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Abstract

The study and visualization of vascular structures, using 3D models obtained from medical data, is an active field of research.
Lllustrative visualizations have been applied to this domain in multiple ways. Researchers have tried to make the geometric
properties of vasculature more comprehensive and to augment the surface with representations of multivariate clinical data.
Techniques that head beyond the application of color-maps or simple shading approaches require a sort of surface param-
eterization, i.e., texture coordinates, in order to overcome locality. When extracting 3D models, the computation of texture
coordinates on the mesh is not always part of the data processing pipeline. We combine existing techniques to a simple, yet
effective, parameterization approach that is suitable for tree-like structures. The parameterization is done w.r.t. to a pre-defined
source vertex. For this, we present an automatic algorithm, that detects the root of a tree-structure.

The parameterization is partly done in screen-space and recomputed per frame. However, the screen-space computation comes
with positive features that are not present in object-space approaches. We show how the resulting texture coordinates can be
used for varying hatching, contour parameterization, the display of decals, as an additional depth cue and feature extraction.

CCS Concepts

eComputing methodologies — Non-photorealistic rendering; Mesh geometry models;

1. Introduction

The visualization community actively works on techniques for the
display of vascular 3D models. The motivation for this is based on
the clinical relevance for surgical planning and guidance of inter-
ventions. Different imaging modalities [LSBP18] and also physical
simulations [OJMN*18] contribute to the generation of data that
is desired to be visualized along with medical volume or surface
data. However, visual information channels are limited, and there-
fore new techniques emerge that aim to ease the perception and
comprehension of task oriented data [PBC*16]. This also plays an
important role in medical education [PS18], where illustrative tech-
niques are found to highlight certain data features or to guide the at-
tention of the viewer. Understanding the spatial structure of a given
3D object is an important aspect, especially if the user looks at the
2D projection on a common computer monitor. In this case depth
cues are missing which then have to be encoded in another way.
Another broad topic is the visualization of blood flow [MVPL18].
In this area users are interested in spatial data inside a blood vessel,
but also want to obtain information about surface related aspects.
To encode the multitude of available data, advanced (illustrative)
visualization techniques can be applied [LVPI18]. We can gener-
ally state that advanced techniques require parametric guidance on
the rendered surface data. This may be texture coordinates (to dis-
play textures or patterns) or tangent vector fields (to guide pattern
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orientation or streamline generation). Unfortunately, such parame-
terizations are not always available from the medical data acquisi-
tion pipeline. Furthermore, texture coordinates can be generated in
various ways, exposing different advantages and disadvantages.

In this work, we introduce a technique to generate texture coor-
dinates that is suitable for the processing of tubular, tree-like struc-
tures, e.g., blood vessel surface data. Because of the restricted target
morphology that our algorithm is designed for, we can take advan-
tage of that morphology and come up with a very simple approach,
utilizing existing and more generally designed algorithms. The ini-
tialization of the algorithm can be automated by a method that de-
tects the end-points and root of a tree structure. Additionally, the
resulting parameterization can be used for the extraction of branch
locations of the mesh. We also show how we can use the output of
our algorithm as an additional depth cue for a scene and the parame-
terization of contours. In this way, our approach can be used for the
improvement of structure and depth perception, and the application
of illustrative rendering techniques in order to encode multivariate
data. Thus, our main contributions are:

e A simple approach to generate texture coordinates on tree-like
structures.

e An automatic, parameter free branch- and end-point detection
algorithm.

The results are brought to use in several examples.
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2. Related Work

The parameterization of surface meshes has been researched for a
long time [FHOS]. In the past this field was highly motivated by
the topic of remeshing algorithms [BLP*13]. For remeshing pur-
poses it is usually sufficient to come up with parameterizations that
are locally bijective. Globally, 1-to-n mappings from the parameter
space to the domain may exist (as in a periodic function). For the
display of textures or decals on a surface this can be a disadvantage,
because different locations on the surface cannot be sufficiently dis-
tinguished in the parameter space. However, such periodic texture
coordinates can be useful in the visualization domain, as shown by
Knoppel et al. [KCPS15] and Lichtenberg et al. [LSHL18]. Other
techniques aim to find a 1-to-1 mapping between the parameter and
domain space. An important one to mention in this context is the
one by Kilberer et al. [KNP11]. They cut open a given mesh to
obtain disc-topology and then apply an iterative integration of tex-
ture coordinates. Then, discontinuities at the cut seams are removed
by a repair operation. While their approach yields reasonable re-
sults in the sense of the pure mapping, the algorithm itself relies
on three complex steps and the iterative nature of the algorithm
restricts it from scaling well with the mesh size. In our approach,
the units in parameter space and domain space are approximately
equal, which can be of advantage when mapping textures or pat-
terns w.r.t. the object size. Another possibility is to calculate tex-
ture coordinates locally in screen-space and has been proposed by
Rocha et al. [RASS17]. They sample the surface and render spheres
for each sample to activate the fragment shader. Texture coordinates
can then be approximated for the activated pixels in order to draw
small decals on the surface. These decals are used to represent mul-
tivariate data values.

