
Optimizing Placements of 360◦ Panoramic Cameras in Indoor
Environments by Integer Programming

Syuan-Rong Syu1 and Chi-Han Peng1

National Yang Ming Chiao Tung University1

Figure 1: Our method finds globally optimal (in terms of numbers of camera placements) solutions to place 360◦ cameras that together
completely cover all visible regions of interests (ROIs) of an indoor environment. We model the indoor environment according to the public
area of a real-world floor plan of an office building (left), and set the ROIs to be the walls of the area. The three shown solutions ((a) to
(c)), are one that has no constraints (i.e., the 360◦ camera is omnidirectional and can see infinitely far away), one that has a maximal range
constraint (orange), and one that has both a maximal range and an angle-to-wall constraint (w.r.t. surface normals) of 45 degrees.

Abstract
We propose a computational approach to find a minimal set of 360◦ camera placements that together sufficiently cover an indoor
environment for the building documentation problem in the architecture, engineering, and construction (AEC) industries. Our
approach, based on a simple integer programming (IP) problem formulation, solves very efficiently and globally optimally. We
conducted a study of using panoramas to capture the appearances of a real-world indoor environment, in which we found that
our computed solutions are better than human solutions decided by both non-professional and professional users.

CCS Concepts
• Computing methodologies → Visibility;

1. Introduction

Taking photos to record and document the interiors of a building
is an important task in architecture, engineering, and construction
(AEC). For examples, during constructions of a building, firms
have to document the progress by taking numerous photos, over
time, of the interiors of the building or the jobsite [Ope22]. In in-
surance and restoration, surveyors have to thoroughly document the
state of a damaged building for repair cost estimations [Mat22].
Real-estates agents shoot photos of the interiors of houses for sale.
Even in retail and hospitality, owners have to showcase the ap-
pearances of the indoor spaces to customers. A growing trend is
to replace traditional perspective photos by panoramic photos, or
"panoramas" in short, shoot by 360◦ cameras. The main reason is
that a panoramic photo covers nearby every angles seen from the

camera position (except for the top and bottom nadirs), vastly re-
ducing the numbers of photos need to be taken.

Even though 360◦ cameras shoot photos omnidirectionally, to
capture an indoor environment, multiple panoramas are still likely
needed due to occlusions and ranges of the cameras. Traditionally,
photographers decide placements of the 360◦ camera strategically
by intuition and simple guidelines (e.g., placing it at the centers
of rooms, plus a few more to capture occluded parts). However,
such solutions may not be most economical in terms of the numbers
of panoramas taken. Worse, some parts of the indoor environment
may not be captured at all due to human miscalculations.

In this paper, we propose a optimization-based approach to the
360◦ camera placement problem. In short, we aim to minimize the
number of panoramas taken that together would sufficiently cap-
ture all visible parts of an indoor environment. We formulate the

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.
This is an open access article under the terms of the Creative Commons Attribution Li-
cense, which permits use, distribution and reproduction in any medium, provided the orig-
inal work is properly cited.

STAG: Smart Tools and Applications in Graphics (2022)
D. Cabiddu, T. Schneider, G. Cherchi, and R. Scateni (Editors)

DOI: 10.2312/stag.20221260 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-6823-8029
https://doi.org/10.2312/stag.20221260


Syuan-Rong Syu & Chi-Han Peng / Optimizing Placements of 360◦ Panoramic Cameras in Indoor Environments by Integer Programming

problem as a linear integer programming (IP) problem, which can
be solved globally-optimally and very efficiently by modern off-
the-shelf solvers such as Gurobi [Gur22]. Note that in our IP for-
mulation, the visibility ranges of the 360◦ cameras can be modeled
in straightforward manners.

We narrow our scope by making the following assumptions.
First, we assume that the indoor environment is largely clutter-free,
which means that it is adequate to encode the indoor environment as
a 2.5D model (i.e., a 2D floorplan "extruded" vertically by a given
height) consisting of planar faces presenting the walls, floors, and
ceilings. This assumption makes sense for a variety of cases such
as unfurnished houses and the public areas of large buildings. Sec-
ond, as we focus on solving the camera placement problem, we
assume the 2.5D model of the indoor environment is given. For ex-
ample, pre-modeled according to the floorplan of the building. In
other words, our method can be used as a planning tool before the
photographer actually go to the jobsite.

