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Abstract

An electroencephalography (EEG) coherence network represents functional brain connectivity, and is constructed by calcu-
lating the coherence between pairs of electrode signals as a function of frequency. Visualization of coherence networks can
provide insight into unexpected patterns of cognitive processing and help neuroscientists to understand brain mechanisms.
However, visualizing dynamic EEG coherence networks is a challenge for the analysis of brain connectivity, especially when
the spatial structure of the network needs to be taken into account. In this paper, we present a design and implementation of a
visualization framework for such dynamic networks. First, requirements for supporting typical tasks in the context of dynamic
Sfunctional connectivity network analysis were collected from neuroscience researchers. In our design, we consider groups of
network nodes and their corresponding spatial location for visualizing the evolution of the dynamic coherence network. We
introduce an augmented timeline-based representation to provide an overview of the evolution of functional units (FUs) and
their spatial location over time. This representation can help the viewer to identify relations between functional connectivity
and brain regions, as well as to identify persistent or transient functional connectivity patterns across the whole timewindow.
In addition, we modified the FU map representation to facilitate comparison of the behavior of nodes between consecutive FU
maps. Our implementation also supports interactive exploration. The usefulness of our visualization design was evaluated by
an informal user study. The feedback we received shows that our design supports exploratory analysis tasks well. The method

can serve as an preprocessing step before a complete analysis of dynamic EEG coherence networks.

CCS Concepts

eApplied computing — Life and medical sciences; eHuman-centered computing — Information visualization;

1. Introduction

A functional brain network is a graph representation of brain or-
ganization, in which the nodes usually represent signals recorded
from spatially distinct brain regions and edges represent signifi-
cant statistical correlations between pairs of signals. Currently, in-
creased attention is being paid to the analysis of functional connec-
tivity at the subgroup level. A subgroup is defined as an interme-
diate entity between the entire network and individual nodes, such
as a community or module which is comprised of a set of densely
connected nodes (Ahn et al. [APS14]). Such a group of nodes can
represent a certain cognitive activity that requires brain connectiv-

ity.

Data-driven visualization of functional brain networks plays an
important role as a preprocessing step in the exploration of brain
connectivity, where no a priori assumptions or hypotheses about
brain activity in specific regions are made. This type of visualiza-
tion can provide insight into unexpected patterns of brain func-
tion and help neuroscientists to understand how the brain works.
An important goal of visualization is to facilitate the discov-
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ery of groups of nodes and patterns that govern their evolution
(Reda et al. [RTJ*11]). Recent techniques mostly focus on the vi-
sualization of static EEG coherence networks. Here we focus on
the evolution of groups of nodes over time, i.e., dynamic commu-
nities, which has received less attention so far in the neuroscience
domain. Although some visualization approaches have been devel-
oped for dynamic social networks, these approaches cannot be di-
rectly applied to brain networks, since they do not maintain the spa-
tial structure of the network, that is, the relative spatial positions of
the nodes. Visualization approaches which do not take into account
the physical location of the nodes make it hard to identify how the
functional pattern is related to brain regions.

An EEG coherence network is a 2D graph representation of
functional brain connectivity. In such a network, nodes repre-
sent electrodes attached to the scalp at multiple locations, and
edges represent significant coherences between electrode sig-
nals [HRA*95, MSvdHdJ06]. Traditional visualization of multi-
channel (64 or 128 electrodes) EEG coherence networks suffers
from a large number of overlapping edges, resulting in visual clut-
ter. To solve this problem, a data-driven approach has been pro-
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posed by ten Caat ez al. [fCMRO8] that divides electrodes into sev-
eral functional units (FUs). Each FU is a set of spatially connected
electrodes which record pairwise significantly coherent signals. For
a certain EEG coherence network, FUs can be derived by the FU
detection method [tCMRO8] and displayed in a so-called FU map.
An example is shown in Figure 1. In such a map, a Voronoi cell is
associated to each electrode position, cells within one FU have the
same color, circles overlayed on the map represent the barycenters
of FUs, and the color of the line connecting two FUs encodes the
average coherence between all electrodes of the two FUs. An exten-
sion of this method to resting state fMRI networks was presented
by Crippa et al. [CR11].

In this paper, we provide an interactive visualization method-
ology for the analysis of dynamic connectivity structures in EEG
coherence networks as an exploratory preprocessing step to a com-
plete analysis of such networks. Experts from the neuroscience do-
main were involved in our study in two ways. First, they provided a
set of requirements for supporting typical tasks in the context of dy-
namic functional connectivity network analysis. Second, we carried
out an evaluation of our tool with a (partially different) group of ex-
perts from the neuroscience domain. One of the main requirements
coming from the domain experts is that spatial information about
the brain regions needs to be maintained in the network layout, a
feature which is not present in most existing network visualization
methods.

The main contribution of this paper is a combination and adapta-
tion of existing techniques to visualize functional connectivity data
in the neuroscience domain. In particular we provide:

e an augmented timeline representation of dynamic EEG coher-
ence networks with a focus on revealing the evolution of FUs
and their spatial structures;

o the detection of dynamic FUs to detect persistent as well as tran-
sient FUs;

e a sorted representation of FUs and vertices per timestep to fa-
cilitate the tracking of the evolution of FUs over time and the
identification of brain regions that the FU members belong to;

e atime-annotated FU map, which is an extended FU map for de-
tailed comparison of FU maps at two consecutive timesteps;

e an online interactive tool that provides an implementation of the
above methods.

