
STAG: Smart Tools and Applications in Graphics (2023)
K. Lupinetti, F. Banterle, N. Capece, and U. Erra (Editors)

A sparse mesh sampling scheme for graph-based relief pattern
classification

G. Paolini1 , N. Guiducci1, C. Tortorici2 , S. Berretti†1

1Media Integration and Communication Center, University of Florence, Florence, Italy
2Technology Innovation Institute, Abu Dhabi, United Arab Emirates

Abstract
In the context of geometric deep learning, the classification of relief patterns involves recognizing the surface characteristics of a
3D object, regardless of its global shape. State-of-the-art methods leverage powerful 2D deep learning image-based techniques
by converting local patches of the surface into a texture image. However, their effectiveness is guaranteed only when the
mesh is simple enough to allow this projection onto a 2D subspace. Therefore, developing deep learning techniques that can
work directly on manifolds represents an interesting line of research for addressing these challenges. The objective of our
paper is to extend and enhance the architecture described in a recent GNN approach for a relief pattern classifier through
the introduction of a new sampling tecnhique for meshes. In their method, local mesh structures, referred to as SpiderPatches,
are connected to form the nodes of a graph, called MeshGraph, that captures global structures of the mesh. These two data
structures are then fed into a bi-level architecture based on Graph Attention Networks. The MeshGraph construction proves
important in ensuring optimal classification results. By the proposed subsampling process, we tackle the problem of fine-tuning
multiple hyperparameters inherent the MeshGraph by defining a graph structure that is aware of the mesh geometric details.
We demonstrate that the graph constructed using this approach robustly captures the relief patterns on the surface, obviating
the need for data augmentation during training. The resulting network is robust, easily customizable, and shows comparable
performance to recent methods, all while operating directly on 3D data.

CCS Concepts
• Computing methodologies → Neural networks; Object identification;

1. Introduction

The problem of relief pattern classification concerns the analysis
and recognition of the geometric properties over 3D surface. Simi-
larly to the texture in a 2D image, the features of these patterns are
independent to the overall shape of the manifold on which they rest.
Examples of such patterns can be found in engravings, embroidered
fabrics, and more broadly in regular decorations of ancient artifacts
and everyday objects [MBG*20; OVSP13].

In recent years, the problem of classification, retrieval, and detec-
tion of relief patterns has gathered increasing attention, especially
due to the advancement of algorithms in computer vision and the
availability of datasets containing hundreds of both synthetic sam-
ples and objects derived from 3D scans [MBG*20; BTA*17]. How-
ever, most state-of-the-art methods avoid working directly on 3D

† Corresponding author.
E-mail addresses: gabriele.paolini1@unifi.it (G. Paolini)
niccolo.guiducci@edu.unifi.it (N. Guiducci)
claudio.tortorici@tii.ae (C. Tortorici)
stefano.berretti@unifi.it (S. Berretti)

structures. Instead, they perform multi-view analysis techniques,
where parts of the mesh are projected onto a 2D plane for fur-
ther processing, often via learning-based approaches [MBG*20]
that revealed to be effective in the 2D field. Despite these cate-
gory of approaches achieved significant results, they still rely on
2D representation of 3D data, thus loosing the essence of 3D infor-
mation. In the recent years, the concepts like convolution or pool-
ing have been extended to the 3D domain, in particular on mesh
manifolds, point clouds, and graphs [BBL*17; HHF*19; MLR*20;
SACO22; HLG*22; YLB*20]. Despite this progress, there has
not been a corresponding advancement in the classification of re-
lief patterns. Starting from the work of Werghi et al. [WBD14]
based on a definition of Local Binary Patterns on mesh manifolds,
many approaches have been studied that rely on ad-hoc descrip-
tors [WTBD15; TBOW21; TWB21; TB18].

In Guiducci et al. [GTFB23], a relief pattern classifier based
on Graph Neural Networks (GNN) was introduced. Their network
features a bi-level architecture operating on both local and global
graph structures, called SpiderPatch and MeshGraph, respectively.
The idea is to use an individual SpiderPatch to capture a local and
detailed representation of the mesh, while the MeshGraph, con-

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.
This is an open access article under the terms of the Creative Commons Attribution Li-
cense, which permits use, distribution and reproduction in any medium, provided the orig-
inal work is properly cited.

DOI: 10.2312/stag.20231298 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0003-5325-2076
https://orcid.org/0000-0001-6943-2854
https://orcid.org/0000-0003-1219-4386
mailto:gabriele.paolini1@unifi.it
mailto:niccolo.guiducci@edu.unifi.it
mailto:claudio.tortorici@tii.ae
mailto:stefano.berretti@unifi.it
https://doi.org/10.2312/stag.20231298

G. Paolini et al. / A sparse mesh sampling scheme for graph-based relief pattern classification

structed using feature vectors from several SpiderPatches as nodes,
provides a macroscopic view of the mesh. The advantage of this
approach is the ability to operate entirely on manifolds, achieving
results in SHREC’17 and SHREC’20 tracks that are comparable, if
not superior, to image-based methods.

In this paper, we develop on the approach proposed in Guiducci
et al. [GTFB23] with the aim of making it more general and less
demanding in terms of number of hyperparameters to tune. In par-
ticular, we have designed a mesh sampling algorithm capable of
uniquely generating (except for the choice of the starting point) a
global MeshGraph that retains sufficient information to character-
ize the relief patterns of the mesh. This way, we construct a more
stable graph structure by halving the number of hyperparameters to
fine-tune. Specifically, this sampling algorithm determines both the
number of nodes (i.e., the SpiderPatches) and connectivity. Fine-
tuning of this latter parameter is crucial to achieve high accuracy,
so the development of an automatic method to estimate connectiv-
ity between SpiderPatches is essential. Finally, thanks to the Mesh-
Graph constructed in this way, we are able to obtain accuracies that
are close to the state-of-the-art without relying on data augmenta-
tion or voting systems.

