Eurographics Workshop on Visual Computing for Biology and Medicine (2019)
B. Kozlikovd, L. Linsen, and P.-P. Vazquez (Editors)

Distance Field Visualization and 2D Abstraction of Vessel Tree
Structures with on-the-fly Parameterization

Nils Lichtenbergl, Bastian Krayerl, Christian Hansenz, Stefan Miiller' and Kai Lawonn'

nstitute for Computational Visualistics, University of Koblenz, Germany
2Computer Assisted Surgery group, University of Magdeburg, Germany

Abstract

In this paper, we make contributions to the visualization of vascular structures. Based on skeletal input data, we provide a
combined 2D and implicit 3D visualization of vasculature, that is parameterized on-the-fly for illustrative visualization. We use
an efficient algorithm that creates a distance field volume from triangles and extend it to handle skeletal tree data. Sphere-
tracing this volume allows to visualize the vasculature in a flexible way, without the need to recompute the volume. Illustrative
techniques, that have been frequently applied to vascular visualizations often require texture coordinates. Therefore, modifying
an object-based algorithm, we propose an image-based, hierarchical optimization process that allows to derive periodic texture
coordinates in a frame-coherent way and suits the implicit representation of the vascular structures. In addition to the 3D
surface visualization, we propose a simple layout algorithm that applies a 2D parameterization to the skeletal tree nodes. This
parameterization can be used to color-code the vasculature or to plot a 2D overview-graph, that highlights the branching
topology of the skeleton. We transfer measurements, done in 3D space, to the 2D plot in order to avoid visual clutter and self
occlusions in the 3D representation. A visual link between the 3D and 2D views is established via color codes and texture

patterns. The potential of our pipeline is shown in several prototypical application scenarios.

1. Introduction

Visualization methods for the investigation of vasculature have
been actively researched in the past and are still a present topic.
Challenges in this field range from surface extraction and genera-
tion over enhanced visualization techniques to interactive concepts
for the application during a surgery. While the extraction of vascu-
lar structures dates back to the work by Gerig et al. [GKS*93],
more modern and more controllable methods have been devel-
oped [OP0O5]. A common goal of advanced visualization techniques
is to communicate complex information about the vasculature in an
understandable and comprehensible way. For this, concepts of hu-
man perception are considered [PBC* 16a]. Illustrative techniques
are also often applied in this context [LVPI18]. Those are likely to
require a parameterization of the surface, in order to control place-
ment of hatching strokes or texture patterns. For example, field-
guided periodic parameterizations [RLL*06] can be employed to
place stippling dots along feature lines. Such a structural alignment
is an improvement over unconstrained placement of dots, because
it helps to accentuate geometric properties. Similar techniques have
been used in stylistic applications [SLKL11]. The reduction of spa-
tial dimensions can also contribute to an improved tangibility of
the presented data. Overlaps and visual clutter can be better con-
trolled and avoided in a 2D representation, than in a 3D represen-
tation [KMM*18].

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

DOI: 10.2312/vcbm.20191251

Our goal is to visualize vascular tree data and associated infor-
mation by addressing the aforementioned topics. Recent vascular
visualization techniques are wrapped up in the summary chapter
by Lichtenberg and Lawonn [LL19]. The discussed methods aim
to provide better comprehension of the presented vasculature, by
enhancing the perception of depth and distances and therefore the
perception of the overall structure. At the same time visual chan-
nels are left open to encode clinical data on the rendered surface.
However, the problem of self-occlusion and visual clutter is not ad-
dressed. Thus, we combine a 2D and 3D view of the vasculature to
highlight clinically relevant properties in a clearer way. For exam-
ple, the distance of vessel segments to tumor tissue inside a liver,
which may aid analysis prior a tumor resection, or hemodynamics
data [BBPS17]. A crucial factor that determines what kind of visu-
alization techniques can be applied, is the type of data in which the
vasculature is represented. Mesh data can be nicely pre-processed
to obtain texture parameters but skeletal data is also common, as
it is more efficient to store and encodes additional information,
such as the vessel’s tree structure. We therefore decided to work
on skeletal tree data, because it can be used as input to our 3D and
2D visualization. At the same time we aim to incorporate the ad-
vantages of triangulated data, by employing an efficient rendering
method and allowing to parameterize the rendered surface on-the-
fly.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://doi.org/10.2312/vcbm.20191251

266 Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization

Input tree
SDF Graph layout
Implicit
surface
Shadow
information

Patterns via

Patterns via SSP uniform grid

N [lustrative shadows

Tumor
proximity /83

Figure 1: Illustration of our motivation for the 2D and 3D visual-
ization pipeline.

For the 3D depiction, we use an implicit representation of the
surface, based on signed distance fields (SDF), which expose some
beneficial properties. The 2D representation will be handled by a
graph-layout algorithm. In order to apply illustrative patterns that
encode data, e.g., as done by Ritter et al. [RHD*06] or Lawonn et
al. [LLPH15], we require a parameterization. As the 3D surface is
rendered implicitly, we cannot apply a pre-processing to parame-
terize it. Instead, we apply a screen-space parameterization (SSP)
that is solved for each frame and only takes visible surface infor-
mation into account. The 2D graph representation will consist of
line-segments, thus, no surface to apply illustrative patterns to is
available. We circumvent this by applying such patterns to the 2D
space next to associated line segments. Our motivation to apply the
above mentioned methods is wrapped up in Fig. 1. Looking at the
3D part (Fig. 1, left) a reason why we propose to use a SDF is
that we get additional information from it, like shadows, for free.
The subsequent SSP provides the basis to encode illustrative shad-
ows and, e.g., stippling can be used to encode tumor proximity. We
additionally benefit from the screen-space nature of the parameteri-
zation, since it allows to apply patterns to the void space next to the
surface as well. Thus, even filigree structures can be highlighted
more prominently. For the 2D view, we want to achieve a clean
representation, free from overlaps. Patterns used in the 3D depic-
tion should also be visible here, for which we use the free space
next to the tree segments (Fig. 1, bottom).

While the SDF helps to rapidly trace the implicit surface, the

generation of the SDF itself can also be done at highly interactive
rates [KM19]. The properties of the SDF allow simplified imple-
mentations of otherwise more complex visual effects. We extend
the work by Krayer et al. [KM19] in order to generate a SDF from
skeletal vascular data and to render an exact surface from it. The
original approach is designed for triangles and cannot be trivially
transferred to line segments. Hence, this extension is our first con-
tribution. Second, we propose a simple layout algorithm to trans-
form the 3D skeleton to an abstract 2D graph representation. The
graph layout will highlight the branch-topology of the vasculature
and allows to view related properties of the whole model in one
gaze. This contrasts common layout algorithms that usually try to
find a most compact representation without overlaps. For the 3D
surface parameterization, we utilize the algorithm by Lichtenberg
et al. [LSHL18] and modify it. The original algorithm works on
multi-resolution mesh data. Our contribution is to adapt the al-
gorithm such that an implicitly rendered surface can be frame-
coherently parameterized to obtain periodic texture coordinates.
This SSP method works on the rendered surface and executes just-
in-time. A byproduct of the screen-space approach is the parameter-
ization of the unoccupied space next to the surface, which may also
be utilized for visualization purposes. Finally, we show how the
main contributions can be combined to provide a tool-set and the
basis for different vascular visualization applications that employ a
shared 2D and 3D view. The individual features are presented to vi-
sualize vasculature within a liver-tumor scenario, but can as well be
utilized individually for different tasks. Especially the SSP method
generalizes and is applicable to other kinds of surfaces.

2. Related Work

The immediate reconstruction of vascular structures from MRI or
CT data, using direct volume rendering or maximum intensity pro-
jection, is not free of artifacts. Reconstruction methods that can
assure, e.g. continuity of vessels, are a more sophisticated way to
go. These methods can be model-free or model-based [KGPS13],
with the model-based methods dominating the literature. A reason
for this may be that most hemodynamics simulation applications
require an explicit surface representation [OJMN™*18]. For exam-
ple, the method by Oeltze et al. [OP0OS5] uses a directed graph as
input. Each node is assigned with a radius, determining the ves-
sel thickness and each edge represents a segment of the vascula-
ture. Using convolution surfaces [BS91], they reconstruct a smooth
implicit surface, which can then be triangulated for visualization.
This allows for a faithful representation of the input radii, but does
not allow arbitrary cross-sections. Schumann et al. [SOB*07] used
a point-based implicit representation to achieve arbitrary cross-
sections. The input is taken directly from binary masked volume
data. The work by Kretschmer er al. [KGPS13] transforms signed
distance fields to a potential function that describes the implicit sur-
face. A further overview of vascular surface reconstruction litera-
ture can be found in the work by Saalfeld er al. [SSPOJ16], who
use meta-balls to define and render an implicit surface on-the-fly.
While most techniques that aim for an explicit reconstruction use
an implicit representation as an in-between-step, it is not obvious
whether the implicit representations are suitable for direct render-
ing. We therefore contrast the current state-of-the-art by employ-
ing an SDF to directly render the implicit surface, using an exact

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization 267

sphere-tracing approach. With the SDFs, we gain more flexibility
in the visualization of the vasculature, as will be shown in the ap-
plication examples.

