valued functions defined on a mesh. Compared
to the eigenfunctions of the Laplace-Beltrami operator, which are
the standard basis for functional maps, the energy of our basis is
distributed more uniformly on the mesh. The resulting embedding
space for the vertices is overall more amenable to point-wise con-
version. PC-GAU can replace LB at no cost in virtually any func-
tional map pipeline. We showed experimentally that this replace-
ment leads to superior results in the accuracy of the obtained point-
wise maps on different datasets and with different methods to esti-
mate the functional maps.

Although the results are pretty impressive, we experienced that
PC-GAU has some limitations: i) it suffers when there are signif-
icant errors in the estimation of the functional map; ii) the entire
framework has been defined for meshes, while we did not explore
its applicability to point clouds, neither considering meshes ex-
tracted from dense point clouds nor directly working on 3D points

without connectivity; iii) we believe that even if the embedding
from PC-GAU is uniform, this is not optimal and could be im-
proved by explicitly enforcing this property.

A first interesting direction to explore in the future is to consider
a different composition of the initial dictionary of functions other
than Gaussians. In the same spirit, we believe that an adaptive sam-
pling of the Gaussians, whose parameters might be based on the ge-
ometric features of the shape, could provide a refined representation
and improve mapping accuracy. PC-GAU depends on some param-
eters, and in the future, we aim to evaluate its dependencies better
and improve its performance by fine-tuning. Moreover, we will test
the ability of our basis to represent different signals defined on the
surfaces as done in [MRR∗19] to evaluate if the functional repre-
sentation can also benefit from the more uniform distribution of the
energy of our basis. Finally, we would investigate how it is possi-
ble to integrate PC-GAU in data-driven procedures inspired by the
functional maps framework, such as [LRR∗17,DSO20,MRMO20].
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