No. FUs: 4 ;  No. sign. conns. : 3
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Figure 1: Example of an FU map [tCO8] as obtained during an
oddball task (see also subsection 5.1).

2. Related Work

Many techniques for visualizing dynamic networks have been de-
veloped; these are reviewed by Beck et al. [BBDW 14]. These tech-
niques can be classified into three categories: animation, timeline-
based visualization, and hybrid approaches. The most straightfor-
ward method is animation (Archambault et al. [APP11]). When
an animation is used to visualize the evolution of networks, the
changes are usually reflected by a change in the color of the
nodes. However, network animation is limited to a small number
of timesteps [RFF*08,RTJ* 11]. When this number becomes large,
the users have to navigate back and forth to compare networks since
it is hard to memorize the states of networks in previous timesteps,
see Bach et al. [BHRD™15]. Some work has been done to help users
easily capture network changes. These approaches aim to preserve
the abstract structural information of a graph, called the mental map
(Diehl et al. [DGKO1], Misue et al. [MELS95]).

An alternative to animation is the timeline-based representation.
A typical approach is the application of small multiples, in which
multiple networks at different points in time are placed next to each
other [BHRD™15]. This approach is limited by the size of the dis-
play screen: it is very hard to display entire graphs at once when the
dataset becomes large. Networks can be shrunk in size, but the cor-
responding resolution and detail are reduced [BHRD™15]. Besides,
this type of small multiples makes it hard to track the evolution of
networks, because corresponding nodes in different multiples have
to be identified visually.

Interactive visual analysis of temporal cluster structures in high-
dimensional timeseries was studied by Turkay er al. [TPRH11].
They presented a cluster view that visualizes temporal clusters with
associated structural quality variation, temporal signatures that vi-
sually represent structural changes of groups over time, and an
interactive visual analysis procedure. Van den Elzen et al. [vdE-
HBvW16] presented a visual analytics approach for the exploration
and analysis of dynamic networks, where snapshots of the network
are considered as points in a high-dimensional space that are pro-
jected to two dimensions for visualization and interaction using a
snapshot view and an evolution view of the network. However, in
both approaches the spatial nature of the data did not play a role or
was absent from the beginning.

An extension of the timeline-based representation has been de-
veloped for visualizing the evolution of communities that is widely
used for dynamic social networks (Sallaberry er al. [SMM13],
Vehlow et al. [VBAW15], Liu et al. [LWW™13]). In this repre-
sentation, nodes are aligned vertically for each timestep and are
connected by lines between consecutive timesteps. For a certain
timestep, nodes in the same community form a block. As time pro-
gresses, lines may split or merge, reflecting changes in the com-
munities. This visualization is based on the flow metaphor, as is
used in Sankey diagrams (Riehmann ez al. [RHFO05]) or flow map
layouts (Phan et al. [PXY*05]), where users can explore complex
flow scenarios.

Specifically, the communities and nodes are sorted to reduce
the number of line crossings, which can improve the readability
of the graph [SMM13, VBAW15]. In addition, the color of the
nodes usually reflects the temporal properties of a community, e.g.,
the stability of a dynamic community or the node stability over
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time [VBAW15]. To allow interactivity, the order of the nodes can
be manipulated by the user [RTJ*11]. However, this approach can-
not be applied to dynamic brain networks directly since it visualizes
the dynamic network while ignoring the spatial information of the
network nodes, which is a crucial factor in the analysis of brain
networks.

3. Design

In this section we first introduce the tasks that neuroscientists want
to perform in the context of functional connectivity network anal-
ysis, then formulate the design goals that take into account the re-
quirements following from the task analysis, and describe the deci-
sions we took when designing the visualization.

3.1. Requirements

We used a questionnaire to collect requirements from a small group
of researchers who regularly employ brain connectivity analysis.
Eight participants were involved in the requirements collecting
stage, consisting of master and PhD students, a postdoc, an asso-
ciate and a full professor. The median age of the participants was 35
years. Their experience in working with brain data ranged from 0.5
year to 30 years (with a median of 12 years). The goal of the ques-
tionnaire was to understand the general problems the researchers
are facing when analyzing their data, the specific needs regarding
network analysis, and the role of visualization in their data analysis.

Although the way of acquiring neuroimaging data may vary
among researchers, the common underlying data representation for
different types of connectivity and the methods of analyzing data
are similar. Therefore, our questionnaire was not limited to the anal-
ysis of EEG data, but also addressed fMRI data. In our study, we
restricted ourselves to graph representations, especially focusing on
dynamic structures present in the data. We analyzed the feedback
of the respondents and compiled the following list of tasks that are
of interest to them to explore brain connectivity, and for which vi-
sualization tools are not readily available:

e Task 1 Provide an overview of coherence networks across time.

o Task 2 Identify the state of each coherence network, that is, indi-
cate significant connections between signals recorded from dis-
tinct locations.

e Task 3 Discover how functional connectivity is related to spatial
brain structure at each timestep.

e Task 4 Explore the evolution of functional connectivity struc-
tures over time. That is, determine at which time step and in
which brain areas the connections and their spatial distribution
change, to find the areas of interest in which connections are sta-
ble or strongly changing, as a starting point for further study.

e Task 5 Compare coherence networks between individuals or
conditions. That is, indicate the differences between coherence
networks of, e.g., patients and healthy individuals, or the differ-
ences of coherence networks between task conditions for single
individuals. This can help neuroscientists to predict diseases or
explain differences in human behavior.
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3.2. Design

In this section we discuss our choices for representing the evolution
of coherence networks over time, and the visual encodings adopted
in the representation, that meet the requirements set out above.