SDFs are a common geometry representation in many areas
ranging from collision detection using the distance information
[FSGO03], surface reconstruction [OBA*03] to general rendering
applications. Two-dimensional fields can be used to encode low
resolution text or glyphs. These can be reconstructed without mag-
nification artifacts encountered with bitmap data as shown by
Green [Gre(07]. Information about surrounding geometry can be
obtained from an SDF and be used for various effects, that are typ-
ically hard to do with traditional rendering techniques, such as soft
shadows or volumetric ambient occlusion [Wril5]. An overview
over three-dimensional distance fields can be found in Jones et
al. [JBS06].

To render structured patterns on the implicit surface, a parame-
terization is required. While several techniques that employ implicit
representations for vascular visualization exist [SOB*07, PO0S,
SSPOJ16], we are not aware of any approach that would employ
a parameterization in order to enable illustrative visualization of
the surface. We therefore close this gap in the literature by provid-
ing a technique that generates texture coordinates for implicit sur-
faces on-the-fly. The range of parameterization applications is very
wide and well covered in the summary by Sheffer et al. [SPR*07].
As mentioned earlier, parameterizations can be aligned to an input
guiding field. Vaxman et al. [VCD*16] provide a thorough survey
of the synthesis of such guiding fields. The alignment with a guid-
ing field can allow artistic freedom or be used to highlight structural
features. An additional common goal is to reduce the distortion that
is introduced by the mapping from a 2D to 3D domain. For this
task, energy functions are defined and attempted to be minimized.
This is a difficult task, depending on the target topology and mor-
phology. Surfaces that cannot be trivially mapped to a plane are
especially problematic. The approach by Praun et al. [PFHOO] at-
tempts to circumvent this problem by locally mapping parts of a
surface onto a 2D plane. The discontinuities across the mappings
are resolved by blending during the texture application. The prop-
erty of locality can also be introduced by using periodic mappings.
In the remeshing domain this was done by Ray et al. [RLL*06]. The
feasibility of employing a periodic parameterization, that is aligned
to a guiding vector field, for artistic or visualization purposes has
been exemplified in the works by Knoppel et al. [KCPS15] and Son
et al. [SLKL11]. The former works on meshes and the latter on im-
ages as input. While the execution times of both are interactive,
they did not aim for real-time capabilities. Real-time execution has
recently been tackled by Lichtenberg er al. [LSHL18] (triangles),
where they moved an approach, similar to the work by Jakob et
al. [JTPSH15] (triangles and point-clouds), to the GPU. The idea
is to solve a global optimization problem by local approximations.
By lifting the data into a multi-resolution hierarchy structure, lo-
cality can be overcome. The hierarchy structure will then be an im-
age pyramid. A recent method by Lichtenberg and Lawonn [LL18]
is tailored specifically to tree-like structures and parameterizes the
surface partly in object space and partly in image space. As our
implicitly rendered surface is given in image space, we adapt the
idea of both, the hierarchical and the image based approaches. The
goal of the method by Lichtenberg and Lawonn is close to ours and

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

uses the screen space to obtain a texture parameter whose gradient
is orthogonal to a structure’s contour. A second parameter, almost
orthogonal to the first one, is obtained in object-space. It has to be
noted that almost orthogonal is only true for regions close to the
object’s contour. Both parameters are continuous, as they have a
distinct starting frame (contour or vessel root) in their respective
space (screen or object space). In order to achieve a parameteri-
zation solely based on screen space information, the computation
of the second parameter cannot just be transferred to screen space,
because an adequate reference (such as the contour for the first pa-
rameter) is missing. One could as well propose to parameterize the
skeletal tree in object space, but that would lead to discontinuities
on the implicit surface. These problems can be avoided by using a
periodic parameterization and we fall back to the method by Licht-
enberg et al. [LSHL18]. This also allows to maintain orthogonality
of the two parameters and patterns can be displayed with low dis-
tortion. Further, the method is not restricted to tree-like input data,
as several example figures throughout this paper will show. On the
downside, no global information is encoded in the obtained param-
eters because the periodic intervals cannot be ordered (e.g., from
vessel root to end-points). Such a hierarchical approach is highly
suitable for parallel execution of the local approximations in one
hierarchy level. Multi-resolution hierarchies expose the ability to
propagate global features (coarse hierarchy level) into local regions
(fine hierarchy level). This is why the Pull-Push Algorithm (PPA)
by Gortler et al. [GGSC96] is an important tool for our work. We
use this algorithm to traverse the hierarchy levels in order to prop-
agate information across the screen space. The PPA is commonly
used for hole-filling purposes (see [MKCO07] for an example). Thus,
we can use the PPA to substitute the empty space around an object.
This is also of interest in the visualization community as the work
by Kreiser er al. [KHR18] shows. Alternative methods to apply
structured patterns were proposed: Kim ez al. [KY YLO8] deform an
input hatching texture to align with a given guiding field, which is
computed on the fly. This allows them to display animated meshes
in an illustrative manner. At the downside, the screen space projec-
tion introduces shower-door effects. Breslav et al. [BSM*07] were
able to reduce these artifacts to a certain grade by 2D similarity
transforms. They incorporate information of the rendered 3D model
to adjust their results approach accordingly. Our method contrasts
the above by providing texture coordinates that are closely related
to the input 3D structure (i.e. no shower-door effect occurs) and are
globally periodic (i.e. no seams occur). However, we cannot utilize
the whole morphology of the input structure, as we only work on
the visible projection. This again, can also be of advantage because
the complexity of the visible surface may be lower than that of the
whole surface.

A common goal in the advanced visualization of vasculature
is to encode multivariate data on the surface or to enhance spa-
tial perception of the geometry. Recent attempts to improve spatial
perception through auxiliary tools [PBC*16b] have been made by
Lawonn et al. [LLPH15, LLH17], Lichtenberg et al. [LHL17] or
Kreiser et al. [KHR18]. Further, flattening techniques [KMM™ 18]
are a prominent way to reduce the complexity of a visualization and
to overcome self-occlusion. We contribute to this area by propos-
ing a combined 2D and 3D view of the vasculature, that are visually
linked by color-codes and texture patterns.

268 Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization

3. Method

The vascular trees to be visualized are given as a directed graph 7
with nodes A and edges £. A directed edge e(i, j) € £ connects two
nodes (i, j) € N and a node i is associated with a point p; € R? and
a radius r; € R. We assume a binary, directed, acyclic graph and
that the directed edges point away from the root (i.e., each node
has at most two children and one parent). The root is restricted to
one child and no parent, so that there exists one root edge that then
further branches into the successive sub-trees. We call nodes that
have one child and one parent regular node, nodes that have no
child and one parent leaf node and nodes that have two children
and one parent branch node. By removing all regular nodes, only
the root, leaf- and branch nodes remain in a reduced tree 7, which
represents the branching structure of the vascular tree.

This section can be wrapped up as follows: First, the input graphs
T and T are used to generate a 2D (Sec. 3.1) and 3D (Sec. 3.2) de-
piction of the vasculature. Then, a recap of the PPA (see Sec. 3.3)
is given, which is then used for a background reconstruction (see
Sec. 3.4). With the background reconstruction, we assign informa-
tion to all pixels in the 2D and 3D views, that are not occupied
by the vessel structure. This is similar to the Void Space Surfaces
(VSS) by Kreiser et al. [KHR18]. However, in our pipeline the
background reconstruction is differently motivated and solved with
a faster, yet simple algorithm. It ensures that the successive SSP
does not need to handle void pixels. Before the SSP is applied to the
3D view (see Sec. 3.6), we generate a guiding field (see Sec. 3.5).
To ensure a frame coherent parameterization, successive frames are
optimized based on the results of the previous frame (see Sec. 3.7).
Fig. 2 depicts the main sections of the method.

