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Abstract

We introduce a cascade classification algorithm for bifurcation detection in Computed Tomography Angiography
(CTA) scans of blood vessels. The proposed algorithm analyzes the vessel surrounding by a trained classifier
first, followed by an accurate segmentation of the vessel outer wall by Morphological Active Contour Without
Edges and finally extracts the boundary features of the segmented object and classifies its shape by Approximate
K-nearest Neighbour classifier. The algorithm shows encouraging and competitive results for blood vessels from
various parts of a human body including head, neck and legs.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Object recognition

1. Introduction

Vascular diseases such as atherosclerosis and stenosis often
affect human vessels and can lead to serious problems, in-
cluding heart attack, stroke, or even death. To timely diag-
nose and treat such diseases, medical imaging techniques are
widely used with CTA being particularly suitable for produc-
ing detailed images of blood vessels and tissues in various
parts of the body. Image processing and machine learning
techniques can help to accelerate and facilitate daily rou-
tines of physicians. Robust segmentation and labeling of ves-
sels is important for accurate calcification, plaque and lumen
segmentation. Consequently, this can help to better identify
symptoms and diagnose many dangerous vascular diseases.

However, to represent the complete vessel tree morphom-
etry, precise vessel segmentation is not sufficient and de-
tection of vessel landmarks such as bifurcations is needed.
A vessel bifurcation is the point at which division into two
smaller vessels occurs (see Figure 1). An accurate algorithm
for bifurcation detection could be of use for postprocessing
of existing tracked vessels or can be as well a part of a larger
vessel tracking or labeling system. In this work we propose
an algorithm which could be fully or partially used for such
applications.

Related work There has been a large amount of studies
focused on lumen and vessel outer wall segmentation al-

gorithms however only few of them target the bifurcation
detection problem. This problem still remains a major chal-
lenge.

Alberti et al. [ABG∗12] presented a fully automatic
method for detecting bifurcations in intravascular ultrasound
sequences. The algorithm proceeds in two steps: first, angu-
lar sector classification is applied to image sequences. Sec-
ond, the results were refined by using contextual information
for a multiscale stacked sequential learning scheme. Though
results are great, the designed features are very specific for
ultrasound sequences and therefore not easy to adjust for
other modalities.

A bifurcation filter based on modeling bifurcations in
scale space and combined with eigenvalue analysis was pro-
posed by Baboiu et al. [BH12]. The algorithm was substan-
tially evaluated on synthetically generated 2D bifurcations
as well as on medical data on large retinal angiograms with
each containing several hundred bifurcations. No quantita-
tive results for 3D volumes were reported.

Beck et al. [BBBD10] detected and validated vessel bi-
furcation landmarks by using Fast Marching and anatomical
information from a knowledge database. The algorithm was
tested on datasets with carotids only. Success rates of 74.47
% for right and 78.72 % for left carotid bifurcations were
reported. Though results are good on the carotids, it is not
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Figure 1: Left: A bifurcation location shown schematically in red oval, Right: Multiple bifurcation locations (highlighted in
green) of a vascular system in a right leg. The right image was extracted from OpenStax College, Anatomy & Physiology
[Ope14] and further modified. The book is available as a free download.

clear how the method would perform on a wider range of
vascular landmarks. Besides, the algorithm is computation-
ally demanding.

Zhou et al. [ZCMA07] proposed a method for vascular
structure segmentation with an automatic method for bi-
furcation detection using AdaBoost classification on vessel
cross-sectional images. The algorithm was evaluated on pul-
monary vessels from clinical CT chest data. A success rate
of 97% for bifurcation detection was reported.

A joint vessel tracking and bifurcation detection algo-
rithm was introduced by Zhao et al. [ZH14]. The authors
proposed three novel 3D features for classification by Ran-
dom Forest. The algorithm was tested on 3D CT chest im-
ages as well as synthetic data. The performance of the algo-
rithm was compared graphically with the method proposed
by Zhou et al. [ZCMA07]. No numerical results were pro-
vided.

In contrast to other bifurcation detection methods, the al-
gorithm proposed by Brozio et al. [BGG∗12] as well as our
approach do not need a complete segmentation of a vessel in
3D volume. The algorithm analyzes cross-sectional planes
orthogonal to the vessels in a slicewise manner. To get the
artery candidates, vessel candidates are obtained by thresh-
olding and connected component analysis and further con-
nected by using Dijkstra algorithm. A set of geometric fea-
tures (such as shape and length) is used then to detect can-
didates for bifurcations. The algorithm was evaluated on ab-
domen and runoff contrast enhanced CT volumes. An over-
all bifurcation detection rate of 75.63% for iliac bifurcation
was reported. Results for other vascular structures were not
reported but authors claim that with minor changes the algo-
rithm can be easily adapted.