As mentioned in the introduction, the spatial perception on 2D
monitors is restricted due to missing depth cues. Consequently a
range of publications can be found in the literature that address this
problem, using different kinds of artificial or nature-inspired ways
to encode depth. Kersten-Oertel et al. [KOCC14] provide a good
reference for the performance of different depth cues in the vascular
domain. Using the color channel, pseudo chroma-depth proposed
by Ropinski et al. [RSHO6] employs aspects of the natural percep-
tion to intuitively map depth to a red-to-blue color scale. Applying
pseudo chroma-depth to a whole mesh, however, impairs the abil-
ity to use other shading techniques to convey structure or to display
additional information on the surface itself. To cope with this issue,
Behrendt et al. [BBPS17] proposed to apply pseudo chroma-depth
only to the contour region of a mesh to make space for supplemen-
tary data. Apart from coloring or texturing a given surface to con-
vey data, additional geometry can be added as glyphs to an existing
scene [ROP11]. Then, one has to decide how many or where glyphs
should be placed in order to achieve a clean and informative result.
Later, we will present a simple method to extract branch locations
and vessel end-points from a vascular mesh. Being structurally sig-
nificant locations, these could be used for glyph placement, as done
by Lichtenberg et al. [LHL17]. With their work, they followed up
on previous methods by Lawonn et al. [LLPH15,LLH17], who used
additional geometry in a scene to improve the spatial perception.
The problem of spatial perception can be omitted when transfer-
ring the visualized data to the 2D domain, as surveyed by Kreiser
etal. [KMM™18].

When color is used to encode data on a surface a trade-off has
to be made. Either the colormap is disturbed by an additional shad-
ing, or geometric features are not perceivable due to missing shad-
ing. A workaround is then to use hatching strokes, which do not
interfere with the colormap but are still able to depict the geome-
try. Hatching along a 3D surface has first been done by Hertzmann
and Zorin [HZ00] who computed integral lines along principal cur-
vature directions. Praun et al. [PHWFO01] followed with a texture
based approach. Further insights into this illustrative rendering area
can be obtained from the survey by Lawonn et al. [LVPI18] while
an example of illustrative rendering in the context of vascular mod-
els is given by Ritter et al. [RHD*06] .

3. Method

Our goal for this work is to obtain texture coordinates 7 € R? for
the visualization of a tubular and tree-like mesh M. The two di-
mensions of this set are denoted by (U,V) € T. Important for our
work here are the Geodesics in Heat (GiH) method by Crane et
al. [CWW13] and the Jump Flood Algorithm (JFA) by Rong and
Tan [RT06]. These two algorithms have a very general domain of
application and provide the basis for our parameterization of U and
V.

This section covers the computation of the (U,V) coordinates
for M. Our approach is split into an object-space and a screen-
space part. The rationale for this will be clarified in the respective
paragraphs that follow.

Object-space: U We intend to compute U as a continuously in-
creasing scalar field across the mesh. The source of U (where
U = 0) is a pre-defined vertex vy, which should be placed at the
root (i.e. the source of blood flow) of a given vessel, to achieve
the most intuitive results. We provide an automatic root-point de-
tection algorithm that will be described later in this section. Our
approach is now to define a vector field Z, so that VU = Z (i.e.,
the gradient of U equals Z). Hence, the quality of U is determined
by the quality and orientation of Z. To define Z we first compute
the directions of minimal curvature C for each triangle of M by
applying the method presented by Rusinkiewicz [Rus04]. The ori-
entation of individual elements ¢; € C is ambiguous (i.e., ¢; ~ —¢;).
To resolve the ambiguity, we compute the geodesic distance G of
each vertex to vy, using the GiH method [CWW13]. The GiH uti-
lizes a relationship between heat transport from the physics domain
and distance, achieving quick approximations or even exactly com-
puted geodesic distances on arbitrary topologies through differen-
tial operators. Then, VG, is computed as the gradient of G for each
triangle. We then obtain Z element-wise as:

. if (c;. o) >
7= cl7 1 <cl7g.l> —0 (1)
—c¢;, otherwise

where g; € VGa. By incorporating C, we make sure that Z well
describes the geometry of M. Using VG,, we force Z to have
a single source at vys. Finally, we smooth Z to remove noise and
high frequency features of the vector-field. We do an element-wise
Lapacian smoothing in the dual graph of Z (i.e. per vertex). The
result is then lifted back to each triangle, while keeping Z in the
tangent space of M. Now, we can put Z into an equation system to
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Figure 1: Resulting U for a given source vertex (marked orange).
Isolines underline the smoothness of the result.

Figure 2: Delineated geodesic from a vertex v; to a source Vg (or-
ange) compared with the path along the gradient of U (purple).

compute U, such that VU = Z. Applying the divergence on both
sides yields the Poisson equation

AU=V-Z. 2)

Solving Eq. 2 in a least squares sense results in the coordinate U.
As alast step, we rescale U to the range of [0, max(G)]. This brings
U into a relation of spatial distances along the surface of M. Fig-
ure 1 shows an example result for U. It can be observed that U
increases strictly monotonously away from vs. Generally, we can
compute the distances w.r.t. to an arbitrary point, but the results are
most intuitive if a vessel end-point is chosen as the source. We have
to note that setting U = G works fine for very straight structures.
In these cases the geodesic distances sufficiently capture the mesh
structure. This is not true for more convoluted vasculature, which
brings up the necessity to incorporate C. Figure 2 shows the final
U compared to an anticipated geodesic between two points on the
surface. The geodesic in this convoluted section would not properly
cover the geometry. The singularities found in U can be used for
extraction of structural features as described in Section 4.1. Note
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that the assignment of U could be described as a semi-global pa-
rameterization. It is global in the sense that a set of isolines with
unique U-values can be found on the shortest path from vy to any
given vertex. However, isolines of a certain U-value are not unique
on paths to multiple vertices that are found on different branches
of the tree-structure. This means that we can identify unique, in-
dividual isolines per branch segment, but not for the whole mesh.
Constructing a Reeb graph [SK91] based on U may resolve this
ambiguity by introducing a segmentation to the mesh with unique
isolines per segment.

Object-space: Root-point Instead of defining vy manually, we
provide an automatic approach to find the root of an input mesh.
The algorithm consists of two steps:

1. Identify all vessel end-points.
2. From the given end-points find the root.

While previous approaches [LLH17, LHL17] presented methods
to find end-points, we propose a faster approach to identify these
points. Lawonn et al. [LLH17] determined the shape index of all
points, then the Otsu method was applied to extract regions around
the end-points and finally a shrinking was applied to get one end-
point per region. Lichtenberg et al. [LHL17] improved the tech-
nique by incorporating topological information via geodesic dis-
tances and graph analysis. Nevertheless, their approach requires
some pre-defined parameters that may depend on the input mesh,
making it less robust. For the first step of our method we apply
a thinning to the entire mesh, following the approach by Au et
al. [ATC*08]. Their method is based on an iterative shrinking de-

termined by
Wyl 0
= 3
(V)7 = (i) ®

where Wy, and Wy are diagonal weighting matrices that change
per iteration. For every iteration, Eq. 3 is solved in a least squares
sense, resulting in Figure 3 (center). Afterwards, we iterate over ev-
ery point p; and create a sphere B; with radius » = k€, where € is the
average edge length of the thinned mesh. The factor £ = 3 was cho-
sen empirically to set r well above the average edge length in the
thinned mesh. This ensures to capture enough sample points in the
following step. We extract all points p; on the contracted mesh that
lie inside the radius of each sphere B; (see Figure 3, right). Finally,
we take the vector n; = pj- —pi, with j = argmaxy e, Hp’] —pill. I

all points pi» lie in the same half space created by the plane with the
origin p; and normal vector n;, then p; is an end-point. Otherwise
it is not an end-point (see Figure 3, right). With this, a parameter
free detection of end-points is possible. A root-point can be found
as the end-point where the absolute mean curvature is minimal, i.e.
where the approximated vessel diameter is maximal. Several exam-
ple results are shown in Figure 4.