We assessed the efficacy of the proposed method for relief pat-
tern classification on meshes from the SHREC’17 relief pattern
track dataset [BTA*17], wherein each mesh exhibits a single relief
pattern. We showcased the potential and robustness of graph-based
learning algorithms in this problem domain, achieving outcomes
that are comparable with those reported in the foundational work
of this paper.

Our main focus is directed towards the geometric texture clas-
sification task, thus we structured the rest of the paper as follows:
In Section 2, we summarize related work in the literature of relief
pattern classification; Section 3 describes in detail the proposed ap-
proach and the network architecture; experimental results are dis-
cussed in Section 4; finally, in Section 5, we draw conclusions and
discuss potential future developments.

2. Related work

Many techniques have been proposed to describe texture patterns in
the 2D image domain based on their repeatability, unpredictability,
and orientation [DT05; Low04]. Widely recognized methods to ex-
tract such information typically rely on local descriptors resulting
from convolution-based filtering operations or Local Binary Pat-
terns (LBP) [OPH94]. While texture analysis is well-developed for
2D images, transferring these methods to 3D surfaces presents in-
herent challenges, including irregular data representation and the
dichotomy between local and global characterizations of relief pat-
terns. Such challenges have been highlighted in studies like that of
Biasotti et al. [BTB*18]. In the domain of interest to us, namely
the analysis of 3D texture patterns, methods can be categorized
based on whether they utilize deep learning techniques. Traditional
methods are briefly presented in Section 2.1, while learning-based
methods are reported in Section 2.2. In alignment with the methods
presented in SHREC’20 [MBG*20], non-deep learning approaches
can be further classified based on two main adopted strategies. In
the first strategy, methods work in the Euclidean domain either by

partially or fully projecting the 3D model onto a set of images and
then applying texture image retrieval methods (see Section 2.1.1).

The second strategy work by extending the characterization of
image textures directly within the 3D model, or more generally a
non-Euclidean domain, which includes graphs, point clouds, and
manifolds (see Section 2.1.2).

2.1. Traditional methods

The conventional approach to texture analysis involves the study
and application of ad-hoc shape descriptors. Subsequently, the op-
eration of texture retrieval or classification is executed using a spe-
cific metric applied to these descriptors.

2.1.1. Euclidean domain

The majority of the methodologies presented in the SHREC’17 and
SHREC’20 tracks convert the 3D information of the mesh into 2D
images. Subsequently, they identify texture patterns using image
processing techniques like morphological methods. These meth-
ods often demonstrate superior performance compared to other pro-
posed solutions. For example, Biasotti et al. [BTA*17] utilized co-
variance descriptors generated from 2D images derived from 3D
geometries to compare texture patterns. Giachetti et al. [Gia18] fol-
lowed a similar methodology, producing a 2D raster image from
3D meshes, then applying the Improved Fisher Vector (IFV) on the
2D image to extract feature vectors. Tatsuma and Aono [BTA*17]
utilized depth images from 3D meshes to generate LBP images,
further extracting Kaze features and statistical attributes from the
LBP image.

2.1.2. Non-Euclidean domain

Non-Euclidean domains prove more challenging to address, as sev-
eral properties, such as shift invariance, that are assured when
working on grid structures, are lost. To counter this challenge, many
techniques introduce local reference frames on the mesh to extend
well-studied 2D methods. Renowned techniques like HOG [DT05]
and LBP have seen their 3D counterparts as MeshHOG [ZBVH09]
and MeshLBP [WBD14]. The meshLBP technique, inspired by
LBP in 2D, leverages the Ordered Ring Facets (ORF) structure,
aiming to emulate a consistent mesh support region akin to 2D
grids. This approach encounters limitations when adjacent facets
were missing from boundary facets.

2.2. Deep learning methods

More recent methods have begun to incorporate classifiers and
feature extractors based on learning techniques. For example, the
SHREC’20 competition [MBG*20] highlighted a hybrid technique,
termed Deep Patch Metric Learning (DPML), which starts by trans-
lating a mesh to a graph and subsequently samples the mesh’s sur-
face to produce patches. These patches are converted to images,
which are then fed into traditional CNNs for relief pattern classifi-
cation.

In the field of geometric deep learning, different techniques ex-
plicitly designed for 3D meshes have also been proposed. For in-
stance, Hanocka et al. [HHF*19] presented an approach that mir-

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

94

G. Paolini et al. / A sparse mesh sampling scheme for graph-based relief pattern classification

Figure 1: MeshGraph construction: Initially, points are sampled on concentric rings (left). Subsequently, the SpiderPatch graph is assembled
(middle) and, by combining multiple SpiderPatches, the final MeshGraph is constructed (right).

rored traditional 2D convolution and pooling on 3D meshes. Con-
volution is performed on a 5D feature vector constructed at each
facet by concatenating inner dihedral angles and edge properties.
The application of symmetric functions to this 5D vector removes
the order ambiguity between facet edges. Defining convolution on
edges has the advantage of a natural pooling definition through col-
lapse of non-significative edges. Sharp et al. [SACO22] bypassed
the problem of defining convolution and pooling on non-Euclidean
data by learning to simulate a diffusion process on the geometry.
Each vertex is assigned a feature vector obtained from the corre-
sponding Heat Kernel Signature value [SOG09], which is a shape
descriptor derived from the heat kernel properties. The network per-
forms a convolution-like operation by diffusing each feature vector
to its neighbors based on a learned diffusion period, followed by
integration through a Multi Layer Perceptron (MLP). Despite their
superior performance in tasks such as shape correspondence, shape
classification and segmentation, these recent convolution-based ap-
proaches have never been employed for the relief pattern classifi-
cation task and thus, they constitute an interesting field of research
to explore.