Visualizing dynamic coherence networks requires that the
changes of connections are shown. As mentioned in section 2, ani-
mation or a timeline-based representation can be used to visualize
dynamic coherence networks.

Given the limitations of animation, we have chosen to base our
method on the timeline representation for visualizing the evolution
of communities in dynamic social networks (see Figure 2), because
it can not only provide an overview but also the trend of changes in
coherence networks over time (Task 1).

In this timeline-based representation, electrodes are represented
by lines (Figure 2(a)). For each timestep, to reflect the connections
between electrodes and also consider their spatial information (Fig-
ure 1), we use the FUs proposed by ten Caat er al. [tCMRO8].
This approach has been used to analyze coherence networks de-
rived from an oddball EEG experiment (ten Caat et al. [f{CMROS]),
as well as to study the influence of mental fatigue on coherence net-
works (Lorist et al. [LBtC*09], ten Caat et al. [tCLB*08]). Later
it was extended to the analysis of functional fMRI networks by
Crippa et al. [CR11]. An FU, which can be viewed as a region of
interest (ROI), is a set of spatially connected electrodes in which
each pair of EEG signals at these electrodes is significantly coher-
ent. In the timeline representation, FUs are represented by blocks
of lines (Figure 2). The blocks are separated by a small gap to dis-
tinguish different FUs (Task 2).

Since the representation based on FUs maintains the spatial lay-
out of electrode positions, it is more intuitive compared to other
representations when exploring the relationship between spatial
structures and functional connectivity. For each FU in the timeline
representation, we use the color of the line to indicate which brain
region the corresponding electrode originates from (Figure 3). In
addition, to provide the exact location for each FU we provide a
partial FU map for each block of lines in the timeline representa-
tion (Figure 2(b)). A partial FU map for a block of lines is a map
where the electrodes included in this block are colored black and
the rest of the electrodes are colored white (Task 3).

To help users identify the persistent or transient functional con-
nectivity and to simplify the tracking of connections over time, we
first preprocess the coherence networks to detect dynamic FUs. A
dynamic FU is a set of similar FUs detected at consecutive time
steps (a precise definition is provided in subsection 3.3, Figure 4).
A dynamic FU which persists across a wide span of consecutive
timesteps is a stable state across time (Figure 7(a)). Dynamic FUs
which only exist for a small range of timesteps are referred to as
transient dynamic FUs (Task 4).

The last main goal is to compare coherence networks between
different conditions. To achieve this goal, we use a time-annotated
FU map to demonstrate the differences between two consecutive
FU maps (Figure 5). In this time-annotated FU map, we adopt a
division of each cell into an inner and an outer region, such that the
information of the previous/current state is encoded in the color of
the inner/outer cell, where the dynamic FU from each coherence
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network is mapped to the color of the corresponding region. We
consider this approach to be useful since it does not obscure the
graph layout structure and it can provide details about changes of
the node states (Task 5).

=1 =2 =3 =4 =5

(a) Timeline-based representation without partial FU map.

t=1 =2

(b) Augmented timeline-based representation with partial FU map.

Figure 2: Examples of the timeline-based representations. Both
representations represent the evolution of dynamic FUs across five
timesteps for coherence in the frequency band 8-12 Hz. For each
timestep, FUs are ordered by their barycenter and within each FU
brain regions are ordered as follows: LT, Fp, F, C, P, O, RT (see Fig-
ure 3). The labels of 119 electrodes are arranged vertically on the
left. The line color reflects the location of electrodes (see legend).
The number at the center of a block corresponds to the dynamic FU,
and the top block (labeled 15) represents electrodes that do not be-
long to any FU whose size is above the size threshold. (a) Timeline-
based representation, providing an overview of the time evolution
of FUs. (b) Augmented timeline-based representation, providing an
overview of the time evolution of FUs, including partial FU maps.
Details about the implementation of these visualizations are pro-
vided in section 4.

3.3. Data Model and Dynamic FU Detection

In our visualization framework, we define a dynamic EEG coher-
ence network as a sequence S = (G, Gy, ..., Gy) of consecutive co-
herence networks, where N denotes the number of such networks,
and G; = (V,E;) (1 <t < N) is a coherence network at timestep ¢
defined by a set of vertices V and a set of edges E; C V x V. Each
coherence network has the same vertex set V since the electrode
set, and therefore the vertex set, is constant over time. In contrast,
the edge sets E; change over time as coherences change over time.

ANTERIOR >

<POSTERIOR
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Figure 3: Schematic map of the scalp on which electrodes have
been attached (nose on top). Electrodes, represented by Voronoi
cells, are divided into seven regions based on the EEG elec-
trode placement system: LT (Left Temporal), Fp (Fronto-polar), F
(Frontal), C (Central), P (Parietal), O (Occipital), RT (Right Tem-
poral). Each region has a unique color (see the color legend on the
right-bottom).