Screen-space: V The task of obtaining the V coordinate in object-
space is conceptually more involved. In an optimal scenario, the
gradient of V would be orthogonal to the gradient of U, and there-
fore be aligned to the direction of maximal curvature in our sce-
nario. This means that V evolves along the circumference of the
vessel structure, which will result in discontinuous seams, where
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Figure 3: First, we apply a thinning to the mesh (center). Afterwards, a sphere is created for every point to test if the created plane separates
the points inside the sphere (right). If this is not the case, an end-point is found.

Figure 4: Result of our root-point (orange) detection for various
meshes. Other end-points are marked magenta.

minimum and maximum values of V meet. Previous work by Kil-
berer et al. [KNP11] has tackled this problem by repairing the pa-
rameterization in order to match seams with integer values. Another
approach has been proposed by Ray et al. [RLL*06] and followed
up upon by Lichtenberg et al. [LSHL18] who used periodic func-
tions to avoid seams. Their methods, however, are more complex to
implement and yield parameterizations with isolines that are only
unique within a single periodic interval.

Instead of treating seams and singularities of V in object-space,
we utilize the JFA to compute V in screen-space. This choice re-
moves the necessity to treat seams in the parameterization, because
we are only looking at the flat projection of the mesh. Furthermore,
the algorithm is relatively easy to implement and executes in a few
milliseconds on modern consumer graphics hardware. The draw-
back is that V has to be recomputed each time the projection of the
mesh changes.

In our approach the JFA is used to compute the minimum dis-
tance of each pixel to the contour of a mesh M. Thus, V will always
be zero at locations next to contours, regardless of the rotation of
the camera or M, and increase away from contours (see Figure 5).
The JFA is a method that works on grid structures and is capable of
distributing content of a node in log, n iterations to all other nodes.
If we render to a view port of resolution (x,y), then n = max(x,y).
As described in their paper, the JFA [RT06] can be used to assign

each pixel to a Voronoi cell of a set of seed pixels. For each pixel,
the final result contains the minimal distance of a pixel to its re-
ferred seed pixel. In our case, the contour of a mesh is rendered
and the resulting pixels are used as the set of seed pixels. Hence,
after running the JFA, each pixel contains its minimal distance to
the contour. A first result is shown in Figure 6 (left), where thin
black strokes represent isovalues of V. Here, two overlapping ves-
sel segments are shown and the result is not optimal. Some pixels
that belong to the segment in the background (horizontal) are pa-
rameterized based on the distance to the contour of the foreground
(vertical) segment. We address this with a single modification: As
an additional parameter, we store the depth of the pixels in camera
space. Now, pixels that are not part of the contour are only allowed
to reference contour pixels, that have a higher depth value. Assum-
ing that the 3D model has no self-intersections, we use this modi-
fication to make sure that each pixel cannot reference parts of the
contour that belongs to a closer, overlapping vessel segment. The
result of this change can be seen in Figure 6 (right). Note that more
complex overlaps result in less meaningful approximations of V,
which we will address in Section 6. Finally, we rescale V so that
(U,V) is isotropic:

V«V-d, “)

where d), is a local (per pixel) approximation of the distance of two
points in world space (i.e. on the actual surface of M), represented
by two neighboring pixels. Therefore, units of V' are mapped to
world space as well. A combined example showing the results of
the object- and screen-space parameterization is shown in Figure 7.

[ —

Figure 5: Minimal distance of each pixel on the mesh projection
to the projected mesh contour, mapped to a gray scale.
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Figure 6: Unmodified JFA (left) and modified JFA, incorporating
pixel depth (right).
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Figure 7: Example result showing isolines for (U,V).

Parameterization of remaining pixels The results shown so far
only include V for pixels representing the surface of M. However,
since the JFA is executed on the GPU for all pixels, we also obtain
a parameterization for pixels that are otherwise discarded (i.e. the
background pixels). Section 4.2 shows how this can be utilized.

4. Applications

This sections describes various applications of the (U, V) parame-
ters that we obtained in Section 3. We provide a detection of branch
locations and vessel end-points, as well as a hatching technique
and the rendering of parameterized contours and depth cues. These
techniques may be useful for, or inspire, a range of visualization
approaches in the context of vascular visualization.