Nonetheless, in recent developments several methods have
emerged that focus on mesh data by employing flexible structures
like graphs. For example, in [GJFW22] the authors put forth a graph
learning technique that classifies the texture of each facets within
a 3D model, leveraging the versatility of graph-based representa-
tions. Here, the 3D mesh is transformed into a graph where each
node symbolizes an aspect of the initial mesh. Feature vectors for
each facet are derived from nearby facets and their geometric at-
tributes. Subsequently, this graph is input into a Graph Neural Net-
work (GNN) to determine if each node pertains to a textured or
non-textured category. The method on which our work is based
on [GTFB23] represents a successful example of GNN applied to
non-Euclidean data.

In conclusion, while modern methodologies for relief pattern
classification predominantly lean on techniques originally crafted
for 2D images, they miss important information intrinsic to the
manifold space. The results observed so far while using graph
structures are promising. For this reason, it is essential to delve
deeper into the potential of learning directly in the domain of man-
ifolds. Such insights form the cornerstone of our proposed solution,
which we elaborate upon in the subsequent sections.

3. Proposed approach

To provide context, we first briefly summarize the work of Guiducci
et al. [GTFB23] in Section 3.1. In the next sections, we proceed by
describing our developments based on their architecture. In Sec-
tion 3.2, we introduce an algorithm to generate MeshGraphs with
meaningful connectivity.

3.1. Bi-level GAT architecture

The first step to be able to input a mesh surface into the network
is to generate the corresponding graph structures, denoted Mesh-
Graphs and SpiderPatches. Different MeshGraphs on the same
mesh are obtained by randomly selecting a pre-determined num-
ber of SpiderPatches. The latter can be described as an analogous
to the patch operator introduced by Masci et al. [MBBV15], and
it is obtained from a resampling algorithm devised by Tortorici
et al. [TRBW20]. Examples of the MeshGraph construction are
shown in Figure 1.

Next, each individual SpiderPatch is fed into a Graph Attention
(GAT) [VCC*18] based network in order to produce meaningful
embeddings of each local patch. The second GAT network receives
these embeddings as node features of the related MeshGraph, pro-
ducing a single embedding. A fully-connected network classifies
each Meshgraph from these embeddings, producing a set of pre-
dicted labels.

A voting mechanism is introduced to mitigate the potential im-
pact of randomly generated MeshGraphs on the classification re-
sults. With this voting method, a mesh is categorized into a specific
class by applying a majority vote based on the classifications of the
MeshGraphs generated from the mesh itself. While effective, this
voting process requires a sufficient number of MeshGraphs to ex-
tract meaningful statistical properties of the mesh. Moreover, this
method is not suitable for surfaces with non-uniform relief patterns,
as information from each pattern type is averaged out. The whole
process is summarized in Figure 2.

3.2. MeshGraph generation

Although the voting system is an effective mechanism to disam-
biguate the bias introduced by the use of random MeshGraphs, it

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

95

G. Paolini et al. / A sparse mesh sampling scheme for graph-based relief pattern classification

Figure 2: The bi-level procedure for MeshGraph classification: the first level GAT analyzes all the SpiderPatches, independently of a
MeshGraph, producing embeddings; these embeddings are then used as node features in the second level GAT that analyzes the MeshGraph
producing a single embedding; finally, this is used to classify the MeshGraph with a final layer.

necessitates a statistical sample of MeshGraphs to operate effec-
tively, it is not repeatable, and mostly it requires generating and
processing multiple Meshgraphs per mesh (25 as per Guiducci et
al.). To enhance the system’s efficiency, we have implemented a
parsimonious sampling method for the mesh, leading to the gen-
eration of MeshGraphs with more meaningful connectivity. This
modified MeshGraph generation step grounds on the properties of
the Circle-Surface Intersection (CSI) algorithm as proposed by Tor-
torici et al. [TRBW20]. We choose a random vertex as the initial
seed point of the first SpiderPatch. Then, we select the points in
the outermost ring and add them as points belonging to the Mesh-
Graph. The process repeats by iterating through these newly added
points. A candidate point is rejected if it falls within the boundary
defined by the MeshGraph, as well as when it is less than a given
non-geodesic distance away from a MeshGraph node. For simplic-
ity, this distance was chosen to be equal to the radius used to com-
pute the SpiderPatches. The algorithm continues until there are no
more nodes to add.

At this point, we obtained a set of SpiderPatches representing
the MeshGraph nodes. To generate the final MeshGraph, we need
to connect these nodes in a meaningful way. To define the graph
connectivity, we opted for a triangulation algorithm of the nodes,
so that the edges would connect spatially close nodes. There are
several algorithms that generate a triangulation in 3D from a finite
set of points. In our context, we require that the algorithm does
not alter the position of the given point set. Thus, we choose the
classic ball-pivoting algorithm, which ensures a watertight triangu-
lation in most scenarios [BMR*99]. The ball radius is automati-
cally determined by dividing the diagonal of the bounding box by
the square root of the number of nodes [SO20]. This heuristic as-
sumes a uniform distribution of points on the mesh. Given that the
points reside on a 2D surface, the average distance between them
is inversely proportional to the square root of their total number.
Thus, the ball radius should also be proportional to this value. To
achieve an appropriate radius, we scale this average distance using
a characteristic length of the mesh, which we have selected as the
diagonal of the oriented bounding box. The bounding box is based
on the PCA of the convex hull of the mesh. By construction, a mini-
mum geodesic distance is guaranteed between a sampled point and
the nearest one. In this way, the ball-pivoting algorithm with the
specified radius generates a watertight mesh.

To better understand the difference between our sampling and

the one proposed by Guiducci et al., we show an example of Mesh-
Graph construction in Figure 3.

This MeshGraph generation has some advantages over the one
described in [GTFB23]:

• The SpiderPatches cover the whole mesh, capturing enough in-
formation to process entire relief patterns. Changing the sam-
pling distance affects the overlap area between SpiderPatches
and thus the redundancy of information;

• Despite this redundancy, the number of SpiderPatches generated
during the experiments is still close to that specified by Guiducci
et al., making the computational cost comparable.