3.3.1. FUs and FU map

For exploring the network while taking its spatial structure into
account, the node-link diagram is considered to be more intuitive
compared to other representations since its layout is based on the
actual physical distribution of electrodes. However, the node-link
diagram suffers from a large number of overlapping edges when
the number of nodes exceeds a certain number. Therefore, the FU
map can be used to better understand the relationship between con-
nections and spatial structure (Figure 1).

The FU map was proposed to visualize EEG coherence networks
with reduced visual clutter and preservation of the spatial struc-
ture of electrode positions. An FU is a spatially connected set of
electrodes recording pairwise significantly coherent signals. Here
“significant” means that their coherence is equal or higher than
a threshold which is determined by the number of stimuli repeti-
tions [tCMROS8]. For each coherence network, FUs are displayed
in a so-called FU map which visualizes the size and location of
all FUs and connects FUs if the average coherence between them
exceeds the threshold.

For each timestep, FUs are detected by the method proposed by
ten Caat et al. [tCMRO8]. We denote the set of FUs detected at
timestep t by P = {C; 1,C; 2,...,Cr, }, Where n; is the number of
FUs at time 7.

3.3.2. Dynamic FU

To track the evolution of FUs, we introduce the concept of dy-
namic FU. Connecting FUs across timesteps, a set of L dynamic
FUs {Dy,D,,...,Dy} is derived from the dynamic EEG coherence
network S as follows. Each dynamic FU D; is an ordered sequence
Dy ={C,, ’Ctl+1712’"'7Ctl+k,11k,} € Py X Py X .. X Py, Where g is
the timestep at which Dj first appears, k; is the number of timesteps
during which Dy lasts, and each G, ;. is an FU at timestep #;4;
(Figure 4). That is, each dynamic FU D; is an FU whose members
(i.e., included electrodes) are evolving over time as a result of the
changing coherences between signals recorded by electrodes.

The key problem of detecting dynamic FUs is how to connect
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Figure 4: Synthetic FU maps with five dynamic FUs tracked
over five timesteps. Each cell corresponds to an electrode.
Cell colors indicate different dynamic FUs: red represents Dy :
{C1,1,C2,1,C3,1,C4,1,Cs.1 }, blue represents Dy : {C1 2}, cyan rep-
resents D3 : {C13,C53,C33,C42,C53}, green represents Dy :
{C22,C32}, and magenta represents Ds : {Cs}; the white cells
represent electrodes belonging to small FUs with size less than two.

FUs at consecutive timesteps. Similar to Greene’s work [GDC10],
we do a pairwise comparison of the FUs between consecutive
timesteps and put the most similar FUs into the same dynamic FU.
Here, we define the similarity between FUs C and C, as a weighted

sum of Jaccard similarity J(C1,C;) = }g:gg} and spatial similarity
E(C1,G):
sim(C1,C2) =M (C1,C2) + (1 =ME(C1,G) M

where the weight factor A satisfies A € [0,1]. E(C},Cy) is defined
as one minus the 2D Euclidean distance between the barycenters of
Cy and C,. Note that this 2D Euclidean distance is normalized to
the interval [0, 1] by scaling it to the maximum possible distance
in an FU map. If sim(Cy,Cy) is equal or higher than a threshold
6 € [0,1], then we consider these two FUs similar. Our similar-
ity measure is inspired by Crippa er al. [CMLR11], but note that
they used a dissimilarity measure rather than a similarity measure.
Standard values of the parameters were chosen in our experiments,
following the literature: A = 0.5 [CMLR11] and 6 = 0.3 [GDC10].

Pseudocode of the dynamic FU identification process is given in
Algorithm 1, see also Figure 4 for a synthetic example. This iden-
tification algorithm maintains the following dynamic structures:

e D;: a set of FUs representing the dynamic FU D;.

e a dynamic label L(C; ;) that equals / when C;; belongs to dy-
namic FU D;.

e comy: a set of the common nodes of the FUs G, ,i = 1,...,k
that are part of the dynamic FU D;.

e nodes(C; ;): a set of nodes contained in the FU C; ;.

e a queue containing all similarities in decreasing order between
FUs at consecutive timesteps.

Algorithm 1 contains the following steps:

1. Initialization: a dynamic D; is created for each FU detected in
the coherence network at the first timestep (lines 1-5).

2. For each subsequent time ¢ > 1, the following steps are per-
formed. First, all similarities sim(C;—1,;,C;;) (1 < j < |P 1],
1 <i< P)between FUs in P,_{ and P; are inserted in the queue
in descending order (line 11). Then,

a. While the queue is not empty, the highest similarity
sim(C;_1,j,Cy,;) is removed from the queue (lines 12-13). If
sim(C;_1,j,Cy,;) is equal or higher than the threshold 6, C;;

(© 2017 The Author(s)
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Algorithm 1 Dynamic FU Detection

Require: P(1 <t < N); sim(C—1,;,G ;)2 <t <N,1<j<
|P_1],1 <i < |P]); similarity threshold 6.

Ensure: D; is dynamic FU [/ consisting of a series of similar FUs;
L(G;,;) indicates the dynamic FU that C; ; belongs t0; Ligy is
the number of dynamic FUs.