To verify the usefulness of our method, we set up a study to sim-
ulate the usage of 360◦ cameras for indoor environment documen-
tation. First, we build a 2.5D model of our department according
to its floorplan, and then compare our computed solutions versus
solutions decided by amateur users and one professional architect.
We find that our solution uses fewer panoramas to completely cover
the whole indoor environment. In fact, the human solutions are of-
ten incorrect as some parts of the environment were not captured.
Second, we estimate the visibility ranges of popular 360◦ cameras
used in the AEC industry through experiments, and used the esti-
mated ranges in our IP formulation.

Our contributions are summarized as follows:

• We propose a computational approach to the 360◦ camera place-
ment problem that was previously mainly solved by human intu-
ition. Our IP-based method is simple, solves very efficiently by
a modern off-the-shelf solver on a conventional computer, and
provides globally-optimal solutions. We also demonstrate that it
is straightforward to impose additional constraints, such as the
visibility ranges of the cameras, to the IP formulation.

• We conducted a study of using panoramas to capture the appear-
ances of a real-world indoor environment, in which we compared
our computed solution to solutions decided by humans. We show
interesting observations of human behaviors, which may be use-
ful for designing computational approaches in the future.

2. Related Work

We discuss related work in three main topics: 1) common practices
and guidelines for 360◦ camera placement in the construction and
real-estate industries, 2) automatic camera placement in sensor net-
work design, and 3) visibility in computer graphics.

2.1. 360◦ camera placement guidelines

In the Zillow Indoor Dataset paper [CHL*21], a simple guide-
line for placing 360◦ cameras to shoot virtual tours is described,
which only regulated that more panoramas should be taken in big-
ger rooms. Similar guidelines (i.e., shoot a panorama at every 2 me-
ters apart) are suggested in a popular website post [Pha21]. In the

Matterport’s guide for construction documentation [Mat17], they
suggest the following steps for taking panoramas in construction
sites: 1) first, create a 2D drawing or floorplan of the site to plan
the paths in advance, 2) physically mark previous placements of
360◦ cameras for easier revisiting, and 3) shoot panoramas in the
middle of the rooms, plus detailed 3D scans around the perimeters.

2.2. Automatic camera placement

The problem of automatic camera placement is an important topic
in sensor networks design. The main application is the setup
of surveillance cameras in large buildings such as malls, air-
ports, and factories [GCW15; ES06; GXZY09] and even urban
areas [JCJL17]. Usually the task is formulated as an optimiza-
tion problem in which the user wants to use as few cameras as
possible to completely cover the regions-of-interest (ROI) of an
environment [ES04; GCW15], or alternatively, maximizing the
coverage of the ROI with a limited (budgeted) number of cam-
eras [HL06; YCA*08]. Variations of the problem include different
ways to model the visibility of the cameras (e.g., conventional di-
rectional cameras or omnidirectional cameras [GGS*09]), how the
environment is encoded (e.g., discretized into a set of grid points
or continuously encoded as a set of 2D polygons as in the the
classical art gallery problem [ORo87], and camera-to-camera rela-
tionships [GCW15; MWY*17]. We refer readers to survey papers
discussing coverage problems in sensor network design [Wan11;
MC13].

Mentioned previously, the art gallery problem (AGP) is a key
topic in computational geometry that is similar to our problem. In
short, AGP asks for the minimal placements of "guards" (or cam-
eras) that see omnidirectionally and indefinitely away to completely
cover a 2D domain modeled by a set of polygons [ORo87]. AGP
are either solved discretely (by sampling the 2D domain and possi-
ble guard placement locations into a discrete set of points), which
can be reduced to instances of the set covering problem [Gho10],
or continuously in which sub-optimal [AMP10; BL11] or optimal
solutions [CdRdS11; TRS16] are found. Our problem in the uncon-
strained form (for example, problem (a) in Figure 1) is equivalent
to the special case of AGP in which only the perimeters of the 2D
domain need to be covered [BL11]. However, when range or angle-
to-wall constraints are applied, the problem is no longer an AGP
and existing algorithms are not directly applicable.