• Apart from the choice of the initial seed point, the MeshGraph
is constructed in a deterministic manner, making the use of the
voting system unnecessary. The bias introduced by the random
seed point is negligible, as the final MeshGraph structure densely
capture the geometric details of the pattern reliefs;

• The number of parameters to define during the pre-processing
stage has been reduced. More precisely, we no longer need to
define the number of MeshGraphs per mesh, as we construct a
single MeshGraph that covers the whole mesh. Furthermore, the
number of SpiderPatches now depends only on the result of the
sampling method. Finally, the degree of each SpiderPatch in the
MeshGraph is now computed via the ball-pivoting algorithm.

Our method is summarized in Algorithm 1.

3.3. Network architecture

To process the SpiderPatches and MeshGraphs, we defined a multi-
level architecture based on two networks. Analogous to what pre-
sented in [GTFB23], we term each network as an Embedder.

The first embedder aims to embed the SpiderPatches into a latent
representation. The SpiderPatch nodes contain the following fea-
tures; Guassian and mean curvatures, curvedness, max curvature
(K2), and local depth (LD). Curvature values were calculated on 5
spatial resolution levels (see in the Table 1). These resolutions are
expressed as percentages relative to the maximum extension of the
oriented bounding box. Unless otherwise specified, all resolutions
were used in the following experiments.

The second embedder generates a single feature vector that will
be used to train the relief pattern classifier (i.e., a fully-connected

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

96

G. Paolini et al. / A sparse mesh sampling scheme for graph-based relief pattern classification

Figure 3: Our MeshGraph construction method: Initially, points are sampled on concentric rings and the SpiderPatch is assembled by
connecting adjacent points (left). Subsequently, the MeshGraph nodes are generated by iteratively sampling the outermost rings of the
SpiderPatches. The ball-pivoting algorithm generates the graph edges, highlighted in red (middle). Upon completion of the sampling process,
a graph of graphs is obtained, wherein each node of the MeshGraph contains the SpiderPatches as attributes (right).

Algorithm 1 MeshGraph Generation

Require: Mesh M; Initial mesh vertex seed; SpiderPatch radius
radius; Number of rings per SpiderPatch rings; Points per rings
points.

Ensure: MeshGraph object.
1: MG← empty MeshGraph object
2: SP←CSI(M,seed,radius,rings, points) ▷ SpiderPatch

generation
3: Append SP to MG node attributes
4: new_seeds← outermost ring of SP
5: sampled_points← [seed]
6: Generate a KD-tree from sampled_points
7: while new_seeds count > 0 do
8: seed← pop(new_seeds)
9: SP←CSI(M,seed,radius,rings, points)

10: for all points p in outermost ring of SP do
11: neighbors← KD-tree query for sampled_points

within radius of p
12: neighbors← neighbors\{seed}
13: if neighbors∩ sampled_points ̸= 0 then
14: continue
15: else
16: Append p to new_seeds
17: Append SP to MG node attributes
18: Append seed to sampled_points
19: Update KD-tree with new sampled_points
20: Generate connectivity in MG using ball-pivoting algorithm
21: Get final MeshGraph MG

Table 1: Values of spatial resolutions used to compute curva-
tures. Each percentage refers to the maximum extent of the oriented
bounding box.

Spatial resolutions
Levels 0 1 2 3 4

Percentage 0.1% 0.25% 1% 2.5% 5%

network). Each embedder shares the same common structure, com-
posed of four main parts: convolutional layer, normalization layer,
readout layer, and the jumping knowledge layer. An overview of
the embedder structure is depicted in Figure 4.

Convolutional layer. It is implemented as a Multi-Head
GAT [VCC*18], where the node embeddings h(l+1)

l in the layer
l +1 are computed as:

h(l+1)
i = σ

(
∑

i∈N(i)
ai jW

(l)h(l)j

)
, (1)

where N(i) is the set of one-hop neighbors of node i, ai j the coeffi-
cient learned from the attention mechanism, W (l) is a shared weight
matrix for node-wise transformation, and σ is the ReLu activation
function. The expression in (1) represents a single-head attention
layer; thus to define a multi-head attention layer, we parameterise
different independent single-head layers and merge their outputs.
For intermediary layers, we used concatenation as a merging oper-
ation, while for the final layer we averaged each output. In our ar-
chitecture, each building block has a single two-headed GAT layer.

Normalization layer. We chose to maintain the mixture of nor-
malization methods, similar to the approach in [GTFB23]. The
techniques incorporated in the mixture are node normalization, ad-

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

97

G. Paolini et al. / A sparse mesh sampling scheme for graph-based relief pattern classification

Block #1

Block #2

Block #3

Graph

GAT layer
input channels: C, heads: K,

output channels: C

GAT layer
input channels: C, heads: K,

output channels: C

Nodes
Features

N C

Nodes
Features

Nodes
Features

Nodes
Features

Node Features

Readout

Node Features

United Common Norm

Average Readout

Jumping Knowledge

K

Jumping Knowledge

Nodes
Features

N C
K

Nodes
Features

Embedding

Figure 4: Design of the embedder. Each embedder is composed of
several connected building blocks (blueish rectangles). Each unit
incorporates a convolutional GAT, united common normalization,
average readout, and jumping knowledge layers.

jacent normalization, graph normalization and batch normalization.
Each of these methods is weighted by a learned coefficient.