4.1. Branch and end-points

We can use U as obtained in Section 3 to extract branch locations
as well as vessel end-points. For this, we look at the one-ring of
each vertex. It can be observed that vessel end-points are found at
local maxima of U and branch points are found in saddle-shaped
configurations of U. This is due to the use of VG, in Section 3,
which creates a sink in the vector field Z at local maxima of G.
As depicted in Figure 8, we can visit the ordered vertices vq to
v of the one-ring of vertex v; and check for the difference of the
U value. If U(v;) is local maximum, a vessel end-point has been
found (see Figure 8, left). If we find four regions of differing sign
of dj; along the one-ring, then a saddle shaped area, and hence a
branch location, has been detected (see Figure 8, right). Here, dj; =
U(v;j)—U(v;), where j are vertices of the one-ring of v;. The points
found here may be used for the placement of glyph objects, as in
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Figure 8: Configuration of U to detect vessel end-points (maxi-
mum, left) and branch locations (saddle, right). The reference ver-
tex is colored purple and vertices of the one-ring with higher or
lower values U are marked with a + or - sign, respectively.

the work by Lichtenberg et al. [LHL17], since the vessel end-points
and branch locations are structurally significant features.

4.2. Using V to enhance depth perception

In Section 3 we mentioned that the JFA also assigns V values to
pixels that are not part of the surface representation (i.e. back-
ground pixels). Thus, background pixels also refer to their clos-
est contour pixel. In order to incorporate the depth information of
the contour pixels, we can modify the distance function used for
the background pixels’ JFA iterations. Instead of searching for the
contour pixel with the minimal euclidean distance d., we incorpo-
rate the depth, e.g. dc < d. - d* and determine the minimum of that
term to obtain V. Here, d is the depth of a contour pixel and a con-
trols the impact of the depth difference. With ¢ = 3 we achieve a
depth aware parameterization of the background pixels as shown
in Figure 9. The result appears similar to the Void Space Surfaces
by Kreiser et al. [KHR18]. The difference is, however, that we do
not extend the depth information into the background pixels with
a smart interpolation approach. Our combination of depth and dis-
tance information results in distinguishable regions that refer to in-
dividual branch regions. The boundary of these regions are visi-
ble through the abruptly changing isolines. This can, for example,
be used to draw outlines or glow effects around a given structure.
Figure 10 shows the effect, where a larger glow radius (in screen-
space) refers to less distance to the viewer. In this way, one can
easily obtain information about the global orientation of a visual-
ized structure.

4.3. Hatching

Here we describe an approach to achieve varying and overlapping
hatching strokes using the (U, V) coordinates. At first, we subdivide
the range of U into b disjunct bins.

b; = floor((U +0) - f) Q)
i = (U+4o)-f—b; (6
where o is an offset to U and f controls the number (i.e. frequency)

of bins. Usually, f is set to a rather large number, as it represents
the number of hatching strokes within each integer interval of U.
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Figure 9: The parameterization of the background pixels in depen-
dence of the contour depth values. Spacing of the isolines is larger
in regions that are closer to the viewer.

Figure 10: The parameterization of the background pixels is used
to draw a depth dependent glow. The surface itself is rendered with
varying hatching strokes.

The offset o can be arbitrarily chosen, as a constant or as a function
of V, for example.

Thus, each point i on the surface is assigned an integer value b;
and a bin-wise mapping #; of U to the range [0, 1]. We can then
obtain an intensity value via

hi = cos(fi; - 21)0.5 + 0.5 + w;) @)

to draw smooth strokes at the center of each bin along the isovalues
of U, where w; controls the width of the stroke. A maximum stroke
length /; can be applied by using V:

t= clampo’l(%)x ®)
1
hi ¢ (1= )i+t )

where s controls the falloff of the stroke intensity. An initial render-
ing of equally shapes strokes is shown in Figure 11 (left). However,
to achieve a visually appealing hatching, it is important to avoid
repetitive patterns of strokes. We address this by feeding b; into a
pseudo-random generator that yields a value r; in the range [0, 1].
By modifying a random seed based on b;, multiple different ran-

e SO A 1 A e

Figure 11: Different generic variations to the hatching strokes: no
variation (left), varying length (center, left), varying width (center,
right), final result after overlay of multiple strokes (right).