3.1. 2D Graph Layout

This section describes the transfer of the 3D vessel tree to a 2D
graph representation. The goal is to layout the graph in a way that
highlights the branching topology of the input tree. We use the re-
duced tree 7, and arrange the nodes in a way that allows to easily
identify different sub-trees. Common graph layout algorithms try to
provide a compact representation, that optimizes the required space
and treats nodes equally. In our scenario, we have different con-
straints: we want the user to be able to visually extract individual
sub-trees of the graph. Hence, different sub-trees shall not overlap,
i.e., if the tree-depth is plotted along the vertical axis, sub-trees do
not overlap across the vertical axis. Further, we want sub-trees to be
more or less prominent, based on some assigned weight per node.
For example, nodes in a small sub-tree, that may be negligible for
an assessment task, can be given a low weight and therefore oc-
cupy less space of the visualization. To achieve this, we propose a
simple algorithm that takes node weights and assigns to each node
a parameter pair (h,s) € [0, 1]%, to achieve a more intuitive or even
task oriented graph layout. Here, £ is the horizontal and s the ver-
tical layout parameter. By default, we set a node’s weight w; to
the number of nodes in the sub-tree represented by this node. We
initialize the (h,s) parameter for the root and its child node with
(0.5,1). By putting them into the same location, the first edge has
zero length and will be hidden in the visualization. If n; is the root’s
child node, then we start to recursively parameterize the successive
nodes by calling ChildLayout(n1,0,1) (see Algorithm 1). The call

with bounds 0 and 1 means that child nodes may occupy a range
between 0 and 1 for the h-parameter. If »; is not a leaf or root node
(and therefore has two children), we obtain the child nodes and
their weights (lines 3-4). The weights are used to determine the
vertical s-parameter (lines 5-6), where equal weights lead to equal
steps along s and different weights lead to larger steps for the node
with the larger weight. Then, the available h-space is divided at a
value r; (line 7). The idea here is to assign a larger fraction of the
available h-space to the child node with the higher weight. For very
unbalanced weights, it can be beneficial to allow an overlap of the
children’s h-space. We account for this by computing a weight wy,
which reflects the ratio of the node weights (line 8). The impact of
the weight difference is controlled by a parameter pj, = N47’ where
N is the number of nodes in 7. A larger p;, amplifies the weight
difference and therefore a larger fraction of the h-parameter is as-
signed to the node with the larger weight. Offsets m to the children’s
ranges are computed (lines 9-10) and applied in the call to the next
recursive iteration of our procedure (lines 13-14). The h-parameter
is obtained as the center of the assigned range (lines 11-12). Note,
that in 7, a node is either a leaf node or a node with children, ex-
cept for the root node. In a final step, the (h,s) parameter is scaled

Algorithm 1 2D Node Layout

1: procedure CHILDLAYOUT(n;,r1,r7)

2 if NumberOfChildren(n;) = 2 then

3 c1,¢y = getChildNodes(n;)

4: w1 = weight(cy), wp = weight(c;)
5: s(cy) = s(nj) — /min(wy /wy, 1)
6 s(ca) = s(nj) — /min(wy /wy, 1)
7

8

re = (wary +wira)/(wi +w2)

Wy Wy

: wp = min(¥, 02y Pl i)
9: my; = (wrfl)(%r] +%rtfh(n,'))
10: my = (wr— 1)(3ri + 3ra — h(n;))
11: h(c1) = mean(ry +my,r +my)
12: h(cp) = mean(r; +my,ry +my)
13: ChildLayout(cy,r1 +my,re +my)
14: ChildLayout(cy,ri +mp,rp +my)

to the range [0, 1] to draw the vessel graph. Using (A, s) as is, a lin-
ear layout (see Fig. 2 (top) is achieved. By mapping & € [0,1] to
[0,27] and using 1 — s as a radius, we can as well plot the graph in
a radial layout, with the root at the center as in Fig. 10 (bottom).
The (h,s) parameter can also be directly used as hue and saturation
values in HSV color space, as done throughout this paper. As the
h-space is subdivided by individual sub-trees of 7, the coloring is
able to highlight the respective sub-trees.

3.2. Signed Distance Field Generation

We use an algorithm to prepare a fast sampled signed distance field
for skeletal data, which is a modification to the work by Krayer et
al. [KM19]. This and other related techniques operate on triangle
data. We utilize the same idea of taking advantage of the hardware
rasterization unit, but extend it to use skeletal input without prior
triangulation. Due to the exact distance function described below,

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization 269

(a) 2D/3D Structure generation (b) Background reconstruction

(c) Parameterization

(d) Data mapping

Figure 2: Pipeline overview. (a) The input graph T is transferred to a 2D and 3D representation (Sections 3.1 and 3.2). 2D layout parameters
are used as hue and saturation to obtain segment colors. (b) The background is reconstructed (Sections 3.3 and 3.4). Here, a pseudo
chromadepth mapping is applied, imitating VSS [KHRI18]. (c) The SSP is applied to the 3D view (Sec. 3.6), the 2D view is parameterized
with a uniform grid. (d) The results are utilized to apply a color- and pattern-mapping. In this example, the minimal distance of vessel
segments to the tumor surfaces is encoded by color, while the pattern overlay highlights regions where the distance is smaller than 15 mm.

we are able to uniquely determine inside and outside in the gener-
ated SDF without the need of an additional algorithm. This algo-
rithm requires special care, as the geometry that the skeleton rep-
resents is not just the lines themselves, but a surface of revolution
around them, which is not given explicitly (as opposed to triangles
in the original algorithm). The final geometry of the full skeleton is
given as the union of the geometries for each segment, specified by
the edges e(i, j) € £ with their respective radii and endpoints.

The signed distance field for skeletal segments is derived by ge-
ometric considerations, similar to Barbier et al. [BG04]. In contrast
to them we use a full SDF instead of using zero for all points inside
of the object. The base-geometry is a sphere-cone, which comprises
of two spheres at the endpoints of a line segment connected by a
tube aligned with the outer tangents. The shape can be described as
a surface of revolution around the line segment so we can reduce
the problem to two dimensions (see Fig. 3, left). We fix the origin
at p; and orient the x axis to coincide with the direction p; — p;. We
define the distance between both points s = |p; — p;| and the rela-
tive radius r4 = r; — r;. A second coordinate system (i, j) is located
around the point where the outer tangents of both circles coincide.
Its second axis j is parallel to the vector ¢ — p;, which is perpendic-
ular to the outer tangent line, thus determining the first axis i. With
geometric considerations, the center point ¢ is found by computing
the offsets from p; in the x and y directions along with the length

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

between ¢ and the tangent intersection with the second circle:

N1 AN 2—r2 ifs>
- (Z) T (rd?) cwith = (VY Atz
i s \Ti max(r;,rj) otherwise
This formulation is valid regardless of whether r; or r; is larger.

A given query point q in the first coordinate system can be trans-
formed to the second coordinate system with

, (i S A A 2
q_<jT>(q_c)’Wlthl_;(—d,~>"'_§<l) 2)

The signed distance is then determined as the signed distance to
one of the circles or the tubular segment:

lq| —ri ,ifqh <0
s(@) =< la—pj|—r; .ifqr>1 3)
q; , else

The distance field of the surface of revolution in 3D is obtained by
projecting a query point p into the two-dimensional space and then
evaluating the field there. The two-dimensional coordinates q are
given as the projection of a query point onto the line segment and
its distance to the line through p; and p;.

Fast Signed Distance Field Generation Our GPU algorithm is a
variant of the unsigned distance field generation used in [KM19],
which is modified to support the special non-triangle geometry for

270 Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization

the line segments. The first step is the creation of a dynamic uni-
form grid. For this we adapted a common approach for triangle
rasterization. For more details on the general technique, we refer to
Hasselgren et al. [HAMOOS]. Since we deal with an implicit rep-
resentation based on line segments (the actual surface is the result
of the segment and associated radii), we have to extend the original
technique, which will be described next. The basic idea is to render
all primitives with an orthographic projection in a bounding box
and use the rasterized fragments to fill a uniform grid in parallel.
We project the primitive in either x, y or z direction, such that the
the largest amount of fragments is occupied by the projection. For
a line segment we determine the three-dimensional bounding box
and choose the dimension with the least extent. This ensures, that
the rasterized bounding box area is maximized, resulting in a bet-
ter sampling of the line. As the geometry extends further than the
line segments themselves, we generate triangles around the line.
To avoid problems with extending too far into the projection di-
rection and thus triggering clipping of needed fragments, the line
is projected onto the viewing plane in a first step. Around this pro-
jected line a bounding box, oriented along the line direction, is con-
structed. Its size is determined by the segment length and the larger
of the two endpoint radii. During rasterization, fragments are then
back projected to find the center depth value. Each fragment can
then check a range around that center given by the radius. Each cell
in the depth range will be tested and if the distance to the actual
surface is one cell away, the cell is recorded as a cell to be used
for sampling. This process is done twice. In the first step, the num-
ber of primitives per cells is counted with an atomic add operation.
These counts are combined with a prefix sum algorithm to deter-
mine indices to be used for storing primitive data for each cell. The
second pass then stores all line segments per cell.

Afterwards, a distance transform is performed, which records
the nearest occupied cell. This is used in a last step, to refine dis-
tances by computing the exact values of a cell center to the geom-
etry stored in the nearest neighbor cell. Due to the analytic expres-
sions for the distance field, this allows for determining the correct
sign without any need for additional computations, that are needed
when dealing with triangle meshes.