1: for i=1to |P|do

2: D; ={Cy,;}

3: L(Cu) =i

4: com; = nodes(C\ ;)
5: end for

6: Lmax = |Pl |

7: for t=2to N do

8: for i=1to|P| do
9: L(C,) =0
10: end for
11:

add all similarities sim(C;,—1 j,Cr;) (1 < j < |P—1],
1 <i<|P]) between FUs in P, and P, to queue in de-
scending order
12: while queue # 0 do

13: sim(Cy—1,j,Cyi) = dequeue(queue)

14: if sim(C;—1,j,C;;) > 6 and |nodes(C; ;)
Ncomyc,_, )| = 1and L(C; ;) =0 then

15: DL(Cr—l./) DL(Cr—l./) UG,

16: L(Cpi) = L(Ci—1,5)

17: compc,_, )y = nodes(Cy;) Ncomyc, _, )

18: end if

19: end while

20: for i=1to|P|do

21: if L(C; ;) = 0 then

22: Linax = Linax +1

23: (Ct l) Linax

24: Lae = 1Cii}

25: comy,,.. = nodes(C; ;)

26: end if

27: end for

28: end for

has at least one node in the common nodes set comy (, )
and C; ; has no label, then (line 14),

C;,; is added to the dynamic FU DL(Cr—l./’) (line 15).

C;,; receives label L(C,_1 ;) (line 16).

comyc,_, ;) is replaced by its intersection with the nodes
in C; ; (line 17).

Otherwise, nothing is done.

b. When the queue is empty, it is checked whether FU C; ; has
no matching dynamic FUs, in which case a new dynamic FU
containing C; ; is created (lines 20-27).

From the pseudocode the algorithm can be expected to have
quadratic complexity in the number N of timesteps. For the data
considered in this paper this did not present a problem. The FU de-
tection was carried out as a preprocessing step. For a data set of 119
electrodes and 5 timesteps the computing time was in the order of
7 seconds on a modern laptop.
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4. Dynamic Network Visualization

Our visualization design provides an interactive exploration of dy-
namic coherence networks. As discussed in section 3, our design
aims for helping users to understand the states of coherence net-
works, how these states are related to brain spatial structure, how
the states change over time, and where the differences occur be-
tween coherence networks at different timesteps or under different
conditions.

To this end, we employ three views: an FU map, a timeline-based
representation, and a time-annotated FU map. The FU map has al-
ready been described in subsubsection 3.3.1. The timeline-based
representation provides an overview of the evolution of FUs includ-
ing both the changes in its composition and spatial information. The
time-annotated FU map reveals the detailed content of the vertices
and location of FUs, to facilitate the assessment of vertex behav-
ior in two consecutive FU maps and the comparison of FU maps
obtained under different conditions.

4.1. Augmented Timeline-based Representation

The timeline-based representation has already been used in other
contexts to visualize dynamic communities [SMM13, RTJ*11,
LWW™*13]. In this representation, time is mapped to the horizon-
tal axis, while the vertical axis is used to position vertices repre-
sented by lines. We extended this representation to show the evo-
lution of FUs. For a certain timestep, lines grouped together rep-
resent corresponding electrodes forming FUs. Thus, the width of
the grouped lines is proportional to the size of the FU in ques-
tion, similar to what is done in Sankey diagrams or flow map lay-
outs [RHF05,PXY *05]. The grouped lines are separated by a small
gap to distinguish different FUs. The lines running from left to right
represent the time evolution of the states of the coherence networks.
When the grouped lines separate, this means that the corresponding
FU splits, while the electrodes start to form an FU when lines form-
ing different groups are joined together in the next timestep. Thus,
this split and merge phenomenon helps to investigate the evolution
of FUs over time.

4.1.1. Including spatial information

To incorporate spatial information in such a timeline-based repre-
sentation, we provide two methods. First, we encode the spatial
information into the color of the lines. To achieve this, we use an
EEG placement layout based on underlying brain regions showing
the location of electrodes. In this layout, electrodes are partitioned
into several regions based on the EEG electrode placement system
(Oostenveld and Praamstra [OP01]), and each region has a unique
color generated by the Color Brewer tool [HBO3] (Figure 3). In the
timeline-based view (Figure 2), the lines are colored in the same
way as the corresponding electrodes in the EEG electrode place-
ment system of Figure 3, thus providing a mapping of each timeline
to a specific spatial brain region.

However, the color of the lines only provides rough spatial in-
formation (one of the seven brain regions). To assess the dynamics
of a small number of coherence networks in more spatial detail, we
augment the timeline-based representation by combining the evo-
lution of FUs with partial FU maps through a method inspired by

Vehlow et al. [VBAW15]. In a partial FU map, only one FU is dis-
played with its cells colored black, while the cells of all other FUs
are colored white. For a given timestep, each FU is visualized by a
block of lines, followed by the corresponding partial FU map. For
example, in Figure 2(b) each block of lines (labeled 1, 2, ..., 14)
represents an FU, except the top block (labeled 15) which repre-
sents electrodes that do not belong to any FUs because their size
is below the size threshold. Each block is followed by a partial FU
map in which the corresponding electrodes in this FU are colored
black and the rest are white.

In Figure 2, dynamic FUs are tracked over five time steps and
it can be seen that a total of fourteen dynamic FUs are detected.
The larger FUs included in dynamic FUs Dy, D, (labeled in the
figure by “1” and “2”, respectively) are located in the fronto-polar
and parieto-occipital regions (cf. Figure 3). The dynamic FUs Dy,
D,, D3, Ds, Dg, D7 exist for all timesteps. Dynamic FU D splits
at timestep 2, creating a new dynamic FU Dy in addition to D;.
Dynamic FU Dj significantly changes at timestep 3: the electrodes
colored in yellow disappear while other electrodes (colored green)
become part of it; at timestep 4, D3 returns to the original state.
This is also happening for D7, which changes a lot at timesteps 2
and 3, but returns to the original state at timestep 4.