Figure 12: The variation of hatching strokes is shown in depen-
dence of a scalar field (increasing from left to right).

dom distributions 7;; can be generated for each b;. This can be used
to modify the stroke length I; < I;-a- (2r;; — 1) (see Figure 11,
center, left) and the stroke width w; <— rj» (see Figure 11, center,
right). Finally, multiple sets of hatching strokes can be drawn with
an overlap by modifying the offset 0. This offset can also be calcu-
lated in dependence of V to achieve tilted strokes (see Figure 11,
right). As the offset to U affects the calculation of 7;;, locally vary-
ing parameters for w; and /; are obtained. A whole vessel dataset
rendered with this technique is shown in Figure 10. The variation
of strokes contrasts a reference method by Lawonn et al. [LMP13]
shown in Figure 20. Figure 12 shows how the hatching variability
could be used to encode scalar information. In the illustration, parts
of the surface to the left are rendered with uniform strokes, while
moving towards the right, the strokes are more and more varied. In
the context of clinical application, this representation could be used
to encode the distance to a reference object (e.g. a tumor or surgical
instrument).

4.4. Contour parameterization

If a visualization should be used to encode multiple scalar fields the
number of available information channels is often quickly reached.
In this case one can use additional geometry to encode informa-
tion. Due to the rather thin, tubular structure of vessel, the contour
of the structure is a viable option to do this. The smaller the di-
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ameter of a vessel segment, the better can information from the
contour represent the data of the affiliated vessel segment. For ex-
ample, this has previously been done by Behrendt et al. [BBPS17],
who encoded the depth of vasculature by coloring its contour using
pseudo chroma-depth. Instead of defining the contour on the sur-
face itself (e.g. by using a Fresnel approximation), we aim to cre-
ate additional geometry at locations of the rendered mesh, where
the surface normal is orthogonal to the view direction. The ver-
tices of the generated faces adopt the U values of the generating
surface. Additionally, V values can be created based on the width
of the contour in world space (see Figure 13), and therefore their
scale matches the scale of V as computed in Section 3. The V-value
of a point on the contour is then basically its distance to the gen-
erating surface. We can then display small texture patches on the
contour as shown in Figure 14 (top). In this example, the general
direction of blood flow is depicted by an arrow decal at the vessel
boundary. In Figure 15 we use U to draw a dashed contour, which
could be applied to focus-and-context applications. Alternatively,
the contour can simply be colored w.r.t. the pseudo chroma-depth
spectrum as in Figure 16, leaving the surface free for other encod-
ings. This addresses an issue which has been tackled by Behrendt
et al. [BBPS17]. They mixed the color coding of a scalar field and
pseudo chroma-depth using a Fresnel term. A drawback of their
method is that for small vessel segments neither the depth, nor the
scalar encoding is accurately perceivable. With our method, we are
able to draw contour margins of invariant size on the mesh (see
Figure 17). Hence, for thin vessels only the contour color remains,
which is still not optimal but should be preferred over a hard-to-
read mixture of color scales. Additionally, we omit the shading of
the object in this example, in order properly retain the color scale.
Geometric features are instead depicted by the hatching strokes.

5. Implementation

In this section we describe details of our implementation.

Offline calculation of U Since U is defined in object-space, it only
has to be calculated once. Therefore we implemented the calcula-
tion of U in Matlab (the code is provided in the supplementary
material). In order to solve Eq. 2, we calculate the minimal curva-
ture direction C and the gradient of the geodesic distances VGy.
We then use a Matlab solver to obtain the results.

Y=

e
| 8
e e |

oy R

Figure 13: Additional contour geometry (triangles delineated at
the top) is created from the data of the input mesh.
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Figure 14: The contour of the mesh is labeled with decals that
emphasize the direction of blood flow (top). The same example us-
ing the (U,V) coordinates of the initial parameterization to draw
decals directly on the surface (bottom).