Readout layer. The readout process allows us to aggregate infor-
mation across sets of nodes into a single fixed-length vector. Typ-
ically, the readout function is used as a final layer of the network.
Here, we chose to simply average each node feature:

RG =
1
|V | ∑

v∈V
hv. (2)

Jumping knowledge. In addition to standard adjacent layer con-
nections, jumping knowledge involves connections between each
layer’s output and the final one, fostering a direct information path-
way and enhancing the network’s prediction capabilities. Let us
consider a GAT with L layers and each layer’s output h(l), where
l = 1, ...,L. In a jumping knowledge GAT, each h(l) is connected to
the final layer through an aggregation function AG:

y = classi f y(AG(h(1),h(2), ...,h(L))). (3)

In our design, each basic block produces an output of dimensions
K×C(l), where K represents the number of attention-heads, and

C corresponds to the number of channels in the convolution layer
l. This output undergoes both concatenation and averaging, as de-
picted. Subsequent blocks utilize the concatenated output as their
input (lines connecting different blocks in Figure 4), whereas the
averaged output implements the jumping knowledge and it goes to
the final layer.

Loss functions. In the training process of our network, we use
the CETripletMG loss introduced by Guiducci et al. [GTFB23].
CETripletMG is a fusion of the traditional Cross Entropy loss and
Triplet loss:

CETripletMG(y, ŷ,mgembed) =α ·CrossEntropy(y, ŷ)+

β ·Triplet(y,mgembed ,m).
(4)

Here, y denotes the labels, ŷ are the predictions, and mgembed
represents the MeshGraph embeddings determined by the last
embedder, with coefficients α and β both set to 0.5. The term
Triplet(y,mgembed ,m) embodies a triplet loss [SKP15] tailored for
MeshGraphs. It leverages the online triplet mining strategy to com-
pute the hardest-negative and hardest-positive examples within the
batch of normalized MeshGraph embeddings provided. The margin
m is set to 1.

4. Experimental results

In this section, we report the results of relief pattern classification
in Section 4.1. In Section 4.2, we carried out an ablation study on
SHREC’17 to determine the optimal parameters and assess their in-
fluence on the outcomes. Finally, experimental results are discussed
in Section 4.3.

For our experiments, we sourced the raw mesh data from the
SHREC’17 track dedicated to the Retrieval of Surfaces with sim-
ilar Relief Patterns [BTA*17]. The full dataset encompasses 720
mesh surfaces, categorized into 15 classes with 48 elements each,
as showcased in Figure 5. Each of these classes represents a distinct
pattern derived from various poses and subjected to three distinct
processing steps for every scan: two adaptive simplifications to 10K
and 5K vertices and a re-sampling process to 15K vertices. These
transformations intentionally alter the original mesh connectivity.
Additionally, as the data were procured using a depth sensor, minor
artifacts and subtle topological handles emerged. The collection of
180 distinctive raw scans, which include 15 patterns with 12 unique
samples for each, is termed the original dataset.

Previous studies have harnessed the full dataset, comprising
720 meshes, for relief pattern retrieval tasks, noting perfect accu-
racy rates of up to 100% [TBOW21] or other significantly high
scores [TB18; Gia18]. On the other hand, the original dataset pre-
sented a greater level of complexity, as evidenced by the findings
in the literature (see Table 2). Consequently, we chose the original
dataset as the foundation for our experiments.

4.1. Relief pattern classification

Among the participants in the SHREC’17 competition, the feature
mapping method by [Gia18] exhibited the superior performance,
when applied to the original dataset in the Tutte/meanC/SIFT/FV
configuration. However, both the EdgeLBP by Thompson et

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

98

G. Paolini et al. / A sparse mesh sampling scheme for graph-based relief pattern classification

Figure 5: Representative meshes from the 15 classes in the
SHREC’17 dataset.

al. [TB18] and Mesh-LBP+Mesh-Convolution by Tortorici et
al. [TBOW21] showed superior performance in comparison. A po-
tential explanation for its diminished performance might be at-
tributed to the loss of depth information when the curvature val-
ues of the mesh are mapped onto the 2D plane. Meanwhile,
the EdgeLBP, proposed by competition organizers, impressively
achieved scores of 92.2% and 91.1% across its two runs. In
line with other methods, the MeshLBP+Mesh-Convolution also
displayed diminished performance when applied to the original
dataset, with a drop in classification accuracy from 100% using the
Sobel filter to 93.33%.

Table 2 summarizes the techniques employed for relief pattern
classification on the original SHREC’17 dataset. The table is di-
vided into techniques not leveraging deep learning and methods
that apply deep learning on graphs. Results scored by our pro-
posed method, as reported at the botton of Table 2, are comparable
to those of Tortorici et al. [TBOW21] when employing the Sobel
filter. The method by Guiducci et al. [GTFB23] displays superior
performance, irrespective of whether the voting system is used or
not. In the case with no voting system, the network simply treated
each MeshGraph generated from a mesh as an independent sample
of the mesh itself. As will be elaborated upon in the subsequent
sections, this difference in accuracy values can be ascribed to the
redundancy of information when generating more than one Mesh-
Graph per mesh and the effect of the triplet loss. We also observe
that, given the limited number of models in the dataset (180) the
percentage discrepancy is way less relevant than usual (a differ-
ence of about 2% is due to a missclassification of ∼ 3 models wrt
to [GTFB23] w/o voting, and of ∼ 7 models with).

The percentages presented for our approach refer to the param-
eters in Table 3 that yield the best performance. The other param-
eters and protocols were set as follows. Our training spanned 60
epochs, utilizing an early stopping criterion. For robust generaliza-
tion and comparability, especially with SHREC’17 outcomes, we
implemented a 12-fold cross-validation. Consequently, 12 trained
networks emerged, each classifying 11 samples and validating one.
The network was trained using the AdamW optimizer [LH19] with
an initial learning rate set to 0.01 and a learning rate decay of 0.5

every 20 epochs. A batch size of 16 was chosen for MeshGraphs
and 512 for SpiderPatches.

Table 2: Comparison of our method with the results of
SHREC’17 competition [BTA*17], EdgeLBP [TB18], Mesh-
LBP and Mesh-Convolution [TBOW21], the IFV-based technique
of [giachetti2018eff3ective], and lastly the framework proposed
in [GTFB23]. Performance refers to the original dataset using
Nearest Neighbor (NN) classification for No deep learning meth-
ods.