We now focus discussions on the discrete case. An important
distinction of related methods is how they actually solved the set
covering problem, which is a linear binary problem (LBP) and
is NP-hard in nature. Earlier methods solve the LBP by divide-
and-conquer strategies [ES06; DOL06], heuristic greedy meth-
ods [RRA*06], being relaxed to linear programming (LP) and then
solved by the conventional simplex method [SKR09], or genetic
programming [vdHHW*09]. These methods reportedly often took
hours to solve for medium to large problems [GCW15]. Later, in
2015, Delbos et al. proposed to relax the binary problem into a con-
vex quadratic one by replacing the binary constraints with box con-
straints and then solve the problem by an academic solver [DG05].
They reported to reduce the computation time to seconds for prob-
lems with visibility matrices with several millions of entries. In
comparison, we formulate the camera placement problem as a sim-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

100



Syuan-Rong Syu & Chi-Han Peng / Optimizing Placements of 360◦ Panoramic Cameras in Indoor Environments by Integer Programming

Figure 2: Left: a floor-to-ceiling vertical line (blue) on the wall
(black rectangle) is encoded as a 2D point (blue) on the floor plane.
The camera in 3D (orange point) is encoded as a 2D point (red) on
the floor plane. The encoding is adequate because in this case, the
vertical field-of-view angle of the camera, shown by the two orange
lines, is large enough to completely cover the vertical line. Right: a
case where the camera is too close to the wall such that the vertical
line can no longer be completely covered.

ple linear binary programming problem and solve it using a modern
off-the-shelf solver (Gurobi). We solve our problems of roughly the
same size as in [DG05] in less than one second.

2.3. Visibility in computer graphics

A closely related topic to camera placements is the study of visibil-
ity in computer graphics, i.e., what can be seen in a 2D or 3D scene
along a line, from a point, from a line segment, from a polygon, etc.
(quoted from the survey by Bittner and Wonka [BW03]). Another
exhaustive categorization of visibility in 3D is done by Durand et
al. [DDP96]. A survey about visibility issues for first-person view
applications in large scenes is provided in [CCSD03]. In our pa-
per, we consider the visibility of an omnidirectional camera in 2D
w.r.t. a closed loop of 2D lines that together encode an indoor en-
vironment. This is a well studied problem in computer graphics,
especially in 2D game developments [Asa85; BHH*14]. However,
we took additional considerations, including minimal and maximal
ranges (i.e., points too close and too far away from the camera are
considered non-visible) and angles to the surface normals (i.e., sur-
face points with directional vectors to the camera position that devi-
ate too much from the surface normals are considered non-visible),
that are less discussed in related work.

3. Method

We begin with problem definitions. Our goal is to find the positions
of a set of 360◦ cameras such that all regions of interest (ROIs) of
an indoor environment are visible from at least one of the cameras.
Recall that we assume the indoor environment is encoded as a 2.5D
model in 3D, consisting of a planar floor, a planar ceiling, and sev-
eral planar walls. Together they form a water-tight 3D model. We
assume the direction of gravity is the -z axis. Therefore, the floor
and the ceiling are planes with normals aligned to the z axis (i.e., x-
y planes at different heights), and the walls are planes with normals
orthogonal to the z axis.

To simplify discussions, we define the ROIs to be the walls of

the indoor environment only (excluding the floor and the ceiling).
Recall that a 360◦ camera’s looking directions, in terms of spherical
coordinates, span completely horizontally (0◦ to 360◦ in azimuth)
and nearly completely vertically (k◦ to (1− k)◦ in zenith, k is the
"cut-off" vertical angle at the top and bottom nadirs). This means
that the visibility of a ceiling-to-floor vertical line (aligned to the
z-axis) on a wall w.r.t. a 360◦ camera can be encoded by a point in
the x-y plane as long as the 360◦ camera is not too close to the wall
- that is, the 360◦ camera either sees the whole vertical line or none
of it. Explicitly, we assume the distance of a 360◦ camera to a wall
is not smaller than:

cotangent(FOV y/2)∗h, (1)

FOV y is the vertical field-of-view angle of the 360◦ camera and h is
the bigger value of the camera heights to the floor and to the ceiling.
Note that FOV y equals 180◦−2k. See Figure 2 for an illustration.

