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Abstract

Nowadays, a high-fidelity 3d model representation can be obtained easily by means of handheld optical scanners, which offer
a good level of reconstruction quality, portability, and low latency in scan-to-data. However, it is well known that the tracking
process can be critical for such devices: sub-optimal lighting conditions, smooth surfaces in the scene, or occluded views
and repetitive patterns are all sources of error. In this scenario, recent disruptive technologies such as sparse convolutional
neural networks have been tailored to address common problems in 3D vision and analysis. Our work aims to integrate the
most promising solutions into an operating framework which can then be used to achieve compelling results in 3D real-time
reconstruction. Several scenes from a dataset containing dense views of objects are tested using our proposed pipeline and
compared with the current state-of-the-art of online reconstruction.
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1. Introduction

The 3D reconstruction with handheld devices without the aid of
targets (i.e. solely based on geometric tracking) presents vari-
ous solutions in the literature. The pioneer in the sector was the
work Kinectfusion [NIH*11, IKH*11, INK*11, NLD11] that in-
troduced some key elements to manage the alignment of a se-
quence of frames, namely the use of a "local" algorithm such as
ICP [BM92, CMO1, RLO1] in a frame-to-model approach. In this
context, the scene is built by integrating the various views within
a volume [CL96] from which a snapshot is periodically extracted
via ray-casting to represent the model to which the frames will be
aligned. In a subsequent work [GISC13], Glocker et al. tried to im-
plement a camera relocation after tracking loss by introducing the
use of key-frames encoded by randomized ferns exploiting depth
and appearance information. Niessner et al. [NZIS13] focused in-
stead on reducing memory consumption through voxel hashing of
a sparse volume. More recently, BundleFusion system [DNZ*17]
introduced some key improvements such as 1) the hierarchical
approach to reconstruction, dividing the sequence of frames into
chunks, 2) a coarse-to-fine alignment based on 2D feature match-
ing (SIFT [Low04]), to strengthen the tracking and, 3) the dynamic
update of the model, through the volumetric reintegration process.
In ElasticFusion [WSMG™*16] and VolumeDeform [IZN*16] the
focus was on real-time reconstruction of non-rigid objects, while
Xiang et al. [XJZ*21), Han et al. [HGZ*22] and Prisacariu et
al. [PKMRI15] improved the visual rendering of textures and re-
duced computational complexity to bring the reconstruction on mo-
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bile systems, and to create applications more oriented towards aug-
mented and virtual reality. Nevertheless, geometric accuracy re-
mains of vital importance for those metrological-like applications
that require a reliable level of detail and are more interested in
the 3D model quality. Examples of such applications are reverse
engineering, manufacturing, robotics, and also orthotics [VBS18].
In this context, representation learning approaches gave a break-
through to 3D analysis application field. Deep architectures, in-
deed, can be learned to infer complex patterns and to establish spa-
tial relationships which are harder to define (and generalize also)
with handcrafted solutions. In order to consume point clouds, the
earlier attempts involved the use of dense solutions. Specifically,
PointNet [CSKG17, QYSG17] constructed Fully Connected net-
works by means of Multi Layer Perceptrons (MLPs) to address the
classification and segmentation tasks with however memory con-
sumption limitations and low spatial coherence handling. Recently,
Choy et al. [CGS19] proposed an alternative by leveraging the gen-
eralization of convolution via sparse operations on sparse tensors.
This solution seems more robust and does not suffer from the lack
of locality.

Following a pilot benchmark study on state-of-the-art representa-
tion learning techniques for 3D view alignment [LSS20] we pro-
pose a fully geometrical pipeline for real-time object model recon-
struction. This solution grounds an implementation of the method
proposed in [LSS21a] that introduces a safeguard module able to
detect failed incremental alignment attempts (ICP-driven) and to
activate a deep feature learning-driven coarse alignment module to
help alignment tracking recovery. In particular, we introduce a hier-
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Figure 1: Intra-chunk and inter-chunk pose alignment for Bundle-
Fusion. Multi-view registration exploits Gauss Newton (GN) solver.

archical pose optimization process different from that proposed in
BundleFusion, and better suited to improve the global consistency
of the model when using Deep Learning-based solutions. We test
our system on the recently proposed DenseMatch dataset [LSS21b]
for quantitative analysis of object scanning assessment.