4.1.2. Ordering of FUs and vertices

To help users easily track the evolution of FUs and their locations
in the brain, FUs need to be ordered in such a way that the position
of FUs in the timeline-based view does reflect their locations in the
FU map. Within each FU, lines representing electrodes should be
ordered in such a way that it is easy to find the electrode distribution
within this FU.

To this end, we first order FUs based on the y-coordinate of
their corresponding barycenters for each timestep (Figure 2). The
FUs with larger y-coordinate are placed above the FUs whose y-
coordinates are smaller. If any FUs have the same y-coordinate,
they are ordered based on their corresponding x-coordinate from
left to right. Because FUs exchanging many electrodes over time
usually are close to each other in the FU map, this ordering also
makes for a stable layout to some extent. To allow the viewer to
understand the electrode distribution within each FU, we have cho-
sen to order the vertices of an FU based on their location in the
EEG placement layout (Figure 3). Within each FU, vertices are or-
dered based on the brain parts to which they belong. Vertices from
the same brain regions are placed together, and they are ordered as
follows: vertices from LT are placed on the top of the FU, and then
vertices from Fp, F, C, P, O, RT. Vertices from RT are placed at the
bottom of the FU. Thus we do not optimize the view for minimum
line crossing, since earlier experiments have shown that optimizing
the layout for minimum line transition often resulted in local lay-
outs where some areas suffer from excessive crossings [RTJ*11].
In our case, the optimized layout for minimum line crossing would
make it hard to understand the spatial distribution.

4.2. Time-annotated FU map

The timeline-based view provides an overview of the evolution
of FUs over time, and the changes of states between consecutive
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timesteps can be inferred from the line transitions. These transi-
tions provide a rough indication of the difference between states at
consecutive timesteps. To focus on specific changes in the states of
coherence networks between consecutive timesteps, it is necessary
to provide more detail about the behavior of electrode signals. To
achieve this, we provide a time-annotated FU map to facilitate the
comparison of states of vertices between two consecutive FU maps.
Anexa ~ = T B

ANTERIOR >

< POSTERIOR

Figure 5: Time-annotated FU map at timestep 5 (see Figure 2).
Cells are divided into an inner and outer part. The outer cell color
indicates which dynamic FU (see the color legend on the right-
bottom) the electrode belongs to at timestep 5 while the color of the
inner cell represents the state in the previous timestep 4. The white
cells belong to FUs with size smaller than four.

Here, we employ a technique, inspired by the work of Alper et
al. [ABHR*13]. Cells are divided into an inner and outer part; for
simplicity, we will speak of “inner cell” and “outer cell”. The infor-
mation of the previous state is encoded in the color of the inner cell,
the information of the current state is encoded in the color of the
outer cell. Before we do this, each dynamic FU is assigned a unique
color to distinguish different dynamic FUs. This method preserves
the FU map’s structure, and it is intuitive to infer changes from the
colors of the inner and outer cells. For the first timestep, the color
of the inner cell is the same as that of the outer cell. For an FU at
a given timestep ¢ > 1, if the color of the majority of inner cells is
the same as their outer cells’ color, it means that this FU is rela-
tively stable during these two consecutive timesteps. Note that this
time-annotated FU map is not limited to comparison of consecutive
FU maps, but can also be used to compare FU maps obtained un-
der different conditions, e.g., to compare the states between healthy
individuals and patients.

4.3. Interaction

To support the interactive exploration of the states of coherence
networks and their evolution over time, our visualization approach
also incorporates brushing-and-linking techniques that help users to
focus on a particular coherence network or dynamic FU of the dy-
namic coherence network. A prototype application was developed
for this purpose (https://DynCohNetVis.github.io/). A screenshot of
the user interface is shown in Figure 6.

Users can find a timestep of interest in the timeline representa-
tion and click on the timestep (the blue area in Figure 6(f)) where
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they want to get more detail, so that the corresponding FU map
at that timestep is displayed in Figure 6(b). Clicking on a partic-
ular FU in the timeline view, FUs belonging to the same dynamic
FU will be highlighted in the timeline view, and the corresponding
dynamic FU index also will be highlighted in Figure 6(d). Linked
views are used for synchronous updating of the timeline represen-
tation and the FU map. This can help users to track the evolution
of dynamic FUs. Following Vehlow et al. [VBAWI15], the high-
lighting is accomplished by using a 100% opacity for the selected
item and a smaller opacity for the remaining items. Clicking on the
white space between blue areas in Figure 6(f), the time-annotated
FU map is displayed so that the user can compare the correspond-
ing two consecutive FU maps. Within the timeline view itself, we
also allow for zooming and panning techniques to investigate the
evolution of larger coherence networks.

5. User study

To evaluate the usefulness of our visualization design, we con-
ducted an informal user study in which the participants explored the
use of the dynamic coherence network visualization methods. Dur-
ing exploration, we collected online and offline feedback from the
participants on the current and potential utility of our framework.
Specifically, our goal was to assess how our visualization methods
can help neuroscientists to analyze domain problems related to the
identified tasks described in section 3.