In this way, the visibility problem is simplified as a 2D problem
in which the indoor environment is encoded as a 2D piece-wise
linear polygon of which each edge corresponds to a wall, and each
360◦ camera is encoded as a 2D point. We denote the former as
the "boundary polygon" and the latter as the "camera positions".
The visibility problem then requires that all points on the boundary
polygon are visible from at least one of the camera positions - i.e.,
there exist a line in between the boundary point and the camera
position that doesn’t intersect with any other edges of the boundary
polygon.

Same as in previous work [DG05], to speed up computations,
we uniformly sample the boundary polygon to be a discrete set of
"boundary points", Bi, 0 ≤ i < Nb, Nb is the number of boundary
points. We also uniformly sample the interior of the boundary poly-
gon as "interior points", Ii, 0 ≤ i < Ni, Ni is the number of interior
points. We consider these interior points as the candidates of 360◦

camera placements. We sample the boundary polygon by lengths
and sample the interior by grid positions.

To test if a boundary point is visible to an interior point, we use
the circular ray sweeping-based algorithm [Asa85] to tessellate the
visible region from an interior point inside the boundary polygon
into a set of triangles. We then enumerate boundary points that fall
within the triangles of the interior point. A walkthrough of the al-
gorithm is provided in [Pat20].

The visibility problem now states that, for every boundary point,
it is visible from at least one of the placed 360◦ cameras (which lie
on the interior points). In addition to the visibility test mentioned
previously, we require that for a placed 360◦ camera to cover a
boundary point, two additional tests must be passed:

1. The L2 distance in between should fall within a feasible range.
The lower bound of the range can be determined by equation 1
or by a user-specified value (e.g., a 360◦ camera cannot be put
too close to a wall due to physical setups). The upper bound (i.e.,
the maximal visible range of a 360◦ camera) can be determined
by referencing the specification of the camera, or, as done in our
experiments, empirically determined by physical tests.

2. The angle between the camera’s viewing direction and the
boundary point’s normal should not be greater than a upper
bound. Again, we found the angle upper bound by physical tests.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

101



Syuan-Rong Syu & Chi-Han Peng / Optimizing Placements of 360◦ Panoramic Cameras in Indoor Environments by Integer Programming

Figure 3: The floorplan of our department that we used to model
the problem polygon in our optimization problems.

We now formulate the visibility problem as a linear integer-
programming (IP) problem as follows:

argmin
Xi, 0≤i<Ni

∑Xi

subject to ∀B j,

nB j

∑
k=0

X j,k >= 1,
(2)

where Xi denotes a Boolean variable indicating whether a 360◦

camera is placed at Ii (the i-th interior point). X j,k, 0 ≤ k < nB j ,
enumerate the Boolean variables of potential camera placements
at interior points that cover boundary point B j, nB j is the number
of such interior points. In short, the goal is to find a minimal set
of 360◦ camera placements such that for every boundary point, at
least one of the interior points that cover the boundary point has a
camera placed.

4. Results

We solved the problem on a desktop computer with Intel i7 6-core
2.60GHZ CPU, NVidia Geforce GTX 1650Ti GPU, and 64GB ram.
We used a RICOH Theta Z1 360◦ camera to shoot the panora-
mas. We model the indoor environment according to the public area
(e.g., corridors) of the floor plan of our department (see Figure 3).
To empirically find the maximal visible range and the maximal an-
gle (w.r.t. the surface normal) of the camera, we put a paper with
printed texts on a wall and shoot numerous panoramas at different
distances and angles. The shoot panoramas are shown in figure 4.
We found the camera can barely capture characters of font size 118
points printed on a A4 paper at 5.04 meters away and at an angle of
45 degrees. For the minimal range, we find that the camera cannot
get closer than 0.61 meters to a wall because the tripod needs space.

4.1. Optimization results

As mentioned previously, we computed three kinds of results: 1) no
maximal range nor angle constraints, 2) with maximal range con-
straint (5.04 meters), and 3) with both maximal range constraint

Fig. 1 (a) Fig. 1 (b) Fig. 1 (c)
Visibility pairs: 1229768 854113 295532

Solutions: 3 18 39
Opt. time: (sec) 0.6 0.33 0.076

Table 1: Statistics for the three computed solutions in Figure 1.

and angle constraint (45 degrees). The results are shown in Fig-
ure 1. As expected, the optimal solutions have more 360◦ camera
placements when more constraints are imposed. To show how the
cameras together entirely capture the indoor environment, in Fig-
ure 6, we show the coverage areas of the three cameras in the "no-
constraint" solution (Figure 1 (a)).