2. Pose optimization via hierarchical-based approach

In order to seek the global consistency in a real-time working en-
vironment, we are initially inspired by what proposed in Bundle-
Fusion (BF) [DNZ*17] adopting a hierarchical subdivision of the
frames sequence, albeit with some differences. BF seeks the global
model consistency by proposing a hierarchical subdivision of the
frames composing the reconstructing sequence. The new structure
of the sequence has 2 levels in its hierarchy: the local and the global
level. In Fig.1 we see the main components. Indeed, at the first level
of the hierarchy we perform the local fine and dense registration,
which aligns the current frame against the most recent key-frame.
This is very similar to what KinectFusion also does. During this
process, BF also extracts 2D features via SIFT that are used for a
coarse pre-alignment of the frame, and then it investigates a mul-
titude of key-frames to find the closer one. Such an approach is
similar also to what can be found in [GISC13]. However, 2D fea-
ture based methods both need to work with heavy down-sampled
images and rely solely on 2D similarities, which can be extremely
tricky when the target of the reconstruction is a small-size object
with a smooth or repetitive texture. Our experiments showed that
this is not only an overkill for our purpose, but can also mislead the
alignment badly. For the same reason, we also found unnecessary to
perform the first level optimization in which BF attempts to refine
a chunk o frames by performing an all-vs-all realignment. On the
contrary we found extremely helpful to perform the refinement at
the second level of the hierarchy, i.e. when the optimization is per-
formed globally. In this case, frames are clustered into N chunks
according to their temporal consistency, then each chunk is treated
as an independent pointcloud. Triggered by the safeguard condition
from [LSS21a] we leverage the coarse registration module (which
is powered by FCGF [CPK19] and DGR [CDK20]) to pre-align
the data on-the-fly (see Fig. 2). We then create a pose graph as
suggested by Choi [CZK15], so that we can finally optimize the
graph to infer the updated poses of each chunk. After pose op-
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Figure 2: Our inter-chunk refinement. Pairwise registrations are
performed using the safeguard module and ICP. The multi-view is
exploited via graph optimization [CZK15].

timization, real-time constraints require computationally efficient
model updates possibly avoiding to recompute the integration of
all the frames. We are currently developing solutions for this by
adapting to our context also the dynamic model update approach.

3. Results

Our computational pipeline has been implemented in Python with
the use of Open3D [ZPK18] as the open-source library to man-
age the 3D processing, whereas we exploited the MinkowskiEngine
[CGS19] and PyTorch the for sparse neural network implementa-
tion. To test our pipeline we decided to consider some scenes from
the DenseMatch [L.SS21b] dataset.With our tests we show the po-
tential of our pipeline and highlight what has already been antic-
ipated: the current state-of-the-art, namely BF, focuses too much
on the 2D appearance to perform the coarse pre-alignment during
the reconstruction, which results being misleading in our work-
ing scenario. When reconstructing scenes on the on DenseMatch
dataset [LSS21b], our method reach an average number of correct
matches of 98.0% over a total of 6026 frames, outclassing BF that
only reaches 19.9% on the same data. Finally, our pipeline ends up
behaving better not only in terms of robustness by increasing the to-
tal number of aligned frames, but also in terms of the quality of the
reconstruction, as evidenced by the results shown in figure 3. Even-
tually, a GPU implementation of the pipeline guarantees alignment
times compatible to handheld scanners operating at about 20 fps.

Figure 3: Qualitative examples of reconstructed scenes from
DenseMatch dataset [LSS21D]. In blue: results from BundleFusion.
In green: results from our pipeline (texture and mesh are shown).
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