Five PhD students (three female and two male) participated in
the study. The mean age of these participants was 30 years. Four
participants regularly analyzed EEG data; one used brain connec-
tivity analysis while the others analyzed event-related potential
(ERP) data. One participant was a computer scientist familiar with
general visualization techniques and some familiarity with EEG
data visualization. The first author met the participants at their re-
search institutes, and carried out an evaluation interview. Please
note that the participants in the evaluation stage were not the same
as the participants in the requirements collecting stage. We believe
that the use of two different groups helps to remove a potential bias
in the evaluation.

5.1. Evaluation Procedure

During the interview, the purpose of the visualization method as
well as the use of the implementation were explained first. Then,
the participants were asked to explore data derived from an EEG
experiment with four tasks and discuss their observations freely.
These data were recorded from an oddball detection experiment in
which participants (N.B.: not the same participants as those in our
user study) were instructed to count target tones and ignore stan-
dard tones and were used before for FU analysis [tCMROS]. After
the experiment, each participant had to report the number of per-
ceived target tones. In our data, brain responses to 20 target tones
were analyzed in L = 20 segments of 1 second, sampled at 1000
Hz. We first averaged over segments and then divided the averaged
segment into five equal time intervals. For each time interval, we
calculated the coherence network within the [8, 12] (alpha) Hz fre-
quency band and detected FUs following the procedure described
by ten Caat er al. [tCMRO8]. We focused on this band as its related
FU maps were interesting [tCMROS].
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Figure 6: (a) red bar that can be clicked to change the timeline rep-
resentation with or without partial FU maps; (b) electrode place-
ment layout for reference purposes; (c) color legend for regions;
(d) dynamic FU index window: after selecting a circle a specific
dynamic FU is highlighted; (e) main window for displaying the
timeline representation; (f) time ticks: by selecting a blue area the
associated timestep is highlighted, while by selecting a white area
between blue areas the time-annotated FU map is displayed.

The tasks the participants of our user study had to execute were
based on the requirement analysis as reported in section 3:

1. to explore the state of the coherence network at a certain time
step;

2. to explore the relation between functional connectivity and brain
regions;

3. to explore the evolution of coherence networks over time;

4. to compare consecutive FU maps of interest using the time-
annotated FU map.

At the end of the session, each participant completed a question-
naire. Each session took approximately 60 minutes and was audio-
taped. The interface of our visualization prototype is illustrated in
Figure 6. All participants used the online version of our tool.

5.2. Results

We collected both the observations of participants during explo-
ration and their feedback in the form of a questionnaire that was
completed after they finished the exploration.

5.2.1. Results during exploration

We observed that in general, participants were able to quickly find
the more connected areas from the thickness of the blocks and iden-
tify the stable FUs from the dynamic FUs (task 1). However, partic-
ipants were mostly interested in the change of connections within
regions and transient dynamic FUs (they called these “striking”).
With respect to tasks 2 and 3, one participant remarked that she
could get a first impression from the timeline representation and
then use the interactive techniques to investigate more details of
changes in dynamic FUs and regions. Another participant stated
that connections in F and C regions change a lot over time (the
green and light blue lines) while the connections in Fp and O re-
gions were more stable (the blue and purple lines), see Figure 6.

Transient dynamic FUs are those that only exist for a few
timesteps or exist at one particular timestep only. Two participants
who regularly used ERP analysis were particularly interested in
the second and third timesteps (tasks 1 and 3). One of them ob-
served that dynamic FU Dy appears at the second timestep (see
Figure 7(a)), but found it more interesting that at this timestep the
electrodes of this dynamic FU come from two regions, F and C
regions (green and light blue lines), while in the following time
steps the electrodes of dynamic FU Dy only are from the C region
(light blue lines), except for the third timestep at which there is still
one electrode of Dy that is from the F region (the thin green line
branching of from the thick light blue line). We can interpret these
changes in inter-region connections as reflecting changes in the
functional brain connectivity between these two regions. A similar
phenomenon was observed by another participant: dynamic FU D
appears at the second timestep, and the electrodes in this dynamic
FU mostly come from the C region except at the third timestep at
which two electrodes come from the F and P regions.

Another participant chose to compare FU maps at the first
and second timestep (see Figure 7(b)). She stated that electrodes
changed their state mostly near the boundary between F and C re-
gions, since the color of the inner cells and outer cells correspond-
ing to these electrodes are different (task 4).

In summary, participants are mostly interested in stable or tran-
sient dynamic FUs, and dynamic FUs appearing at a specific time
step. These observations can serve as the starting point for further
analysis.

5.2.2. Observations from questionnaires

After free exploration, a questionnaire was used to collect addi-
tional feedback from the participants using the following five ques-
tions:

1. How does the visualization reflect the coherence network at a
certain moment in time? (Easy to understand / Insightful / I
would be able to use it)

2. What do you think about the connections in the timeline repre-
sentation? (Clear / Relevant)

3. What do you think about the relation between the grouped lines
and their underlying spatial brain structure in the timeline rep-
resentation? (Easy to understand / Insightful / I would be able to
use it)

4. What do you think about the visualization of changes over time
in the timeline representation? (Easy to understand / Insightful /
I would be able to use it)

5. What do you think about the time-annotated FU map to facilitate
the comparison of FU maps? (Easy to understand / Insightful / I
would be able to use it)

Responses were collected on a Likert scale (fully disagree; dis-
agree; neutral; agree; fully agree).