We now discuss statistics about the IP problem formulation. For
the boundary polygon, we densely sampled 1056 boundary points
and 19248 interior points. The sampling is shown in Figure 5. This
means that the visibility matrix (as used in [GCW15] to describe
problem sizes) has about 20.326 million entries, which is bigger
than the problems in [GCW15]. However, the matrix size alone is
not enough to present the sizes of the optimization problems as
many pairs of boundary and interior points are mutually invisible
to each other. Therefore, we calculate a proxy to the optimization
problem sizes as follows. For each boundary point, we count the
number of interior points that cover it. We then sum up the counts.
The numbers are reported in Table 1 first row. Note that the more
constraints, the smaller the problem sizes.

For timing statistics, all the three optimization problems are
solved within one second by Gurobi (see Table 1 second row).
However, we used a Python-based implementation [Sie18] of the
circular ray sweeping-based algorithm to enumerate visible inte-
rior points of a boundary point. For our problem, it took about 26.5
seconds in total to find the boundary points covering every interior
points. We expect changing to a C++ implementation with multi-
threading should significantly reduce the time.

4.2. User studies

We asked several students and one professional architect to solve
the same problems without constraints and with maximal range and
angle threshold of the cameras. The results are shown in Figure 7
and Figure 8 and reported in Table 2. In short, we find that hu-
man users actually have good intuitions on placing 360◦ cameras
- when there is no constraints on the ranges nor the angles. How-
ever, when range or angle constraints are imposed (Which are nec-
essary in real-world scenarios), humans can no longer give good
guesses. The users all took quite some time to decide the solutions.
Worse, for the constrained problem, most of the human solutions
are actually wrong as some parts of the indoor environments are
not covered by the cameras. The architect gave an interesting (but
not optimal) solution for the first problem only.

5. Conclusion

In this paper, we leverage modern visibility computation methods
in computer graphics, which is critical for the correctness and effi-
ciency of rendering, to solve the problem of placing 360◦ cameras

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

102



Syuan-Rong Syu & Chi-Han Peng / Optimizing Placements of 360◦ Panoramic Cameras in Indoor Environments by Integer Programming

Figure 4: The shoot panoramas which are used to estimate the maximal range and angles of our 360◦ camera (RICOH Theta Z1). In the
top-row case, we found that the camera could barely see the "classroom" characters clearly on the A4 paper at about 5.04 meters distance.
Therefore, we set 5.04 meters as the camera maximum visibility range in our research. In the second, third, and fourth rows, we show
panoramas shoot at different angles to the surface (wall) normal. When camera is at 22.5 ◦ to the normal, the characters are too slanted to
be seen clearly. Therefore, we choose 45 ◦ as the maximum visible angle range.

Figure 5: The sampled boundary and interior points. We also show
the set of interior points that cover a boundary point as the ones
within the 90-degree quadrant.

to capture indoor environments in the architecture, engineering, and
construction (AEC) industries. We use the circular ray sweeping-
based algorithm [Asa85] to enumerate visible interior points of a
boundary point, and formulate the set covering problem as a sim-
ple integer-programming (IP) problem that can be readily solved by
modern solvers such as Gurobi. With our approaches, globally opti-

User No constraints Time (sec)
A 5 75
B 8 30
C 4 300
D 4 20

Architect 19 60
W/ dist. and angle constraints

A 9 55
B 20 79
C 12 242
D 22 286

Table 2: The numbers of placed cameras (middle column) and
times taken by human users.

mal solutions can be computed very efficiently, making our method
suitable for interactive tools.

Our method can only be considered as a first step toward profes-
sional solutions for the AEC industries. Therefore, for future work,
we aim to expand our methods to accommodate more realistic 3D
models of the indoor environments and the 360◦ cameras (for ex-
amples, true 3D models instead of approximated 2.5D models) so
that cluttered environments can be modeled adequately. We also
want to incorporate more real-world issues about 360◦ photogra-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

103



Syuan-Rong Syu & Chi-Han Peng / Optimizing Placements of 360◦ Panoramic Cameras in Indoor Environments by Integer Programming

Figure 6: Coverages of the three 360◦ cameras that together completely cover the whole indoor environment in the non-constrained problem.