Traditional approaches
Retrieval Method NN

[BTA*17] CMC-2 63.3%
KLBO-FV-IWKS 52.2%
KLBO-SV-IWKS 48.9%

[TB18] EdgeLBP - run1 92.2%
EdgeLBP - run2 91.1%

[Gia18] P/mC/SIFT/FV 82.8%
T/mC/SIFT/FV 87.2%
MeshLDSift+FV 77.8%

[TBOW21] Differential r = 4 87.2%
Edge Detector (b) 90.0%
Sobel 93.3%
Haar H2 90.0%
Sharpen H2 91.1%

Learning-based approaches
Classification Method Acc.

[GTFB23] No Voting 95.0%
[GTFB23] Voting 97.2%

Ours 93.3%

Table 3: Test on different SHREC’17 MeshGraph datasets. Values
in the Radius column are normalized by the number of rings, while
"e" indicates that for each mesh the average edge length was used
to compute the intersection radius. Blocks refers to the number of
blocks in the last embedder.

SpiderP. params Net. params Statistics
Radius Rings Points Blocks Acc. Loss

e 6 8 3 80.0% 0.47
e 10 8 3 86.6% 0.65
e 10 12 3 93.3% 0.28
e 10 12 5 93.3% 0.31

0.02 10 12 3 86.6% 0.74
0.02 10 12 5 93.3% 0.46

4.2. Ablation study

In Table 3, we report an ablation study to assess the influence on the
performance of the hyperparameters related to the MeshGraph gen-
eration and the GAT network. The rest of the parameters of the ar-
chitecture are kept fixed. The accuracy values presented in the table
were derived by employing 11 training meshes and 1 test mesh for
each of the 15 classes. When using the proposed MeshGraph gener-
ation, the parameters to be calibrated are reduced to those defining
the construction of individual SpiderPatches.

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

99

G. Paolini et al. / A sparse mesh sampling scheme for graph-based relief pattern classification

Table 4: Effect of different batch size and number of features on network performance. Each test was conducted using the following
SpiderPatches parameters: radius equals to the average edge length; 10 rings per SpiderPatch; 12 points per ring. Sp. Res. refers to the
spatial resolution levels of the curvature-based features.

Curvatures Other params Statistics
Gauss Mean Curvedness K2 LD Sp. Res. Batch Size Acc. Loss
✓ ✓ ✓ ✓ ✓ all 16 93.3% 0.28
✓ ✓ × × ✓ 0,1 32 86.6% 0.42
× × × × ✓ all 32 93.3% 0.35
✓ × × × ✓ 0,1 64 53.3% 1.09
× × × × ✓ all 64 93.3% 0.47

Several observations can be drawn from the table. Given the
same patch size, the number of rings and points determines the den-
sity of information extracted from the mesh. Decreasing these two
parameters results in a gradual decline in performance. In the ex-
periments, two radius values were employed, which determine the
extent of the SpiderPatches. The value denoted by e indicates that
for each mesh, the radius was computed as the product of the aver-
age edge length and the number of SpiderPatch rings. The second
value, set at 0.02, was determined by selecting the maximum value
among the average edge length of the entire original dataset. The
radius is one of the most critical parameters: excessively small val-
ues would render the MeshGraph construction process inefficient,
while excessively large values would produce SpiderPatches with
an overly broad coverage area, risking the loss of relief pattern de-
tails. From the tests conducted, determining the radius based on
the average edge length of the individual mesh generally yields the
best results. Lastly, the number of blocks in the final embedder in-
fluences the distance at which message passing occurs. Opting for
a higher number of blocks enables the network to share features
between distant relief patterns, thus enhancing the overall perfor-
mance.

4.3. Discussion

The methods outlined in Table 2 adhere to the pattern retrieval pro-
tocol designated for the SHREC’17 competition. The performance
of these techniques is assessed using the Nearest-Neighbor crite-
rion; that is, given a query mesh from a certain class, the dataset
is queried to find the mesh most akin to the presented one based
on a specific similarity metric. In this context, to be able to com-
pare our approach with the proposed ones, we conducted a standard
12-fold cross-validation (as there are 12 samples per class). For
the classification task, we reached an accuracy of 93.3%, slightly
outperformed by the method of Guiducci et al. [GTFB23] without
voting system. We argue that this discrepancy in the results can be
attributed to the fact that even without voting system, their network
can learn from a greater batch of MeshGraphs. More specifically,
their batch size of 512 MeshGraphs is better suited to work with
triplet loss, since it can draw hardest-negative and hardest-positive
examples from a larger set of samples. The use of a smaller batch
size of 16 MeshGraphs was due to computational limitations. By
reducing the number of features, it was possible to run several tests
with a larger batch size. Interestingly, the spatial resolutions used
during training plays an important role in the accuracies obtained.
As shown in Table 4, keeping more curvature-based features, while

limiting the spatial resolution levels deteriorates the performance.
On the other hand, it is sufficient to train the network on all spatial
resolutions of the local depth to achieve accuracy values compara-
ble to our best outcome. This is to some extent in agreement with
the results obtained by [TBOW21], as it was observed that local
depth outperforms K2 curvature in capturing small local variation
of the surface. Ultimately, we chose a batch size of 16 to retain all
features and allow a more direct comparison with the original work.