SDF tracing algorithm SDFs carry with them geometric infor-
mation that can be used for various purposes. One observation was
made by Hart [Har96] who developed the sphere tracing algorithm.
It is based on the observation, that the SDF provides a minimum
distance in which no geometry can be found, as otherwise that
closer geometry would provide a smaller distance. This is shown in
Fig. 3 (right). Some problems may arise when only using a sampled
distance field. Most notably, small structures can be missed, as the
interpolation may not have a negative value to correctly represent
a boundary. This is especially problematic when dealing with fine
tree structures, as in our case. To overcome this problem without
introducing high resolution fields which are costly, both in compu-
tation time and storage, we instead use the data computed by the
SDF generation algorithm. The tracing uses the sampled distance
field as long as it reports a distance larger than the cell size. For
smaller distances, the nearest grid cell is looked up and the exact
SDF is computed for the geometry contained in it. This also yields
the index of the closest line segment, which may be used to asso-

J
Yic/
> i)
h; r
Pid P, x

Figure 3: The geometry for each line segment, consisting of two
points and spheres, which are connected by their outer tangents
(left). Illustration of the sphere tracing algorithm (right).

Figure 4: Tracing only with a sampled SDF may result in missing
small structures due to values being only interpolated (left). Exact
version, utilizing the nearest grid cell computed before (right).

ciate data with the traced surface. Fig. 4 shows the difference of
using only the sampled SDF and our exact version. The per-pixel
i output of the tracing is the surface position p;, the closest line
segment’s index € £ and the normal, given by the SDF’s gradient.

3.3. Pull-push algorithm

The PPA was introduced by Gortler ef al. [GGSC96] and makes use
of a multi-resolution image pyramid to interpolate scattered data of
an input image. As stated by Rosenfeld [Ros13] such pyramids are
an application of the divide-and-conquer principle. Hence, for a
given problem, solutions are first found for coarser representations
of data (pyramid top) and then successively propagated to finer rep-
resentations (pyramid bottom). This successive propagation allows
to compute individual parts of the image space in parallel, while
maintaining a global relationship among all the parts. Therefore,
the PPA is perfectly suited for execution on the GPU, which we will
exploit for our real-time screen-space parameterization approach.
Next, we give a short recap of the PPA as described by Gortler et
al. [GGSCI96] and provide the required formulae for later reference.

We denote each unique pixel in the pyramid with index i and the
neighbors of i with three sets: the set A7 is the set of neighbors of
i in the same pyramid level (the four horizontal and vertical neigh-
bors of a pixel). The sets .A;~ and Aj‘ describe the neighbors of i in
the next lower (finer) and next higher (coarser) level of the pyramid.
This topology follows the method described in [MKCO7].

The Pull-phase constructs the image pyramid from the input im-
age by iteratively computing the coarser levels:

wi= Y hj;min(wj,1) “)
JEAT
1 .

8=~ Y, hjimin(w;,1)g; 6)
LjeA

where £1;; € [0,1] (default: ﬁ).

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization 271

The Push-phase iteratively reconstructs data from coarse to fine

levels in the pyramid, where h;; € [0, 1] (default: ﬁ):
W,‘ = Z hj7imin(wj<,1) (6)
JEA!
. 1 .
gi=—), hjimin(w;,1)g; ™
Wi jear

The above w; and ¢; contain the reconstructed information from the
coarser level. If the current pixel i has already obtained information
during the pull phase (i.e., w; > 0), then both can be blended:

a=1—(1—w)" ®)
gi+ Si(l—o)+wigi, wiwi(l—o)+w;)

By default, we use k = 1, however, increasing this value decreases
the influence of the information reconstructed by the push equa-
tions. Generally, this means that less attention is given to the global
average of data (residing at the pyramid peak) and instead, recon-
structed values depend more on their local neighborhood. The k
parameter has a similar effect as the exponent to an inverse dis-
tance weight. The result is more sensitive to local data when using
a larger exponent (see Fig 5). Note, that the result is not exactly the
same, because of the multi-resolution hierarchy of the PPA.

3.4. Background reconstruction

This section describes the reconstruction of the background for the
3D view. The SSP (see Sec. 3.6) is going to parameterize all pixels
in screen space of the 3D view. In order to avoid that empty or un-
defined pixels need to be handled, we construct a valid background
from the rendered vascular surface. Kreiser et al. [KHR18] used
inverse distance weighting IDW) to build a VSS. However, we can
as well use the PPA to fill the background. This does not yield the
same results as IDW, but since there is no ground truth for a correct
VSS, we use the faster PPA approach. The reconstruction cannot
be directly applied to the 3D positions p;, because previously unde-
fined pixels, where w; = 0, would tend to assume the local average
of the data being reconstructed. Hence, restored 3D positions would
be located towards the center of the rendered surface. Instead, we
only reconstruct the depth of a pixel. This yields a smooth height
profile that connects to the foreground. During the push phase, we
set hj; to bi-quadratic b-spline weights as used by [MKCO07] and
the parameter k in Eq. 8 is set to 25. The larger & results in a more
local approximation of the depth values, which yields a more ex-
pressive height profile. We can then use the inverse projection of
the graphics pipeline to obtain a valid 3D position p; for the given
depth value and location of i in screen space [vdLGS09]. A normal
n; can be obtained by the second derivative of the newly obtained
positions. An example result is given in Fig. 5. Note that the input
surface information is not bound to originate from an SDF sphere
tracing. Figures found in this paper that show surfaces other than
vasculature are based on mesh inputs.

The above procedure is applied to the projection of the 3D sur-
face. For the 2D view, we can as well obtain a background recon-
struction. When rendering the line segments of the 2D graph lay-
out, we write the 3D positions of the associated nodes of the input

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Figure 5: Background (pseudo chromadepth [RSHOG6] colors) re-
constructed from a tree. Isolines highlight the depth profile, resem-
bling VSS [KHR18]. The k-parameter set to 1 (left) and 25 (right).

structure into the occupied pixels. The PPA is then applied with de-
fault weights to fill the background with 3D positional information.
As opposed to the 3D view, the positional information is interpo-
lated directly and not based on the height profile. The reconstructed
background of the 2D view will help to visualize 3D-based magni-
tudes, as will be shown in Sec. 5.

3.5. Screen space guiding field

Here, we describe how a guiding field for the SSP can be generated
from the rendered surface contour. The (U,V') coordinates that we
are going to generate will be aligned to a guiding vector-field Z.
We assume that no field is defined on the input structure and con-
struct it from the available data. For this, we look at the depth image
produced by the input surface and apply the Sobel filter to obtain
a gradient T; at each pixel i that is part of the foreground. The re-
sulting gradients are normalized through division by the size of the
surface’s bounding box. If |7;] is larger than a threshold 7 (default:
0.2, i.e., 20% of the bounding box), then the pixel is considered
as a contour generator and we set z; € Z to the 2D projection of
the normal at pixel i. We can then run the PPA with w; = wy for
the contour pixels and w; = 0 for all other pixels to propagate the
contour directions into the non-contour pixels. The variable w (de-
fault: 0.2) is used to introduce a smoothing into the existing data.
Note that after the PPA has run, the weight of each individual pixel
reaches 1. Thus, by setting wy = 0.2, only 20% percent of the orig-
inal value remain, while the rest is introduced by the surrounding
area. Note that Z is considered in screen space and we process it
as a 2D field. In the pull and push Eqs. 4 through 7 the element g
(i.e. the element being reconstructed) is a matrix representation of
aa ab
the 2D vector z € Z. If z = (a,b), then g = (ba bb) . We ob-
tain the resulting 2D vector as the first eigenvector of the averaged
matrices. This matrix representation handles the ambiguity of Z: it
only defines an orientation and not a direction, i.e., Z ~ —Z. If the
eigenvalues of the resulting matrix are equal, i.e. no specific eigen-
vectors are defined, we simply use one of the considered vectors as
a substitute. Further, we set h;; = 1 during the pull phase. During
the push phase, /; ; is additionally scaled by m, so that frag-
ments whose 3D positions are further away have less influence in
the weighted average. After a full run of the PPA, the background
pixels are populated with directions that smoothly connect to the

272 Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization

Figure 6: Texture coordinates (U,V) aligned to a guiding field
created based on the surface contour (insets).

foreground. The result is a guiding field that lets us produce tex-
ture coordinates that are aligned to the contour of the input struc-
ture and are also smooth away from the contour. This contrasts the
method by Lichtenberg et al. [LL18], where the background is pa-
rameterized as a distance field of the contour whose gradient is not
guaranteed to be smooth. Fig. 6 shows two example images of pa-
rameterizations using the SPP, which will be described in the next
section.