Figure 7: Human solutions for the non-constrained problem (Figure 1 (a)).

phy, such as planning the paths of moving the camera/tripod, and
deviations of the camera heights, into our computational model.

6. Acknowledgements

This work is funded by the Ministry of Science and Technology of
Taiwan (110N007 and 111R10286C).

References
[AMP10] AMIT, YOAV, MITCHELL, JOSEPH S. B., and PACKER,

ELI. “LOCATING GUARDS FOR VISIBILITY COVERAGE OF
POLYGONS”. International Journal of Computational Geometry
& Applications 20.05 (2010), 601–630. DOI: 10 . 1142 /
S0218195910003451 2.

[Asa85] ASANO, TETSUO. “An efficient algorithm for finding the visibil-
ity polygon for a polygonal region with holes”. IEICE TRANSACTIONS
(1976-1990) 68.9 (1985), 557–559 3, 5.

[BHH*14] BUNGIU, FRANCISC, HEMMER, MICHAEL, HERSHBERGER,
JOHN, et al. “Efficient computation of visibility polygons”. Arxiv
(2014) 3.

[BL11] BOTTINO, ANDREA and LAURENTINI, ALDO. “A nearly optimal
algorithm for covering the interior of an Art Gallery”. Pattern Recogni-
tion 44.5 (2011), 1048–1056. ISSN: 0031-3203. DOI: https://doi.
org/10.1016/j.patcog.2010.11.010 2.

[BW03] BITTNER, JIRI and WONKA, PETER. “Visibility in Com-
puter Graphics”. JOURNAL OF ENVIRONMENTAL PLANNING 30
(2003), 729–756 3.

[CCSD03] COHEN-OR, D., CHRYSANTHOU, Y.L., SILVA, C.T., and DU-
RAND, F. “A survey of visibility for walkthrough applications”. IEEE
Transactions on Visualization and Computer Graphics 9.3 (2003), 412–
431. DOI: 10.1109/TVCG.2003.1207447 3.

[CdRdS11] COUTO, MARCELO C., de REZENDE, PEDRO J., and de
SOUZA, CID C. “An exact algorithm for minimizing vertex guards on
art galleries”. International Transactions in Operational Research 18.4
(2011), 425–448. DOI: https://doi.org/10.1111/j.1475-
3995.2011.00804.x 2.

[CHL*21] CRUZ, STEVE, HUTCHCROFT, WILL, LI, YUGUANG, et al.
“Zillow Indoor Dataset: Annotated Floor Plans With 360º Panoramas
and 3D Room Layouts”. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). June 2021, 2133–
2143 2.

[DDP96] DURAND, FRÉDO, DRETTAKIS, GEORGE, and PUECH,
CLAUDE. “The 3D visibility complex: a new approach to the prob-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

104

https://doi.org/10.1142/S0218195910003451
https://doi.org/10.1142/S0218195910003451
https://doi.org/https://doi.org/10.1016/j.patcog.2010.11.010
https://doi.org/https://doi.org/10.1016/j.patcog.2010.11.010
https://doi.org/10.1109/TVCG.2003.1207447
https://doi.org/https://doi.org/10.1111/j.1475-3995.2011.00804.x
https://doi.org/https://doi.org/10.1111/j.1475-3995.2011.00804.x


Syuan-Rong Syu & Chi-Han Peng / Optimizing Placements of 360◦ Panoramic Cameras in Indoor Environments by Integer Programming

Figure 8: Human solutions for the distance and angle-constrained problem (Figure 1 (c)). In second left, we mark parts of the indoor
environment that are missed by the placed cameras.

lems of accurate visibility”. Eurographics Workshop on Rendering
Techniques. Springer. 1996, 245–256 3.

[DG05] DELBOS, FRÉDÉRIC and GILBERT, JEAN CHARLES. “Global
Linear Convergence of an Augmented Lagrangian Algorithm to Solve
Convex Quadratic Optimization Problems”. Journal of Convex Analysis
12 (Jan. 2005), 45–69 2, 3.

[DOL06] DUNN, ENRIQUE, OLAGUE, GUSTAVO, and LUTTON, EVE-
LYNE. “Parisian camera placement for vision metrology”. Pattern Recog-
nition Letters 27.11 (2006). Evolutionary Computer Vision and Image
Understanding, 1209–1219. ISSN: 0167-8655 2.