Contribution In this work we present a real-time cascade
classification algorithm for bifurcation detection in CTA im-
ages. We train two classifiers for two separate steps of the
algorithm. The first classifier is trained to differentiate loca-
tions with a high concentration of bone structures next to the
vessel, the second one to differentiate bifurcations. The algo-
rithm does not require a full segmentation of the vessel tree
to function properly. It can either be a part of a bigger vessel
tracking algorithm and be able to classify bifurcation loca-
tion on the fly or can be used to postprocess already existing
vessel trees. The algorithm is fast, able to work in real-time
and can be integrated into bigger vessel analysis systems.
We demonstrate the performance of our algorithm on ves-
sels from various parts of the body - head, neck and legs.

2. Materials and Methods

As the appearance of vessels varies greatly in different hu-
man body parts it is challenging to define a generic approach
able to cope with all possible scenarios. In cross-sectional
images vessels usually appear as bright structures on dark
surrounding (see Figure 2a). In Figures 2b and 2c typical
cross-sections of bifurcations are shown. In most cases bi-
furcations look like two smaller vessels merged together.
Many arteries, such as vertebral, basilar and carotid ones,
can differ in intensity as they pass through or run right next
to bone structures (see Figure 2d). In those cases intensities
of bone structures and vessels are similar and therefore there
is no clear border visible between them. To the best of our
knowledge and experience there are no large bifurcations in
the vessel locations next to bone structures and therefore we
propose to exclude those patches as the first step of the al-
gorithm. At the second step we first segment the area within
the vessel outer wall and then classify the shape of the seg-
mented region.
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(a) (b) (c) (d)

Figure 2: Cross-sectional images of (a) a normal vessel, (b) a bifurcation, (c) a double bifurcation (d) vessel passing through a
bone.

Figure 3: Feature generation for DDPI descriptors.

On each given candidate position the algorithm performs
the following four steps:

1. Reconstruct a vessel-cross section (see Section 2.1).
2. Classify whether the vessel is located next to bone struc-

tures using combinations of features and classifiers ex-
plained in Sections 2.2 and 2.3 respectively.

3. Segment the interior area within vessel outer wall by a
method explained in Section 2.4.

4. Classify whether the segmented shape represents a bifur-
cation using a set of boundary descriptors introduced in
Section 2.5 and a classifier explained in detail in Section
2.3.

2.1. Vessel Cross-section Reconstruction

In order to generate a cross-section we need a point within
a vessel wall and a tangential vector at the point. If a path
within a vessel (e.g. a centerline of a vessel) is given the
vector can be easily computed.

We use the method by Zambal et al. [ZHKB08] to extract
vessel centerlines. Vessel cross-sections are computed then
at the centerline points.

An image patch Pi with the center located at the given
centerline point is extracted using trilinear interpolation - a
value at each position of the patch is interpolated using in-
tensity values at eight direct neighbouring voxels of the ini-
tial volume. As the size of a vessel is not known in advance
the algorithm should be able to generate an image patch in a
way that any possible human artery cross-section of a vessel
bifurcation would fit into it. In our experiments the average

size of a patch was approximately 10 mm with maximal size
up to 40 mm for certain large arteries.

2.2. Feature representation for intensity-based
cross-section classification

To train the algorithm to differentiate between the patches
with clearly seen vessels from the patches with bone struc-
tures we evaluated several features which we briefly intro-
duce below.

Histogram of Oriented Gradients (HOG) The descriptor
thoroughly explained by Dalal et al. [DT05] counts occur-
rences of gradient information in localized portions of an
image. The HOG features are widely used in medical image
processing tasks. An excellent reference is given by Erdt et
al. [EKDW13], where HOG features are applied to detect
multiple anatomical regions simultaneously. For our prob-
lem, HOG features are of use in the first classification stage,
because patches showing bone structures exhibit high local
gradients in the bone as well as at the bone edges. Hence
they are distinguishable from normal vessel patches, where
high gradients occur mainly at the vessel borders.