As an additional analysis, we compared our sampling algorithm
with the farthest point sampling (FPS) [MD03], given its ubiquity
in computer graphics and computational geometry for data simpli-
fication, particularly in point clouds. We first computed the average
ratio of the number of points sampled with our method over the
total vertex count, which for the original dataset is 0.5% with a
standard deviation of 0.02%. Then, we processed each mesh in the
dataset initialising the FPS algorithm with the computed ratio and
SpiderPatch parameters set as in Table 4. The sampled points are
then connected to create a MeshGraph using the ball-pivoting algo-
rithm, with the radius set as described in Section 3.2. We observed
a drop in accuracy levels, from 93.3% down to 69.3 on a 12-fold
cross validation process. We argue that FPS generate more regular
spaced sampling points, which can introduce aliasing effect relative
to highly detailed reliefs. Further studies could shed more light on
the reasons for this discrepancy in results.

5. Conclusions

In this paper, we introduced a novel sampling method for mesh
structures, specifically tailored for graph-based pattern relief clas-
sifiers. The integration of a sampling algorithm for the MeshGraph
generation has streamlined the complexity of the prior approach,
diminishing both preprocessing time and the number of hyperpa-
rameters to be estimated, which are crucial to achieve high accu-
racies. The classifier, integrated with the proposed method, readily
achieves accuracy values comparable to the state-of-the-art in pat-
tern retrieval techniques. Furthermore, the current definition of Spi-
derPatch ensures rotational invariance and robustness against var-
ied mesh tessellations.

To ensure invariance across distinct mesh samplings and invari-
ance to the scale of relief patterns, future work will explore ways to
automatically determining the SpiderPatch radius based on intrin-
sic characteristics of the relief patterns.

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

100

G. Paolini et al. / A sparse mesh sampling scheme for graph-based relief pattern classification

References
[BBL*17] BRONSTEIN, MICHAEL M., BRUNA, JOAN, LECUN, YANN,

et al. “Geometric Deep Learning: Going beyond Euclidean data”. IEEE
Signal Processing Magazine 34.4 (2017), 18–42. DOI: 10.1109/MSP.
2017.2693418 1.

[BMR*99] BERNARDINI, F., MITTLEMAN, J., RUSHMEIER, H., et al.
“The ball-pivoting algorithm for surface reconstruction”. IEEE Trans-
actions on Visualization and Computer Graphics 5.4 (1999), 349–359.
DOI: 10.1109/2945.817351 4.

[BTA*17] BIASOTTI, SILVIA, THOMPSON, E MOSCOSO, AONO,
MASAKI, et al. “Shrec’17 track: Retrieval of surfaces with similar relief
patterns”. 10th Eurographics Workshop on 3D Object Retrieval. 2017 1,
2, 6, 7.

[BTB*18] BIASOTTI, SILVIA, THOMPSON, E MOSCOSO, BARTHE,
LOIC, et al. “SHREC’18 track: Recognition of geometric patterns over
3D models”. Eurographics workshop on 3D object retrieval. 2018 2.

[DT05] DALAL, N. and TRIGGS, B. “Histograms of oriented gradients
for human detection”. IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR’05). Vol. 1. 2005, 886–893. DOI: 10.1109/
CVPR.2005.177 2.

[Gia18] GIACHETTI, ANDREA. “Effective characterization of relief pat-
terns”. Computer Graphics Forum. Vol. 37. 5. Wiley Online Library.
2018, 83–92 2, 6, 7.

[GJFW22] GANAPATHI, IYYAKUTTI IYAPPAN, JAVED, SAJID, FISHER,
ROBERT BOB, and WERGHI, NAOUFEL. “Graph Based Texture Pat-
tern Classification”. Int. Conf. on Virtual Reality (ICVR). 2022, 363–369.
DOI: 10.1109/ICVR55215.2022.9847889 3.

[GTFB23] GUIDUCCI, NICCOLÒ, TORTORICI, CLAUDIO, FERRARI,
CLAUDIO, and BERRETTI, STEFANO. “Learning graph-based features
for relief patterns classification on mesh manifolds”. Computers &
Graphics (2023). URL: https://api.semanticscholar.org/
CorpusID:259941818 1–8.

[HHF*19] HANOCKA, RANA, HERTZ, AMIR, FISH, NOA, et al.
“MeshCNN”. ACM Transactions on Graphics 38.4 (Aug. 2019), 1–12.
DOI: 10.1145/3306346.3322959. URL: https://doi.org/
10.1145/3306346.3322959 1, 2.

[HLG*22] HU, SHI-MIN, LIU, ZHENG-NING, GUO, MENG-HAO, et al.
“Subdivision-based mesh convolution networks”. ACM Transactions on
Graphics (TOG) 41.3 (2022), 1–16 1.

[LH19] LOSHCHILOV, ILYA and HUTTER, FRANK. Decoupled Weight
Decay Regularization. 2019. arXiv: 1711.05101 [cs.LG] 7.

[Low04] LOWE, DAVID G. “Distinctive image features from scale-
invariant keypoints”. International journal of computer vision 60
(2004), 91–110 2.

[MBBV15] MASCI, JONATHAN, BOSCAINI, DAVIDE, BRONSTEIN,
MICHAEL, and VANDERGHEYNST, PIERRE. Shapenet: Convolutional
neural networks on non-euclidean manifolds. Tech. rep. 2015 3.

[MBG*20] MOSCOSO THOMPSON, ELIA, BIASOTTI, SILVIA, GIA-
CHETTI, ANDREA, et al. “SHREC 2020: Retrieval of digital surfaces
with similar geometric reliefs”. Computers & Graphics 91 (2020), 199–
218. ISSN: 0097-8493. DOI: https://doi.org/10.1016/j.
cag.2020.07.011. URL: https://www.sciencedirect.
com/science/article/pii/S0097849320301138 1, 2.

[MD03] MOENNING, CARSTEN and DODGSON, NEIL A. “Fast Marching
farthest point sampling”. Eurographics. 2003. URL: https://api.
semanticscholar.org/CorpusID:11826820 8.

[MLR*20] MILANO, FRANCESCO, LOQUERCIO, ANTONIO, ROSINOL,
ANTONI, et al. “Primal-Dual Mesh Convolutional Neural Networks”.
(2020). DOI: 10.48550/ARXIV.2010.12455. URL: https:
//arxiv.org/abs/2010.12455 1.