Online calculation of V' The evaluation of V' is done anew for ev-
ery frame. At first the input mesh M is rendered in a preparation
pass. Here we generate a mask that distinguishes between back-
ground, contour and surface pixels (see Figure 18, left, top) and a
depth texture (see Figure 18, left, bottom) that is used to implement
the depth awareness of the the JFA as depicted earlier in Figure 6.
From then on we use two buffers that are read from an written to in
each JFA iteration k. After each iteration the read and write buffers
are swapped. The JFA finds for each surface pixel the distance to
the closest contour pixel. We only edited the original algorithm in
a way, such that a surface pixel skips contour pixels that have a
lower depth value than the surface pixel (see the shader provided in
the supplementary material). For more details on the JFA we refer
to the original paper by Rong et al. [RT06]. After the JFA has ter-
minated, we can read from the recent write buffer and use V as a
texture coordinate.

Root-point detection As an optional pre-processing step, we pro-
vide a method to find the root end-point of a vessel. The detection
is done in Matlab, using our own implementation of the thinning
algorithm proposed by Au et al. [ATC*08] and an iterative search

Figure 15: U is used to draw a dashed contour. The spacing of the
dashes decreases with the distance from the tumor.
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Figure 16: Contour used to display pseudo chroma-depth (right).

Table 1: Execution times for the JFA in milliseconds and frames
per second (FPS) of our prototype application.

Resolution JFA (ms) FPS
1024 x 768 3.5 110 - 141
1920 x 1080 9 52-65

over each vertex as described in Section 3 (the code is provided in
the supplementary material).

Performance Our performance tests were executed on a desktop
computer environment with a 4.00 GHz 17-6400 processor, a GTX-
1070 GPU and 16GB RAM. As the offline computation of U is
less crucial for the overall performance of our approach, we only
provide some key data: The largest mesh that we tested, consisting
of 200k triangles, took 3.5 seconds to execute. The smallest mesh
with 17.5k triangles took 0.25 seconds. Considering that parts of
that algorithm could be executed on the GPU, we argue that this is
sufficiently fast for an interactive adjustment of U. The computa-
tion of V was found to be independent of the mesh size. As shown
in Table 1 our prototype implementation is able to obtain V in full
HD resolution in real-time. The FPS are given in ranges. Here, the
lower bound of the range is the performance when we zoom very
close to the mesh. This means that more pixels have to be treated in

High pressure

Low pressure

Figure 17: Pseudo chroma-depth applied to a contour margin. The
remaining surface color codes the blood pressure on the surface.

the assembly of the final images and the frame rate decreases. The
upper bound is what we measured for a lower zoom factor (as found
in Figures 10,12 and16). The JFA execution time has not changed
in these cases, since always all pixels are processed. The mesh
shown in Figure 3 contains 30k vertices and the computation of the
end-points including the root-point detection took ~ 10 seconds.
This is twice as fast as the method by Lichtenberg et al. [LHL17].
We observed that our new approach detects end-points more faith-
fully while the results further depend on the choice of the detection
sphere radius determined by k (recall Section 3, paragraph about
root-point detection). A larger radius yields less end-points, detect-
ing only more protruding branches as compared in Figure 19. The
proportion of the individual steps are 40% for the thinning, 45%
for the sphere tests and 10% for the curvature test. For a mesh con-
taining 100k vertices our algorithm took ~ 110 seconds, while the
reference approach took 154 seconds. Especially the iterative exe-
cution of vertices for the sphere test (see Figure 3, right) could be
improved by a parallel implementation.

Contour generation The contours that we used for the contour
parameterization in Section 4.4 (see Figure 13) and for the contour
mask (see Figure 18, left, top) are generated in the geometry shader.
We compute s; = (n;, Veam), where n; is the normal of vertex i in a
triangle and Ve is the current view direction. Then we search for
zero crossings of s;; between two vertices i and j. If we find zero
crossings on two edge of a triangle, we generate a quad with two
vertices at the crossing points and two vertices that are extruded by
a distance d w.r.t. to the interpolated normal directions at the cross-
ings. In the same way as the normal direction, we can interpolate U
from the generating triangle. The V coordinate is then determined
by setting V = 0 for the vertices at the crossing points and V = d
for the extruded vertices. This yields U coordinates that fit to the
generating mesh and the V coordinates are also scaled according to
the result of the JFA.