Haralick Texture Features (HTF) Haralick et al. [HSD73]
proposed a set of simple texture features based on gray-
scale spatial dependencies applied to the image classification
problem. HTF features have been actively used in medical
image processing. Felipe et al. [FTTJ03] proposed a method
which used the features for content retrieval from medical
images for tissue identification and image classification. An-
other excellent example is the method proposed by Ghosh et
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al. [GACD11] where the features were used for automatic
diagnosis of lumbar intervertebral disc degeneration. In the
original paper 14 descriptors were introduced. In our exper-
iments we used ten: angular second moment, contrast, cor-
relation, sum of squares (variance), inverse difference mo-
ment, sum average, sum variance, sum entropy, difference
variance and difference entropy. Texture patches of bone and
vessel samples vary in the spatial gray-scale relation and ex-
hibit different contrasts, which makes it reasonable to evalu-
ate HTFs for our method. Furthermore, they are simple and
fast to compute. For more details on the features and imple-
mentation we refer to the original paper [HSD73].

Directional Derivatives of Pixel Intensities (DDPI) We
propose a simple set of intensity-based features.

For each patch we repeat the following steps:

1. Subdivide the patch Pi into nine sub-patches Pi
jk (see

Figure 3) where j,k ∈ [0,2].

2. As the image patch is extracted in a way the center
point is located within the vessel wall we assume
that the central sub-patch lies partially or fully inside
the vessel and therefore becomes a "reference" sub-patch.

3. For each sub-patch Pi
jk, compute the mean intensity µ jk

of its pixels.

4. Subtract the mean intensity of the reference sub-patch
from mean intensities of the other sub-patches.

5. Form an eight-dimensional feature vector

vk = (µ00−µ11, µ01−µ11, . . . , µ22−µ11)
T (1)

6. Make the feature rotation invariant by sorting the values
of each vector vk in ascending order.

7. Train the classier with feature vectors Eq. 1 for two
classes - normal case without bones located next to the
vessel (including cases with bifurcations), and the case
when the vessel is passing through or running close to
bone structures.

Feature visualization The t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) (Van et al. [VdMH08]) representa-
tion of the three features is depicted in Figure 4. As you can
see from the figures all three features demonstrate reason-
able separability for our problem and can be applied to sepa-
rate bone cases (shown in red) from normal vessel locations
(shown in blue).

2.3. Classification Algorithms

For our problem we used two supervised learning classifica-
tion algorithms.

(a)

(b)

(c)

Figure 4: t-SNE visualizations of (a) HOG, (b) HTF, (c)
DDPI features; horizontal and vertical axes represent t-SNE
values estimated from the corresponding features.

The Approximate Nearest Neighbour Method (ANN) Pri-
ority Search K-Means algorithm proposed by Muja et al.
[ML14] belongs to a class of approximate nearest neigh-
bour algorithms and is extremely efficient especially when
either the feature space dimension or the number of training
samples is large. The search tree is constructed by separat-

c© The Eurographics Association 2015.

134



Novikov et al. / A Two-Level Cascade Classification Algorithm for Real-Time Bifurcation Detection in CTA Images of Blood Vessels

ing points at each tree level into M distinct regions using
k-means clustering until the number of points in the region
is smaller than M.

The Support Vector Machine (SVM) algorithm introduced
by Vapnik and Chervonenkis [VC64] and in current stan-
dard incarnation proposed by Cortes and Vapnik [CV95], ef-
ficiently performs a non-linear classification by constructing
a hyperplane which would represent the largest separation
between the classes. SVM proved its oustanding efficiency
when working with HOG features in image processing par-
ticularly (see Bristow and Lucey [BL14] for a nice explana-
tion why).

At the first level of the scheme we compared both clas-
sifiers - ANN and SVM in combination with three different
features. In the second part of the scheme only the ANN on
boundary features has been used.

2.4. Morphological Active Contour Without Edges
(MACWE) for Vessel Outer Wall Segmentation

The basis for the segmentation algorithm is the approxima-
tion of the model proposed by Chan et al. [CSV00].

The proposed method was designed for detecting objects
where boundaries are not necessarily defined by gradient in-
formation. The active contour without edges functional of a
curve C is defined as:

F(c1,c2;C) = µ Length(C)+ν Area(inside(C)) +

λ1

∫
inside(C)

‖ I(x)− c1 ‖ dx dy+

λ2

∫
outside(C)

‖ I(x)− c2 ‖ dx dy (2)

where µ≥ 0,ν≥ 0,λ1,λ2 > 0 are fixed parameters, c1 and
c2 are the mean of the values of I(x) inside and outside the
contour C.

We consider the minimization problem:

inf
c1,c2,C

F(c1,c2,C) (3)

As an initial object for the algorithm, we used a small
circle with the center at the given starting point.