3.6. Screen space parameterization

This section describes how we employ the method by Lichtenberg
et al. [LSHLI18] to obtain 2D periodic texture coordinates (U,V)
in screen-space that are aligned to Z, utilizing the PPA. Note that
at this point, each pixel in the image pyramid is populated with a
3D position, normal, and guiding field direction. The original al-
gorithm aims to minimize a global energy function by employing
a divide-and-conquer technique. Thus, a solution close to a global
minimum can be found while executing individual chunks of the
optimization in parallel. The input to the method is a tangent vector
field and the algorithm produces a periodic scalar field, such that
the gradient of the scalar field is equal, or very close, to the in-
put vector field. At the bottom-line, we simply take the formulation
from Lichtenberg er al. [LSHL18] and apply it to the topology of
the image pyramid, instead of the topology of a triangulated mesh.
Recall that the topology within one hierarchy level of the PPA pyra-
mid is given by A*® and the topology across hierarchy levels is given
by AT Since we are now working in screen space and cannot store
the result of the parameterization for the implicit surface, additional
obstacles have to be overcome. We now initialize the top hierarchy
level (consisting of a single pixel /) with w; = 1 and (u;,v;) = (0,0).
Then, the push operation and r (default: 4) optimization operations
take turns until the lowest pyramid level is reached. Details on both
operations are described next. Since the U and V' coordinates are
computed separately, we only refer to U in the following. The com-
putation of V is done analogously with a guiding field orthogonal
to Z. Since the field Z is defined in 2D screen space, but the pa-
rameterization algorithm takes a 3D field as input, we project each
z € Z into the tangent plane of the respective pixel.

The parameter push operation reconstructs u; € U based on the
values at .A;r. The element g in Eq. 7 (i.e., the element being prop-

agated through the hierarchy levels) now refers to the Cartesian
target coordinate @; ; as in Eq. 8 in [LSHL18]. It represents the op-
timal parameter that a pixel i should assume w.r.t. the pixel j, in
order to minimize the energy term used in [LSHL18]. The energy
of two neighboring pixels is zero, if [(z;,p; — p;)| = |u; — u;|f,
where f is a scale factor that finally determines the grid size of the
parameterization (see the grid visualizing the result in Fig. 6). This
means that the energy is at a minimum if the scaled distance in pa-
rameter space is equal to the distance of the two points p; and p;,
projected to the guiding direction z;. The weight £ ; to obtain @; ;
from a higher hierarchy level is assembled by several measures:
1

hji= ®=p) mj - [(2;,2;)] (10)
where p is the 3D position represented by a pixel, z the direction
of the guiding field at that pixel. Here, m; is a penalty applied to
background pixels, being the fraction of (level zero) foreground
pixels represented by the pixel of the current level. For example,
the pixel at the highest pyramid level represents the whole image
and m would be equal to the fraction of foreground pixels in the
whole image, while at the pyramid bottom m is either O or 1 for
background and foreground pixels, respectively. With this modifi-
cation, we can apply Eq. 7 to compute an average Cartesian target
coordinate and obtain u; = atan2(@;), where @; is the average opti-
mal parameter for 7 for all neighbors j.

The parameter optimization operation recomputes U within a
single hierarchy level and therefore optimizes the result. We do
the same procedure as in the parameter push operation (i.e., opti-
mize the target coordinate as in Eq. 8 of [LSHL18]) but use the A®
neighborhood instead of the A™ neighborhood. By optimizing the
top hierarchy levels and propagating the results down to the lower
levels, which are again optimized, a globally periodic parameteri-
zation is obtained. Example results can be found in Fig. 6.

3.7. Frame coherence

The pipeline described up to this point can be applied to the ini-
tial input given by the projection of an input surface, i.e., for a
static frame. If a dynamic scene is considered, e.g. a rotating ob-
ject, then processing the pipeline from scratch for each frame will
cause heavy coherency artifacts. This is due to the hierarchical ap-
proach. If the input to the PPA causes a slight change in the coarser
pyramid levels during the pull phase, the subsequent push phase
may amplify this change towards the finer levels. In this case we
attempt to recycle the results of a frame to initialize the computa-
tion of the next frame.

While the 3D reconstruction of the background pixels are smooth
as long as the object movements are smooth, very abrupt changes
may introduce a hectic visual appearance. To circumvent this, we
smooth the changes to the background morphology over the frames.
This is easily achieved by a small adjustment to the procedure in
Sec. 3.4. We render the surface as before, but instead of initializing
the background with zeros, we copy pixel values from the previous
frame. The weight w; for the background pixels is set to a parameter
wg € [0, 1] (default: 0.01). Thus, 1% of the previous frame’s infor-
mation, (i.e., 3D position per pixel), is pulled into the current frame

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization 273

(see Eqs. 4 and 5). As a result, the reconstruction of the background
becomes inert and abrupt changes are softened.

The next issue that we will consider is the re-initialization of
the U and V parameters. For the background, we copy the param-
eters from the previous frame, because we do not have any addi-
tional information that would help to project the background of the
previous frame to the current frame. This does not suffice for the
pixels that represent the visualized vasculature. To establish a link
between a pixel in the new frame and its represented location in the
old frame, we perform a reprojection. The 3D location of a pixel is
transformed back into world space, using the graphics pipeline’s in-
verted view matrix and then projected to screen space with the view
matrix of the previous frame. This yields the screen space coordi-
nate to read the previous frame’s parameter from, i.e., we can track
a surface point from one frame to another. Instead of starting at the
pyramid peak as in Sec. 3.6, we pull the reprojected information
into the image pyramid. This is done analogously to the push oper-
ation in Sec. 3.6 with the A~ neighborhood and Eq. 5. As utilizing
all pyramid levels in this procedure may introduce large changes
from frame to frame, we limit the PPA execution to a level [/, (de-
fault: 3). This means that patches of 2lr 5 2t pixels are recycled for
the initialization of level /. Thus, only a local update is performed,
achieving a temporally smooth update of U and V. If coarser struc-
tures are visualized, or a higher resolution than our default (10242
pixels) is used, a higher value /, may become feasible. As a rule of
thumb, we recommend that a patch of size 2/r % 2' should not be
larger than a periodic interval of the parameterization projected to
the screen.

4. Implementation

This section briefs the implementation and the computation time
of the individual pipeline steps. The 2D graph layout (Sec. 3.1)
is computed in a C++ application, based on the input graph 7y,
the node weights and the user parameters ps and p;,. The 2D node
positions are then loaded onto the GPU and edges of 7 are ren-
dered as triangle strips into the 2D view window. For the 3D sphere
tracing, a screen-filling quad is generated to invoke the fragment
shader and a SDF-accelerated tracing is executed. The data struc-
ture for the PPA is a set of frame buffer objects (FBO), one FBO
for each level of the image pyramid. The base resolution m is set to
a power of 2. Each FBO has texture attachments for each data field
in our pipeline with an appropriate mipmap-level. The communi-
cation among the different steps is done solely via these textures,
using the OpenGL pipeline and the main steps of our algorithm are
the following:

S1 Generate SDF volume (Section 3.2)

S2 Compute 2D graph layout (Section 3.1)
S3 Render input images (Section 3.2)

S4 Reconstruct background (Section 3.4)
S5 Compute SSP (Section 3.6)

Step S1 is only done once, because the input graph 7T is static. The
2D graph layout is recomputed if the user-parameters or the weights
that are assigned to 7, change. Then, in S3 we obtain textures for
the 3D view by the SDF sphere tracing (as done for some of the
figures in this paper, simply rendering a triangle mesh), holding per
pixel 3D positions and normals, as well as a flag defining whether

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Table 1: Execution time in milliseconds for steps S3-S5 of our
pipeline. The values in the last column refer to timings obtained
forl, =3.

Step
_ S3 S4 S5
5122 6-12 | 034 | 4.36
10247 20-30 | 1.15 | 15.09

a pixel belongs to the foreground or background and a pointer to
the closest edge of 7. For the 2D view, the line segments of 7
are drawn. In S4, we use the positional information from the input
images to reconstruct the background positions for the 2D and 3D
view, as described in Sec. 3.4. Lastly, S5 is executed to obtain tex-
ture coordinates (U, V) for the 3D surface and background. Here,
we use two textures per pyramid level to hold the current param-
eter information. These texture pairs are used to synchronize the
read and write access during the iterative optimization process in a
ping-pong fashion. If information from a previous frame is avail-
able, we compute the reprojection and initialize the image pyramid
according to Sec. 3.7.

After processing the above steps, information about the rendered
surface, the reconstructed background and a periodic parameteri-
zation is available for the current frame. Sec. 5 will show several
example visualization strategies that can be achieved based on the
prepared data.