When asked about how the visualization reflects the coherence
network at a certain moment in time, four of the participants (fully)
agreed that it is easy to understand and insightful, while three of
them agreed they would be able to use it. When considering the
properties of the connections in the timeline representation, all par-
ticipants agreed that it is clear and three of them agreed it is rel-

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.



Jietal. /Visualizing and Exploring Dynamic Multichannel EEG Coherence Networks 71

®
=
= =
(a) The evolution of dynamic FU Dy;.
. Dynamic FU index:
OGS EOREOD)

(b) Comparison of FU maps at first and second timestep.

Figure 7: In (a) the dynamic FU Dy is selected and the evolu-
tion of dynamic FU Dy is highlighted in the timeline representa-
tion window. The dynamic FU Dy starts at the second timestep
at which green lines represent electrodes coming from the F re-
gion while light blue lines represent electrodes coming from the
C region. Then, it splits into several FUs at the third timestep at
which only one green line remains while the remaining lines are
light blue. At the fourth and fifth timesteps, only light blue lines
remain in this dynamic FU. In (b) the time-annotated FU map is
displayed in the electrode placement layout to compare FU maps
at the first and second timesteps. For each inner cell, its color rep-
resents the dynamic FU to which the electrode belongs at the first
timestep while the outer-cell color represents the dynamic FU at
the second timestep. In the timeline window dynamic FUs appear-
ing at the first and second time steps are highlighted. Dynamic FUs
are distinguished by the colors of blocks. Colors of dynamic FUs
are highlighted in the window of the dynamic FU index.

evant. For the relation between the grouped lines and their under-
lying spatial brain structure in the timeline representation, four of
them agreed that it is easy to understand and all agreed it is insight-
ful. Furthermore, all agreed that it is easy to understand the changes
over time in the timeline representation and that it is insightful. Fi-
nally, when asked about the time-annotated FU map to facilitate the
comparison of FU maps, all of them agreed that it is easy to under-
stand and four of them agreed that it is insightful. Regarding the
usability, the majority of the participants agreed that they would be
able to use it; however, for each task there was one “disagree” re-
sponse. The second part of the questionnaire contained open-ended
questions that invited participants to give both positive and nega-
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tive comments. One participant, when asked what kind of informa-
tion she could gather from these representations, said: “functional
connectivity within groups of electrodes (Functional Units), their
distribution, and location and changes over time with respect to the
previously mentioned.” Most participants thought the representa-
tions were useful and some stated that they can be used to inter-
pret the data, for presentation purposes, to compare several par-
ticipants simultaneously, and to investigate the dynamics in ERP
experiments.

To address the change of states of electrodes, one participant
suggested that the time-annotated FU map could be improved by
not displaying the inner-cell shape for electrodes whose state does
not change, since the inner cell and outer cell have the same color
for this situation. Another participant suggested that the color as-
signment for dynamic FUs could be improved. When the number
of dynamic FUs is large, the color for several dynamic FUs may
be comparable, making it harder to distinguish them (Figure 7(b)).
One participant stated it would also be useful to see the actual ERP
at each timestep for each cluster to be able to interpret the data.

In summary, the feedback we received from the user study was
generally positive, which indicates the application potential of our
method for visualizing dynamic EEG coherence networks. Some
suggestions for further improvement have been made.

6. Conclusions and future work

Requirements for supporting typical tasks in the context of dynamic
functional connectivity network analysis were obtained from neu-
roscience researchers. We designed an interactive method for vi-
sualizing the evolution of EEG coherence networks over time that
meets the requirements. With this visualization, a user can inves-
tigate the relationship between functional brain connectivity and
brain regions, and the time evolution of this relationship. In addi-
tion, we provided a time-annotated FU map which can be used to
facilitate the comparison of consecutive FU maps.

The user study suggests that our visualization method is poten-
tially useful for dynamic coherence network analysis. However our
visualization method still has some limitations. First, the coherence
between FUs at a certain timestep is not reflected in the timeline-
based representation. Therefore, a future improvement is to develop
effective visual encodings to reflect the connections between FUs
at a certain timestep.

Another concern for our visualization method is its scalability.
The order of electrodes and FUs at a certain timestep is based on
regions to which electrodes belong and barycenters of FUs. The
ordering of electrodes will benefit the recognition of members for
each FU, while the ordering of FUs will benefit the tracking of
the evolution of dynamic FUs. However, for a dynamic coherence
network in which there are many electrodes that switch their state
often, the number of line crossings in the timeline-based view in-
creases, especially when the number of electrodes increases. This
makes the representation less readable. One potential solution is
to provide some interaction techniques that allow users to interac-
tively reorder electrodes and FUs. Third, for a large dataset, the
number of dynamic FUs also increases, potentially making the col-
ors hard to distinguish between dynamic FUs (as was remarked by
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one participant in our user study). Finally, although the dynamic FU
detection is carried out as a preprocessing step it may still become
time-consuming as the number of timesteps increases.

As future work, we therefore intend to further explore the in-
corporation of the coherence between FUs in the timeline repre-
sentation, to reduce the number of line crossings, to improve the
color assignment for larger datasets, to provide access to the origi-
nal EEG signals, and to find an approximation to the dynamic FU
detection algorithm of lower complexity.
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