We use the morphological approximation for the problem
in Eq. 3 (introduced by Alvarez et al. [ABHMN10]) because
it does not require solving a numerical PDE unlike the orig-
inal model and therefore does not suffer from numerical sta-
bility problems. Besides, morphological operators are eas-
ier and more straightforward to implement than complicated
numerical algorithms.

2.5. Feature representation for segmented shape
classification

For classification of the segmented object we use some of
the boundary descriptors nicely summarized in the thesis by

Huque [Huq06]. In order to compute the descriptors we out-
line the segmentation first by using morphological operators
(dilation followed by subtraction) and then fit the minimum-
bounding rectangle to the outline using the method proposed
by Chaudhuri et al. [CS07].

The following descriptors we find suitable for our prob-
lem i.e. they are capable of differentiating between circular
and elliptic shapes (shapes which vessels and bifurcations
normally have) or highly concave shapes which in turn could
result from a failed segmentation.

Elongation (by Jenkin et al. [HJ97] ) :

Elongation =
width bounding−box

height bounding−box
(4)

Eccentricity (by Gonzalez and Woods [GW01] ) :

Eccentricity =
axis length short
axis length long

(5)

Convexity (by Shipley and Kellman [SK01]) :

Convexity =
convex perimeter

perimeter
(6)

Solidity (by Derry [Der02] ):

Solidity =
area

convex area
(7)

Standard Deviation of Radial Distances:

Sd =

√√√√ 1
N−1

N

∑
i=1

( di−d )2 (8)

where i ∈ [1,N]; di is the radial distance, i.e. the distance
from the center of mass to the perimeter point (xi, yi).

3. Evaluations

3.1. Data

To evaluate our approach we used the following datasets:

• Seven head & neck CTA scans with dimensions 512×
512, number of slices from 754 to 1001, in-plane sizes
(0.32− 0.43)× (0.32− 0.43) mm2, and slice thickness
0.3 mm for all scans.

• Three leg CTA scans with dimensions 512× 512, num-
ber of slices from 704 to 1084, in-plane sizes 0.67×
0.67 mm2, and slice thickness from 1.0 to 1.5 mm.
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(a) (b)

Figure 5: Two cases of vessel trees and bifurcation locations for (a) a leg study, (b) a head & neck study.

3.2. Reference Data

Vessel centerlines for all datasets were annotated by a med-
ical expert. Each position in the centerline was labeled as a
bifurcation, normal position or a position with a large con-
centration of bone structures next to the vessel.

3.3. Evaluation metrics

For the evaluations we used the following performance met-
rics:

Success Rate (SR):

SR =
TP+TN

TP+TN+FP+FN
×100% (9)

Failed Rate (FR):

FR =
FP

TP+TN+FP+FN
×100% (10)

Missed Rate (MsR):

MsR =
FN

TP+TN+FP+FN
×100% (11)

3.4. Results

For all tests we used patches with dimensions 160× 160
pixels. We performed cross-validations for seven head &
neck and three leg datasets. In total more than 3500 cross-
sectional images of 34 vessels from various parts of the hu-
man body have been examined.

Intensity-based cross-section classification The main aim
of the first part of the algorithm was excluding as many
"bone samples" as possible and at the same time keeping
samples with bifurcations.

Measures # 1 # 2 # 3
SR (%) 88.76 87.54 85.43
FR (%) 3.64 4.46 4.8

MsR (%) 7.6 8.0 9.7

Table 1: Leave-one-out cross-validation results of the first
step of the algorithm for head & neck datasets for three
intensity-based classification pairs - #1: HOG + SVM, #2:
HTF + SVM, #3: DDPI + ANN.

Measures #1+ANN #2+ANN #3+ANN
SR (%) 86.74 87.66 83.64
FR (%) 8.79 7.14 11.99

MsR (%) 4.4 5.19 4.36

Table 2: Final results after two steps of the pipeline al-
gorithm for head & neck datasets for three configurations
of intensity-based classification pairs at the first step and
boundary descriptors with ANN at the second step.

Cross-validation results for the best configurations for all
three features for head & neck datasets are shown in Table 1.