Performance To asses the performance of our implementation, we
use OpenGL time queries. This means the time of a render pass to
execute on GPU is measured. Anything in between render passes
(i.e. overhead on the CPU) is not taken into account. We executed
our algorithm on a machine with a 4.00 GHz i7-6400 processor,
a GTX-1080 GPU and 16GB RAM. The SDF generation is only
done once, but could also be incorporated in a dynamic pipeline as
our timings show. Generating an SDF volume of size 64> took on
average 2.1 ms for input trees consisting of about 1000 edges. The
generation of a 128% volume took 13.1 ms on average. Executing
the 2D graph layout algorithm is in sub-millisecond range. Table 1
shows the execution times for steps S3-S5 and different screen
resolutions. For step S5 we did the measures based on the recycling
of U and V with a given hierarchy recycling depth [, = 3.

5. Applications and benefits

This section depicts potential application areas of our method and
highlights the benefits over state-of-the-art techniques.

Visualization of vascular trees First of all, the SDF can be used
to simply visualize a given tree structure. Fig. 7 compares our result
with the convolution surfaces by Oeltze er al. [OP05]. Please note,
that we used an example skeleton consisting of about 6000 edges,
provided by the MeVisLab [mev] WEMVascularSystem module.
It is neither a binary tree, nor is it passed to the convolution sur-
face extraction algorithm without pre-processing, so our represen-
tation may deviate from the original. We can state, however, that
the generation of the convolution surface for this tree took about

274 Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization

Figure 7: Vascular tree visualized with convolution surfaces by
Oeltze et al. [OPOS5] (left, image generated with MeVisLab [mev])
and our method (right).

2.5 seconds on our machine, while constructing a 128% SDF with
our method took on average 102 ms. This aspect may be impor-
tant for interactive methods, such as the 3D sketching of vessels
proposed by Saalfeld et al. [SSPOJ16]. Of course, rendering the
extracted triangle surface is less costly than the sphere tracing that
needs to be applied to the SDF. As a compensation, the SDF vi-
sualization provides the basis for additional features, that will be
explained later in this section.

Texture coordinates for implicit surfaces Our SSP approach al-
lows to generate surface aligned, periodic texture coordinates on a
traced surface. While 3D- or hypertextures [JSO1] could be applied
immediately to any point in a 3D volume, such approaches lack a
relation to the surface. In contrast, our field aligned parameters can
be employed to better convey the surface morphology, e.g., paral-
lel/orthogonal to the contour as done in our examples, or based on
other constraints, such as principal curvatures.

Background reconstruction for medical visualization Recently,
the work by Kreiser er al. [KHR18] used the so called Void Space
Surfaces (VSS) around projections of medical vascular data to en-
hance depth perception. They use IDW [She68] to interpolate depth
values from the vessel contour into the background. A similar re-
sult can be obtained by our background reconstruction described
in Section 3.4, as shown in Fig. 2 (center, left) and Fig. 5. The
depth approximation of our approach is executed via the PPA on
the GPU and therefore distinctly faster than the reference method.
The authors report execution times of 25 — 165 ms on a 1024 x 768
image, while our method executes at relatively constant 1.15 ms
for a 10247 image. This allows to freely rotate the vasculature,
while maintaining a smooth background reconstruction. Neverthe-
less, qualitative differences remain to be evaluated. Further, while
Kreiser et al. [KHR 18] used color-codes and isolines to encode in-
formation on the VSS, our SSP could be used to add additional
information channels that employ texture patterns.

Illustrative rendering styles for implicit surfaces We can use the
periodic texture coordinates directly to run a stippling and hatching
shader. The distribution of dot and line primitives will be aligned
to the guiding field, which allows us to produce results similar to
Son et al. [SLKL11], whose description we follow to generate the
primitives (see Fig. 9, left). In Fig. 2 (right) the minimal distance of
vessel segments to the tumor surfaces is encoded. Regions that fall

dshadow

A B
Figure 8: Ray A has distance dyin, < min(m-dspaqow,a) and casts a

shadow, which is not the case for ray B (left). The depth dependent
shadows support depth perception as in [RHD*06] (right).

below a threshold (15 mm) are highlighted by a stippling pattern,
which is applied to both, the 2D and 3D view. By extending the
pattern to the reconstructed background, even small affected areas
are more easily recognizable.

Silhouettes and contours of user-defined width can be generated
with information from the SDF sphere tracing. For each ray that is
traced to generate the surface, we keep track of the minimal SDF
value that this ray has passed (i.e., the radius of the smallest sphere
as in Fig 3). We can then draw the silhouette for at the pixel of
each ray that does not hit the implicit surface, but passes it at a
minimal distance d,,;, < ds, where d; is the thickness of the silhou-
ette. To draw contours, a modification is required. We only check
and update the minimal distance d,,;, if the tracing step size would
increase in the next iteration of the sphere tracing. This allows to
obtain d,,;, for a passing surface, even if the ray finally hits another
part of the surface. An advantage of the above described contour
generation is the possibility to obtain the 3D point on the ray, that is
associated with d,,,;,, as well. This allows to render depth-dependent
shadows as proposed by Ritter et al. [RHD*06]. If dgju40, 1S the
distance of the traced surface to the point associated with d,;,,, we
draw a depth shadow if d,in < min(m - dgpagow,a), Where m is the
ratio of shadow-depth and shadow-thickness and a is the maximum
thickness for the shadow. The texture coordinates obtained by the
SSP can then be used to apply a hatching scheme. See Fig. 8 for an
illustration and example.

We have to point out that if the parameterization changes (e.g.
under rotation), sample points appear and disappear due to the cre-
ation and collapse of periodic intervals in U and V. This leads to
a visually unstable appearance that may be removed by tracking
sample points in order to apply a blending. We leave this for fu-
ture work. An advantage of this approach may be, that the space of
extracted samples is optimized for the view of the current frame.

Surgical risk assessment We propose a risk assessment visual-
ization to highlight the strength of the combined 2D and 3D view.
Fig. 10 shows the same vasculature three times in 2D and 3D view
with different example access paths. The minimal distance of the
vessel segments to the respective path is color-coded in the 2D view

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization 275

Figure 9: Stippling and hatching shader by the formulation of
Son et al. [SLKLI 1] applied to a shaded surface (left). Same shader
applied to a vascular model (right).

and an additional stippling pattern points out regions that are closer
to the path than a threshold (20 mm). While it is not obvious in the
3D view, the 2D view clearly reveals which parts of the vascula-
ture are affected. The scalar field which is color-coded in the 2D
view is additionally smoothed. This helps to achieve smoother and
more expressive isolines. The parts which fall into the risk area,
however, are not smoothed and precision is maintained. Another
assessment example has already been given in Fig. 2 (right). In this
depiction, the color- and pattern-overlay simply encode the distance
of the vasculature to the tumor tissue. Again, the 2D view allows
for a quick determination of which parts of the vessel are close - or
within a certain range - to the tumor surfaces.

SDF features As described previously, the SDF can be used to vi-
sualize vascular trees based on an implicit representation. Though
the additional complexity of the approach may not pay off for sim-
ple surface generation, the SDF enables additional features that
would otherwise be more difficult to achieve. The SDF volume
holds information about the distance to the closest surface point
for each voxel and thus accelerates the tracing of the implicit sur-
face. If the voxel information is modified while maintaining crucial
properties of the SDF, the implicit surface can be modified [Har96].
For instance, primitive combinations can be applied by calculating
the union, intersection or subtraction of different primitives” SDFs.
As shown in Fig. 11, Boolean operations can be applied to carve
portions from a surface. Note that a cut always produces a valid sur-
face and the implicit surface appears like a solid object (see Fig. 11,
right). As shown in Fig. 8 the additional information encoded in the
SDF can be used to immediately obtain shadow information, with
the camera being the source of light, which can then be used to
implement depth-shadows [RHD*06].

The surface tracing described in Sec. 3.2 employs a quick look-
up of the segment of T closest to a traced surface point in order to
avoid approximation errors. This step further allows to obtain in-
formation from the respective segment and to associate it with the
traced surface point, as done in the figures throughout this paper to
color the 3D surface and 2D graph segments. It can also be applied
to transition information to other surfaces as depicted in Fig. 11,
where the tumor surface is colored based on the closest vessel seg-

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

ments. Admittedly, this is a very simple example, but we want to
point out that such a parameter look-up is part of our pipeline and
can be done with practically no overhead. However, the look-up
precision is restricted by the SDF volume resolution.

2D layout focus The layout of the 2D graph view can be used to
guide a viewers attention. A default and an alternative layout are
shown in Fig. 12, with a color-code depicting the distance of graph
segments of 7 to a reference point in 3D world space. Assume the
user is interested in parts of the vessel that are close to this reference
point. The default layout tries to achieve a balanced distribution of
the sub-trees (Fig. 12, left). In contrast (Fig. 12, left), we assigned
higher weights to the sub-trees whose nodes are closer to the above
mentioned reference point in 3D. This allows the closer nodes to
take more space of the 2D layout (see the sub-trees that are color-
coded in a red hue, indicating minimal distance values). Hence, the
user’s attention can be brought to the important parts of the tree by
modifying the tree layout.