[OPH94] OJALA, TIMO, PIETIKAINEN, MATTI, and HARWOOD, DAVID.
“Performance evaluation of texture measures with classification based
on Kullback discrimination of distributions”. Proceedings of 12th inter-
national conference on pattern recognition. Vol. 1. IEEE. 1994, 582–
585 2.

[OVSP13] OTHMANI, AHLEM, VOON, LEW FC LEW YAN, STOLZ,
CHRISTOPHE, and PIBOULE, ALEXANDRE. “Single tree species classi-
fication from terrestrial laser scanning data for forest inventory”. Pattern
Recognition Letters 34.16 (2013), 2144–2150 1.

[SACO22] SHARP, NICHOLAS, ATTAIKI, SOUHAIB, CRANE, KEENAN,
and OVSJANIKOV, MAKS. “DiffusionNet: Discretization Agnostic
Learning on Surfaces”. 41.3 (Mar. 2022). ISSN: 0730-0301. DOI: 10.
1145 / 3507905. URL: https : / / doi . org / 10 . 1145 /
3507905 1, 3.

[SKP15] SCHROFF, FLORIAN, KALENICHENKO, DMITRY, and PHILBIN,
JAMES. “FaceNet: A unified embedding for face recognition and cluster-
ing”. 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2015, 815–823. DOI: 10 . 1109 / CVPR . 2015 .
7298682 6.

[SO20] SHARP, NICHOLAS and OVSJANIKOV, MAKS. “"PointTriNet:
Learned Triangulation of 3D Point Sets"”. Proceedings of the European
Conference on Computer Vision (ECCV). 2020 4.

[SOG09] SUN, JIAN, OVSJANIKOV, MAKS, and GUIBAS, LEONIDAS. “A
Concise and Provably Informative Multi-Scale Signature Based on Heat
Diffusion”. Computer Graphics Forum 28.5 (2009), 1383–1392. DOI:
https://doi.org/10.1111/j.1467-8659.2009.01515.
x. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1111/j.1467-8659.2009.01515.x. URL: https://
onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-
8659.2009.01515.x 3.

[TB18] THOMPSON, ELIA MOSCOSO and BIASOTTI, SILVIA. “Descrip-
tion and retrieval of geometric patterns on surface meshes using an edge-
based LBP approach”. Pattern Recognition 82 (2018), 1–15 1, 6, 7.

[TBOW21] TORTORICI, CLAUDIO, BERRETTI, STEFANO, OBEID, AH-
MAD, and WERGHI, NAOUFEL. “Convolution operations for relief-
pattern retrieval, segmentation and classification on mesh manifolds”.
Pattern Recognition Letters 142 (2021), 32–38 1, 6–8.

[TRBW20] TORTORICI, CLAUDIO, RIAHI, MOHAMED KAMEL,
BERRETTI, STEFANO, and WERGHI, NAOUFEL. “CSIOR: Circle-
surface intersection ordered resampling”. Computer Aided Geometric
Design 79 (2020), 101837 3, 4.

[TWB21] TORTORICI, CLAUDIO, WERGHI, NAOUFEL, and BERRETTI,
STEFANO. “Representing and analyzing relief patterns using LBP
variants on mesh manifold”. Pattern Analysis and Applications 24
(2021), 557–573 1.

[VCC*18] VELIČKOVIĆ, PETAR, CUCURULL, GUILLEM, CASANOVA,
ARANTXA, et al. Graph Attention Networks. 2018. arXiv: 1710 .
10903 [stat.ML] 3, 5.

[WBD14] WERGHI, NAOUFEL, BERRETTI, STEFANO, and DEL BIMBO,
ALBERTO. “The mesh-lbp: a framework for extracting local binary pat-
terns from discrete manifolds”. IEEE Transactions on Image Processing
24.1 (2014), 220–235 1, 2.

[WTBD15] WERGHI, NAOUFEL, TORTORICI, CLAUDIO, BERRETTI,
STEFANO, and DEL BIMBO, ALBERTO. “Representing 3D texture on
mesh manifolds for retrieval and recognition applications”. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
2015, 2521–2530 1.

[YLB*20] YANG, ZHANGSIHAO, LITANY, OR, BIRDAL, TOLGA, et al.
Continuous Geodesic Convolutions for Learning on 3D Shapes. 2020.
arXiv: 2002.02506 [cs.CV] 1.

[ZBVH09] ZAHARESCU, ANDREI, BOYER, EDMOND, VARANASI, KI-
RAN, and HORAUD, RADU. “Surface feature detection and description
with applications to mesh matching”. 2009 IEEE conference on com-
puter vision and pattern recognition. IEEE. 2009, 373–380 2.

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

101

https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/2945.817351
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/ICVR55215.2022.9847889
https://api.semanticscholar.org/CorpusID:259941818
https://api.semanticscholar.org/CorpusID:259941818
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/3306346.3322959
https://arxiv.org/abs/1711.05101
https://doi.org/https://doi.org/10.1016/j.cag.2020.07.011
https://doi.org/https://doi.org/10.1016/j.cag.2020.07.011
https://www.sciencedirect.com/science/article/pii/S0097849320301138
https://www.sciencedirect.com/science/article/pii/S0097849320301138
https://api.semanticscholar.org/CorpusID:11826820
https://api.semanticscholar.org/CorpusID:11826820
https://doi.org/10.48550/ARXIV.2010.12455
https://arxiv.org/abs/2010.12455
https://arxiv.org/abs/2010.12455
https://doi.org/10.1145/3507905
https://doi.org/10.1145/3507905
https://doi.org/10.1145/3507905
https://doi.org/10.1145/3507905
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/https://doi.org/10.1111/j.1467-8659.2009.01515.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2009.01515.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01515.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01515.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01515.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01515.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01515.x
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2002.02506