[ES04] ERDEM, UGUR MURAT and SCLAROFF, STAN. “Optimal place-
ment of cameras in floorplans to satisfy task requirements and cost con-
straints”. OMNIVIS workshop. Vol. 4. 2004 2.

[ES06] ERDEM, UĞUR MURAT and SCLAROFF, STAN. “Automated cam-
era layout to satisfy task-specific and floor plan-specific coverage re-
quirements”. Computer Vision and Image Understanding 103.3 (2006).
Special issue on Omnidirectional Vision and Camera Networks, 156–
169. ISSN: 1077-3142 2.

[GCW15] GHANEM, BERNARD, CAO, YUANHAO, and WONKA, PETER.
“Designing camera networks by convex quadratic programming”. Com-
puter Graphics Forum. Vol. 34. 2. Wiley Online Library. 2015, 69–80 2,
4.

[GGS*09] GONZALEZ-BARBOSA, JOSE-JOEL, GARCIA-RAMIREZ,
TERESA, SALAS, JOAQUIN, et al. “Optimal camera placement for
total coverage”. 2009 IEEE International Conference on Robotics
and Automation. 2009, 844–848. DOI: 10.1109/ROBOT.2009.
5152761 2.

[Gho10] GHOSH, SUBIR KUMAR. “Approximation algorithms for art
gallery problems in polygons”. Discrete Applied Mathematics 158.6
(2010), 718–722. ISSN: 0166-218X 2.

[Gur22] GUROBI OPTIMIZATION, LLC. Gurobi Optimizer Reference
Manual. 2022. URL: https://www.gurobi.com 2.

[GXZY09] GAO, BO, XU, DEMIN, ZHANG, FUBIN, and YAO, YAO.
“Constructing visibility graph and planning optimal path for inspection
of 2D workspace”. 2009 IEEE International Conference on Intelligent
Computing and Intelligent Systems. Vol. 1. IEEE. 2009, 693–698 2.

[HL06] HÖRSTER, EVA and LIENHART, RAINER. “On the optimal place-
ment of multiple visual sensors”. Proceedings of the 4th ACM interna-
tional workshop on Video surveillance and sensor networks. 2006, 111–
120 2.

[JCJL17] JUN, SUNGBUM, CHANG, TAI-WOO, JEONG, HANIL, and LEE,
SEOKCHEON. “Camera Placement in Smart Cities for Maximizing
Weighted Coverage With Budget Limit”. IEEE Sensors Journal 17.23
(2017), 7694–7703. DOI: 10.1109/JSEN.2017.2723481 2.

[Mat17] MATTERPORT. Guide: Matterport for Construction Documenta-
tion. 2017. URL: https : / / matterport . com / resources /
content - library / matterport - construction -
documentation 2.

[Mat22] MATTERPORT. 3D Scanning for Insurance and Restoration.
2022. URL: https : / / matterport . com / industries /
insurance-restoration 1.

[MC13] MAVRINAC, AARON and CHEN, XIANG. “Modeling Coverage
in Camera Networks: A Survey”. Int. J. Comput. Vision 101.1 (Jan.
2013), 205–226. ISSN: 0920-5691. DOI: 10.1007/s11263-012-
0587-7 2.

[MWY*17] MOTAMEDI, ALI, WANG, ZHE, YABUKI, NOBUYOSHI, et al.
“Signage visibility analysis and optimization system using BIM-enabled
virtual reality (VR) environments”. Advanced Engineering Informatics
32 (2017), 248–262 2.

[Ope22] OPENSPACE. The 5-Minute Guide to Construction Photo Doc-
umentation. 2022. URL: https : / / www . openspace . ai /
resources / ebooks / the - 5 - minute - guide - to -
construction-photo-documentation 1.

[ORo87] O’ROURKE, JOSEPH. Art Gallery Theorems and Algorithms.
Oxford University Press, 1987 2.

[Pat20] PATEL, AMIT. 2d Visibility. 2020. URL: https : / / www .
redblobgames.com/articles/visibility/ 3.

[Pha21] PHARAOH, DANIEL. How to Create a Virtual Tour with Any
360 Camera – Full Guide. 2021. URL: https : / / www .
threesixtycameras.com/how-to-create-a-virtual-
tour-with-any-360-camera-2020-guide/#shooting 2.