6. Discussion and conclusion

We have presented a pipeline that takes a graph representation of
a vascular structure as input and creates a combined 2D and 3D
view. The 3D surface is implicitly represented as a SDF and ef-
ficiently and exactly traced by our proposed procedure. The 2D
view is a simple abstraction of the input graph’s branching topology
and can be employed to gain a quick overview of measured magni-
tudes obtained from the medical data. Using different weights for
the nodes, different layouts can be generated. As the 3D surface
is generated implicitly, we cannot store texture coordinates in or-
der to support the visualization with illustrative styles. As a conse-
quence, we propose a screen-space based parameterization method,
that finds periodic and frame-coherent texture coordinates for each
rendered frame. It has to be noted that we currently stop the SSP
optimization as long as the input parameters do not change. We do
this to bring the optimization to a halt, because re-initialization of
the successive frame, using /, pyramid levels may prevent the al-
gorithm from convergence. An alternative would be to set [, = 0 if
the scene does not change, then convergence is achieved. Further,
the recycling depth I, (see Section 3.6) is an important factor to the
coherence. A high value will abruptly introduce changes, because
updates in a very coarse hierarchy level are propagated to the final
image with large impact. A low value may fail to update changes
of the input image quickly enough. This is linked to a notable limi-
tation, which is an issue that occurs as soon as the surface to be pa-
rameterized leaves and re-enters the view port. Fig. 13 shows a se-
quence of frames while the bunny model enters the view port. As no
reprojection information is available for the entering part of the sur-
face, the parameterization takes several frames to adapt. A higher
value for /,, reduces this effect, but may introduce other coherency
artifacts. A practical solution for this issue would be to employ a
safe-margin, i.e., to copy only a centered portion of the processed
image to the display. The background, i.e., the void space [KHR18]
around a vessel, is reconstructed as part of the SSP process. It can
be further utilized with the aid of texture coordinates, as shown in
the applications section.

We were able to show some introductory examples of the abili-
ties of SDF rendering in visualization. Once the SDF creation and

276 Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization

Figure 10: An example path to the largest tumor tissue is depicted by a green line (top). The minimal distance of each tree segment to the
path is color-coded in the 2D view (bottom). A stippling pattern is applied to all regions (2D and 3D) that are closer than 20 mm to the path).

Figure 11: Coloring the tumor surface according to the closest
vessel segment (left). Combining Boolean operations to expose the
vasculature close to the tumor, by carving the liver SDF.

Figure 12: Graph layout with default weights, based on the num-
ber of sub-tree nodes (left). Alternative based on scalar field (right).

«cedd

Figure 13: Left to right: Sequence of bunny entering the view port.

tracing are implemented, the Boolean operations are a way to cre-
ate focus and context applications with low effort and high visual
quality. In the future, we would like to investigate to which extent
hypertextures [PH89] can be employed to encode data. Hypertex-
tures can be used to modify the SDF in order to deform and alter
surfaces. For example, a rough/noisy surface could indicate seg-
mentation uncertainty, while a smooth/even surface indicates high
segmentation confidence. The concept of magic lenses, to spatially
hide or highlight user-defined parts of the data, could also be im-
plemented on SDF basis. What our SDF procedure currently lacks
is the ability to handle input data with non-circular cross-sections.
This is an important feature for the faithful representation of vas-
cular data that we would like to tackle in the future.

Finally, we hope that the proposed algorithms and the ability to
generate and trace a SDF from model-based input data, as well as
to parameterize the traced surface on-the-fly, will motivate further
development into this direction.

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization 277

Acknowledgements This project was partly funded by the DFG:
LA 3855/1-1 and HA 7819/1-1. We would like to thank the subjects
of our evaluation for their contribution.

References

[BBPS17] BEHRENDT B., BERG P., PREIM B., SAALFELD S.: Com-
bining pseudo chroma depth enhancement and parameter mapping for
vascular surface models. In Proc. VCBM (2017), pp. 159-168. 1

[BGO4] BARBIER A., GALIN E.: Fast distance computation between a
point and cylinders, cones, line-swept spheres and cone-spheres. Journal
of Graphics Tools 9, 2 (2004), 11-19. 5

[BS91] BLOOMENTHAL J., SHOEMAKE K.: Convolution surfaces. ACM
SIGGRAPH Computer Graphics 25,4 (1991), 251-256. 2

[BSM*07] BRESLAV S., SZERSZEN K., MARKOSIAN L., BARLA P.,
THOLLOT J.: Dynamic 2d patterns for shading 3d scenes. In ACM
Transactions on Graphics (TOG) (2007), vol. 26, ACM, p. 20. 3

[FSGO3] FUHRMANN A., SOBOTKA G., GROSS C.: Distance fields for
rapid collision detection in physically based modeling. In Proceedings
of GraphiCon 2003 (2003), Citeseer, pp. 58-65. 3

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R., COHEN
M. F.: The lumigraph. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques (1996), ACM, pp. 43—
54.3,6

[GKS*93] GERIG G., KOLLER T., SZEKELY G., BRECHBUHLER C.,
KUBLER O.: Symbolic description of 3-d structures applied to cerebral
vessel tree obtained from mr angiography volume data. In Biennial In-
ternational Conference on Information Processing in Medical Imaging
(1993), Springer, pp. 94-111. 1

[Gre07] GREEN C.: Improved alpha-tested magnification for vector tex-
tures and special effects. In ACM SIGGRAPH 2007 Courses (New York,
NY, USA, 2007), SIGGRAPH *07, ACM, pp. 9-18. 3

[HAMOOS5] HASSELGREN J., AKENINE-MOLLER T., OHLSSON L.:
Conservative rasterization. In GPU Gems 2, Pharr M., (Ed.). Addison-
Wesley, 2005, pp. 677-690. 6

[Har96] HART J. C.: Sphere tracing: a geometric method for the an-
tialiased ray tracing of implicit surfaces. The Visual Computer 12, 10
(Dec 1996), 527-545. 6, 11

[JBS06] JONES M. W., BAERENTZEN J. A., SRAMEK M.: 3d distance
fields: a survey of techniques and applications. [EEE Transactions on
Visualization and Computer Graphics 12, 4 (July 2006), 581-599. 3

[JSO1T JONES M. W., SATHERLEY R.: Using distance fields for object
representation and rendering. In Proc. 19th Ann. Conf. of Eurographics
(UK Chapter) (2001), London, pp. 37-44. 10

[JTPSH15] JAKOB W., TARINI M., PANOZZ0O D., SORKINE-HORNUNG
O.: Instant field-aligned meshes. ACM Transactions on Graphics (Pro-
ceedings of SSIGGRAPH ASIA) 34, 6 (2015). 3

[KCPS15] KNOPPEL F., CRANE K., PINKALL U., SCHRODER P.: Stripe
patterns on surfaces. ACM Transactions on Graphics 34,4 (2015), 39:1—
39:11. 3

[KGPS13] KRETSCHMER J., GODENSCHWAGER C., PREIM B., STAM-
MINGER M.: Interactive patient-specific vascular modeling with sweep
surfaces. IEEE transactions on visualization and computer graphics 19,
12 (2013), 2828-2837. 2

[KHR18] KREISER J., HERMOSILLA P., ROPINSKI T.: Void space
surfaces to convey depth in vessel visualizations. arXiv preprint
arXiv:1806.07729 (2018). 3,4, 5,7, 10, 11

[KM19] KRAYER B., MULLER S.: Generating signed distance fields on
the gpu with ray maps. The Visual Computer 35, 6 (Jun 2019), 961-971.
2,4,5

[KMM*18] KREISER J., MEUSCHKE M., MISTELBAUER G., PREIM
B., ROPINSKI T.: A survey of flattening-based medical visualization

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

techniques. In Computer Graphics Forum (2018), vol. 37, Wiley Online
Library, pp. 597-624. 1, 3

[KYYLO8] KIM Y., YUJ.,, YU X., LEE S.: Line-art illustration of dy-
namic and specular surfaces. ACM Transactions on Graphics (TOG) 27,
5(2008), 156. 3

[LHL17] LICHTENBERG N., HANSEN C., LAWONN K.: Concentric cir-
cle glyphs for enhanced depth-judgment in vascular models. In Proc.
VCBM (2017). 3

[LL18] LICHTENBERG N., LAWONN K.: Parameterization and feature
extraction for the visualization of tree-like structures. In Proc. VCBM
(2018), Eurographics Association, pp. 145-155. 3, 8

[LL19] LICHTENBERG N., LAWONN K.: Auxiliary Tools for Enhanced
Depth Perception in Vascular Structures. Springer International Publish-
ing, Cham, 2019, pp. 103-113. 1