For the leg datasets there were very few cases with bone
structures next to the vessel and therefore the success rate
was about 96-98 % for all three configurations. Overall num-
bers shown in Table 1 demonstrate that HOG and HTF in
combination with SVM outperform DDPI with ANN but at
the same they require more feature and parameter tuning. For
the generation of the symmetric gray-level co-occurrence
matrix for HTFs, grid search was performed on various dis-
tance and angle settings. Best results were achieved with a
distance of one, i.e. using the direct neighbour, and an an-
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Measures
Circle of

Willis
Middle

Cerebral
Subclavian Vertebral Carotid

Brachiocephalic
Trunk

Cerebellar*
Overall
Result

SR (%) 83.33 93.93 78.65 82.29 79.52 96.29 94.23 84.37
FR (%) 6.8 1.51 15.85 12.11 12.9 0.0 3.84 11.25

MsR (%) 9.8 4.54 5.48 5.59 7.56 3.7 1.92 4.37

Table 3: Head & neck study results for the bifurcation detection for the best performing HTF and SVM configuration; (*)
corresponds to left and right anterior inferior cerebellar and left and right superior cerebellar arteries.

Measures Aorta Iliac Arteries Femoral Arteries Peroneal Arteries Overall Result
SR (%) 100.0 86.36 92.68 82.4 87.68
FR (%) 0 13.22 2.43 12.4 8.79

MsR (%) 0 0.4 4.87 5.2 3.51

Table 4: Leg study results for the bifurcation detection for the best performing HTF and SVM configuration.

gle of 135 degrees. DDPI and ANN are both efficiently fast,
show competitive results and can be used right out of the box
in real-time applications.

Segmented shape classification At the second step of the
algorithm, we classify bifurcation locations by analyzing ge-
ometric descriptors of the segmented shapes.

The algorithm segments the object of interest by MACWE
with standard parameters (λ1 = 1, λ2 = 1, µ1 = 1) and
then computes five boundary descriptors introduced in Sec-
tion 3.4. ANN with branching factor M = 16 and K = 15
neighbours is used to classify the segmented shape. Both pa-
rameter sets have been recommended in the original papers
by Neila et al. [MNBA14] and Muja et al. [ML14].

Table 2 shows the results after the second step of the clas-
sification algorithm for all three configurations used at the
first step. Final results demonstrate that successful classifi-
cation rate of the segmented shapes for samples preselected
by the combination of HTF with SVM slightly exceeds the
other configurations used at the first step of the cascade al-
gorithm.

Tables 3 and 4 show detailed cross-validation results for
particular arteries in head & neck and leg studies respec-
tively for the best performing combination of the intensity-
based classification pair HTF + SVM configuration together
with ANN algorithm for segmented shape classification task.
Relatively high failed rate for subclavian, vertebral and
carotid (internal carotid particularly) arteries is caused by
a high concentration of bone structures close to the arteries.
Accordingly small glitches in the segmentation algorithm in
those cases led to undesirable misclassifications.

Figure 5 shows resulting vessel trees for two datasets with
bifurcation locations highlighted in green color.

Our algorithm shows better overall results for carotid ar-
teries than the result claimed by Beck et al. [BBBD10] for
left and right carotid bifurcations - 79.52 % against 74.47

% and 78.72 % respectively. Compared to Brozio et al.
[BGG∗12], whose algorithm is also working with cross-
sectional images, our method demonstrated higher overall
bifurcation detection success rate for iliac artery bifurcations
- 86.36 % against 75.63 % reported by the authors. Besides
that, our evaluations include not only the main iliac artery
bifurcation, but also other smaller bifurcations of the iliac
arteries. The overall results with success rates of 84.37 %
for head & neck and 87.68 % for leg studies demonstrate
that our algorithm is competitive with other state-of-the art
methods. Besides, in contrast to other methods our algorithm
can deal with various arteries and even small bifurcations in
different parts of the human body.

Algorithm performance All evaluations have been per-
formed on a PC with 16 GB RAM with a 3.40 GHz Intel
Xeon CPU within a single-threaded framework. Total pro-
cessing time for 3500 cross-sectional images was 275 s with
an average processing time of 0.08 s per testing sample.

4. Conclusions

We presented a two-level algorithm for artery bifurcation de-
tection in different parts of a human body in CTA images.
Our approach is straight-forward to implement: we use clas-
sic and simple features for classification, an easy-to-tune al-
gorithm for segmentation of the vessel outer wall and further
classification of the segmented shape. Our method shows
encouraging and competitive results on various arteries in
head, neck and leg datasets. We believe our algorithm can
be applied to vessels in other parts of a human body. As the
algorithm does not use any CTA-specific information it can
be easily adopted to blood vessel images from other imag-
ing modalities. Timing measures show that the algorithm is
suitable for bigger real-time vessel analysis systems. We be-
lieve that our results can even be improved with more train-
ing data and a learning-based segmentation algorithm. As
future work we plan to extend the algorithm to 3D, i.e. we
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believe it will improve robustness of the whole method in
problematic cases.
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