6. Discussion

We presented an algorithm to compute texture coordinates for tubu-
lar, tree-like structures. The input is a user-defined source vertex or
a vessel root-point detected by our proposed method. While tech-
niques like that by Kilberer [KNP11] exist, our parameterization
is simpler to implement and computationally less costly. We were
also able to show that the U coordinate can be used to find branch-
points of the vessel. Another advantage over existing parameteri-
zation methods is that the background pixels are also addressed,
allowing depth cues as in Figure 10. This is due to the screen-space
computation of V, but at the cost of recomputing V for each frame.
Nonetheless, our algorithm performs in real-time on modern con-
sumer hardware. The properties of V can further be used for a cam-
era oriented display of decals on a mesh. On cylindrical parts of a
structure (i.e. away from branch- and end-points) we find that the
gradients of U and V are mostly orthogonal and therefore suitable
for the display of patterns and textures (see Figure 23).

Limitations The parameterization approach presented in this pa-
per is simpler than existing approaches and yields good results for
tubular structures. It is tailored to vessel trees in the sense that pix-
els that represent points on a vessel segment are relatively close to

(© 2018 The Author(s)
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> Initialize
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Figure 18: Process of the JFA execution. A mask image (left, top) determines whether a pixel belongs to background (white), contour (blue)
or surface (red). A depth image (left, bottom) is used for our depth aware modification of the JFA. The result of each JFA iteration k is read
in the next iteration by swapping two buffers. After the final iteration, the last write-buffer is used to assemble a final image based on'V.

the contour pixels associated with the same segment. Therefore, the
V approximation works well. This also accounts for the modifica-
tion that we did to the JFA algorithm, where pixels may only refer
to contour pixels that have a higher depth value. The shading that
is usually applied to a mesh is also a factor. The locations where V
is locally maximal (i.e. the centerline of the projected contour as in
Figure 5) are often locations of specular lights. Hence, these peak
locations of V, where the gradient of V is undefined, can be hidden
by the shading. Regarding these susceptibilities the parameteriza-
tion quality decreases as the mesh morphology is less tubular. We
show a stippling pattern applied to an aneurysm in Figure 21. It can
be observed that part of the parameterization is highly distorted.
This is due to an improper computation of V, as the associated pix-
els refer to wrong parts of the contour. This behavior may change
with a small rotation of the object, when other parts of the con-
tour become visible or hidden. Therefore frame coherence is also
an issue.

We described in Section 3 that we smooth the vector-field Z in
order to remove noise and high frequency features. While this is
a crucial step to obtain a proper and smooth U, it can also lead
to smoothing out geometric features of the mesh. Figure 22 shows
a close-up of a small branch segment, which is predominantly ig-
nored in U.

Our root-point detection algorithm relies on two main assump-
tions: First, we assume that vessel end-points are cap-shaped, and
second, we assume that the diameter of the root is larger than any

He s

Figure 19: Detected vessel end-points from left to right: Changing
factor k = 3,9,25 to the search sphere radius for our method and
the reference method by Lichtenberg et al. [LHLI17] on the far right.

(© 2018 The Author(s)
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other diameter. This means that we are likely to detect the head of
an aneurysm, if it is larger than the healthy parts of the vessel.

Outlook As discussed, the proposed method is tailored to be ap-
plied to tubular meshes. However, we hope that the examples
shown in this paper are able to support or inspire future work in this
domain. In our opinion, one can build up on this work in two differ-
ent ways. The first one would be to further improve the methodical
details and implementation. Here, the frame coherence should be
addressed. We are also optimistic that the U computation can be
done real-time as well, which might open further interactive appli-
cation scenarios. As a screen-space approach is independent of the
mesh size, this may have the potential to overcome the size limit
of the method by Lichtenberg et al. [LSHL18]. Further, resolving
the ambiguity of U across different branches of a tree structure
would result in a segmentation of the same, e.g. by using Reeb
graphs [SK91]. The second direction would be to use the current
method and integrate it into more sophisticated medical tasks. Us-
ing different visual channels and additional geometry (i.e. the con-
tour), multiple scalar fields can be independently visualized with
our approach. However, the effectiveness of different combinations
in a real-world task needs to be evaluated. In conclusion we are
confident that particular aspects of the proposed technique are fea-
sible in various scenarios and that it therefore creates a basis for
further research.

<

L

Figure 20: The ConFis method by Lawonn et al. [LMP13]. Com-
pare with Figures 10,16,14,12.
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Figure 21: Closeup of an aneurysm data set. Our approach has
issues with the spherical shape, introducing high distortion in'V.

Figure 23: Our method applied to the fertility model, using a brick
texture. A root point (orange) was also found by our method in a
reasonable location.
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