[LLH17] LAWONN K., Luz M., HANSEN C.: Improving spatial percep-
tion of vascular models using supporting anchors and illustrative visual-
ization. Comput. Graph. 63 (Apr. 2017), 37-49. 3

[LLPH15] LAWONN K., Luz M., PREIM B., HANSEN C.: Illustrative
visualization of vascular models for static 2D representations. In Interna-
tional Conference on Medical Image Computing and Computer-Assisted
Intervention (2015), Springer, pp. 399-406. 2, 3

[LSHL18] LICHTENBERG N., SMIT N., HANSEN C., LAWONN K.:
Real-time field aligned stripe patterns. Computers & Graphics 74 (2018),
137-149. 2,3, 8

[LVPI18] LAWONN K., VIOLA I., PREIM B., ISENBERG T.: A survey
of surface-based illustrative rendering for visualization. In Computer
Graphics Forum (2018), Wiley Online Library. 1

[mev] MeVisLab, MeVis Medical Solutions AG. [Online; accessed 23-
July-2019]. URL: www.mevislab.de. 9, 10

[MKC07] MARROQUIM R., KRAUS M., CAVALCANTI P. R.: Efficient
point-based rendering using image reconstruction. In SPBG (2007),
pp. 101-108. 3, 6, 7

[OBA*03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G., SEIDEL
H.-P.: Multi-level partition of unity implicits. In ACM SIGGRAPH 2003
Papers (New York, NY, USA, 2003), SIGGRAPH 03, ACM, pp. 463—
470. 3

[OJMN*18] OELTZE-JAFRA S., MEUSCHKE M., NEUGEBAUER M.,
SAALFELD S., LAWONN K., JANIGA G., HEGE H.-C., ZACHOW S.,
PREIM B.: Generation and visual exploration of medical flow data: Sur-
vey, research trends and future challenges. In Computer Graphics Forum
(2018), Wiley Online Library. 2

[OP0O5] OELTZE S., PREIM B.: Visualization of vasculature with convo-
lution surfaces: method, validation and evaluation. IEEE Transactions
on Medical Imaging 24, 4 (2005), 540-548. 1,2, 9, 10

[PBC*16a] PREIM B., BAER A., CUNNINGHAM D., ISENBERG T.,
ROPINSKI T.: A survey of perceptually motivated 3d visualization of
medical image data. In Computer Graphics Forum (2016), vol. 35, Wi-
ley Online Library, pp. 501-525. 1

[PBC*16b] PREIM B., BAER A., CUNNINGHAM D., ISENBERG T.,
ROPINSKI T.: A survey of perceptually motivated 3d visualization of
medical image data. In Computer Graphics Forum (2016), vol. 35, Wi-
ley Online Library, pp. 501-525. 3

[PFHOO] PRAUN E., FINKELSTEIN A., HOPPE H.: Lapped textures.
Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques SIGGRAPH 00, 1 (2000), 465-470. 3

[PH89] PERLIN K., HOFFERT E. M.: Hypertexture. In ACM Siggraph
Computer Graphics (1989), vol. 23, ACM, pp. 253-262. 12

[POO8] PREIM B., OELTZE S.: 3d visualization of vasculature: an
overview. In Visualization in medicine and life sciences. Springer, 2008,
pp- 39-59. 3

[RHD*06] RITTER F., HANSEN C., DICKEN V., KONRAD O., PREIM
B., PEITGEN H.-O.: Real-time illustration of vascular structures. I[EEE

www.mevislab.de

278 Lichtenberg et al. / Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization

Transactions on Visualization and Computer Graphics 12, 5 (2006),
877-884. 2, 10, 11

[RLL*06] RAY N., L1 W. C., LEVY B., SHEFFER A., ALLIEZ P.: Pe-
riodic global parameterization. ACM Transactions on Graphics 25, 4
(2006), 1460-1485. 1, 3

[Ros13] ROSENFELD A.: Multiresolution image processing and analysis,
vol. 12. Springer Science & Business Media, 2013. 6

[RSHO6] RoOPINSKI T., STEINICKE F., HINRICHS K.: Visually support-
ing depth perception in angiography imaging. In Smart Graphics: 6th
International Symposium, SG 2006 (2006), pp. 93-104. 7

[She68] SHEPARD D.: A two-dimensional interpolation function for

irregularly-spaced data. In Proceedings of the 1968 23rd ACM national
conference (1968), ACM, pp. 517-524. 10

[SLKL11] SoN M., LEE Y., KANG H., LEE S.: Structure grid for di-
rectional stippling. Graphical Models 73, 3 (2011), 74-87. 1, 3, 10,
11

[SOB*07] SCHUMANN C., OELTZE S., BADE R., PREIM B., PEITGEN
H.-O.: Model-free surface visualization of vascular trees. In EuroVis
(2007), Citeseer, pp. 283-290. 2, 3

[SPR*07] SHEFFER A., PRAUN E., ROSE K., ET AL.: Mesh parame-
terization methods and their applications. Foundations and Trends®) in
Computer Graphics and Vision 2,2 (2007), 105-171. 3

[SSPOJ16] SAALFELD P., STOINIC A., PREIM B., OELTZE-JAFRA S.:
Semi-immersive 3d sketching of vascular structures for medical educa-
tion. In VCBM (2016), pp. 123-132. 2, 3, 10

[VCD*16] VAXMAN A., CAMPEN M., DIAMANTI O., PANOZzZO D.,
BOMMES D., HILDEBRANDT K., BEN-CHEN M.: Directional field
synthesis, design, and processing. In Computer Graphics Forum (2016),
vol. 35, Wiley Online Library, pp. 545-572. 3

[vdLGS09] VAN DER LAAN W. J., GREEN S., SAINZ M.: Screen space
fluid rendering with curvature flow. In Proceedings of the 2009 sympo-
sium on Interactive 3D graphics and games (2009), ACM, pp. 91-98.
7

[Wril5] WRIGHT D.: Dynamic occlusion with signed distance fields. In
ACM SIGGRAPH (2015). 3

Appendix A: Method parameters

Here, we summarize the various method parameters for a quick
overview. Except for k, pp, [, and f, all parameters are empir-
ically determined and should not require any changes. The four
mentioned above may require tuning from the user, but are also
set to empirically feasible values.

Section 3.1

e p;,: the impact of different node weights on the final layout. The
default uses an empirical value p;, = Ni,' Larger values result in
a layout where nodes with larger weights are assigned an even
larger portion of the available h-space. Thus, with a larger py,
whole sub-trees may vanish in the 2D layout, if the contained
nodes have low weights.

Section 3.3

e A® A" A™: the pixel neighborhood within the image hierarchy
as depicted in Fig. 14.

e w;: weight of the new (coarser) pixel during pull phase.

e ;: weight of the new (finer) pixel during push phase.

+ + —
‘Ai,3 'Ai,Q Ai,2

(] 7’73

+ — —
Ai,l + Ao "41',1

Al ’

Figure 14: Hierarchy level adjacency for a given pixel i.

e g;: value of the new (coarser) pixel during pull phase. Can be a
scalar, vector or matrix.

e g;: value of the new (finer) pixel during push phase. Can be a
scalar, vector or matrix.

e h; j: value of the pull/push kernel (multiplied with w;, w;).

e k: exponent to determine to what extent existing information
is combined with information from a coarser level during push
phase. The effect is similar to an exponent k when computing an

inverse distance weight wipyerse = 1/ d*: a larger exponent leads
to less influence of data points with a larger distance.

Section 3.5

e 1: threshold € [0..1] within the object bounding box, that deter-
mines what depth difference of neighboring pixels is required to
consider the pixels as contour pixels.

e wy: initial weight of contour pixels before application of the
PPA. The guiding field is smoothed for wy < 1, because
(smoothed) information from the coarser hierarchy levels is used
with a factor 1 —wy.

Section 3.6

e ¢;;: 2D target coordinate for a pixel i to assume for an opti-
mal parameterization w.r.t. a single neighbor pixel j. The texture
coordinate is later obtained as u; = atan2(¢;), where @; is the
average of all considered neighbors ;.

e f:scaling factor to the periodic interval. It determines the size of
the grid given by (U, V) = x, where x is any value of the periodic
interval.

e m: fraction of foreground pixels in the lowest hierarchy level,
represented by a pixel in any hierarchy level.

Section 3.7

e wp: weight to initialize the frame coherent background recon-
struction. With the default value wp = 0.01, the background in-
formation (3D position per pixel) is taken with a weight of 1%
into the computation of the new frame’s background. Due to
sufficiently high frame rates, this small impact is sufficient to
achieve a smooth update of the background across frames.

o [reconstruction depth for the SSP. The SSP result of the previ-
ous frame is pulled into a the /,’th hierarchy level for initializa-
tion of the current frame. The larger [, the less local information
remains. Therefore a balance between the visualized structures
detail, screen resolution and [, need to be found. We propose an
empirically determined default value of /,, = 3.

© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