[RRA*06] RAM, SIVA, RAMAKRISHNAN, K. R., ATREY, P. K., et al. “A
Design Methodology for Selection and Placement of Sensors in Multi-
media Surveillance Systems”. Proceedings of the 4th ACM International
Workshop on Video Surveillance and Sensor Networks. VSSN ’06. New
York, NY, USA: Association for Computing Machinery, 2006, 121–130.
ISBN: 1595934960. DOI: 10.1145/1178782.1178801 2.

[Sie18] SIEMERING, MAIC. 2d visibility in python. 2018.
URL: https : / / gist . github . com / eruvanos /
d47eab892ac0967ba623ea1578a05fa7 4.

[SKR09] SIVARAM, G. S. V. S., KANKANHALLI, MOHAN S., and RA-
MAKRISHNAN, K. R. “Design of Multimedia Surveillance Systems”.
ACM Trans. Multimedia Comput. Commun. Appl. 5.3 (Aug. 2009). ISSN:
1551-6857. DOI: 10.1145/1556134.1556140 2.

[TRS16] TOZONI, DAVI C., REZENDE, PEDRO J. DE, and SOUZA, CID
C. DE. “Algorithm 966: A Practical Iterative Algorithm for the Art
Gallery Problem Using Integer Linear Programming”. ACM Trans.
Math. Softw. 43.2 (Aug. 2016). ISSN: 0098-3500. DOI: 10 . 1145 /
2890491 2.

[vdHHW*09] Van den HENGEL, ANTON, HILL, RHYS, WARD, BEN, et
al. “Automatic camera placement for large scale surveillance networks”.
2009 Workshop on Applications of Computer Vision (WACV). 2009, 1–6.
DOI: 10.1109/WACV.2009.5403076 2.

[Wan11] WANG, BANG. “Coverage Problems in Sensor Networks: A Sur-
vey”. ACM Comput. Surv. 43.4 (Oct. 2011). ISSN: 0360-0300. DOI: 10.
1145/1978802.1978811 2.

[YCA*08] YAO, YI, CHEN, CHUNG-HAO, ABIDI, BESMA, et al. “Sensor
planning for automated and persistent object tracking with multiple cam-
eras”. 2008 IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2008, 1–8. DOI: 10.1109/CVPR.2008.4587515 2.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

105

https://doi.org/10.1109/ROBOT.2009.5152761
https://doi.org/10.1109/ROBOT.2009.5152761
https://www.gurobi.com
https://doi.org/10.1109/JSEN.2017.2723481
https://matterport.com/resources/content-library/matterport-construction-documentation
https://matterport.com/resources/content-library/matterport-construction-documentation
https://matterport.com/resources/content-library/matterport-construction-documentation
https://matterport.com/industries/insurance-restoration
https://matterport.com/industries/insurance-restoration
https://doi.org/10.1007/s11263-012-0587-7
https://doi.org/10.1007/s11263-012-0587-7
https://www.openspace.ai/resources/ebooks/the-5-minute-guide-to-construction-photo-documentation
https://www.openspace.ai/resources/ebooks/the-5-minute-guide-to-construction-photo-documentation
https://www.openspace.ai/resources/ebooks/the-5-minute-guide-to-construction-photo-documentation
https://www.redblobgames.com/articles/visibility/
https://www.redblobgames.com/articles/visibility/
https://www.threesixtycameras.com/how-to-create-a-virtual-tour-with-any-360-camera-2020-guide/#shooting
https://www.threesixtycameras.com/how-to-create-a-virtual-tour-with-any-360-camera-2020-guide/#shooting
https://www.threesixtycameras.com/how-to-create-a-virtual-tour-with-any-360-camera-2020-guide/#shooting
https://doi.org/10.1145/1178782.1178801
https://gist.github.com/eruvanos/d47eab892ac0967ba623ea1578a05fa7
https://gist.github.com/eruvanos/d47eab892ac0967ba623ea1578a05fa7
https://doi.org/10.1145/1556134.1556140
https://doi.org/10.1145/2890491
https://doi.org/10.1145/2890491
https://doi.org/10.1109/WACV.2009.5403076
https://doi.org/10.1145/1978802.1978811
https://doi.org/10.1145/1978802.1978811
https://doi.org/10.1109/CVPR.2008.4587515

