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Figure 1: Our approach for the classification of data from diffusion MRI combines a feature representation that is learned by a specifically
designed convolutional neural network with a random forest classifier to facilitate interactive use and iterative refinement.

Abstract
Multi-shell diffusion MRI and Diffusion Spectrum Imaging are modern neuroimaging modalities that acquire diffusion weighted
images at a high angular resolution, while also probing varying levels of diffusion weighting (b values). This yields large and
intricate data for which very few interactive visualization techniques are currently available. We designed and implemented
the first system that permits an interactive, iteratively refined classification of such data, which can serve as a foundation
for isosurface visualizations and direct volume rendering. Our system leverages features learned by a Convolutional Neural
Network. CNNs are state of the art for representation learning, but training them is too slow for interactive use. Therefore,
we combine a computationally efficient random forest classifier with autoencoder based features that can be pre-computed by
the CNN. Since features from existing CNN architectures are not suitable for this purpose, we design a specific dual-branch
CNN architecture, and carefully evaluate our design decisions. We demonstrate that our approach produces more accurate
classifications compared to learning with raw data, established domain-specific features, or PCA dimensionality reduction.

1. Introduction

Convolutional Neural Network (CNN) architectures have led to
great progress in medical image segmentation, but their success-
ful training requires a sufficient amount of annotated data. Manu-
ally producing dense annotations of volumetric data is time con-
suming and costly. Specific CNNs have been developed to gener-
ate three-dimensional segmentations from sparse two-dimensional
annotations, but training them has been reported to take several
days [ÇAL∗16]. This makes an iterative correction of remaining
classification errors burdensome. We present a novel approach that

permits interactive training and refinement of three-dimensional
medical image segmentation by combining a CNN-based data rep-
resentation with a fast random forest classifier.

We develop our new approach within the context of visualizing
data from diffusion Magnetic Resonance Imaging (dMRI), which
is used to investigate structures that are below the resolution limit
of traditional MRI. It measures how microstructural environments
affect the Brownian motion of water molecules, and is most fre-
quently applied for neuroimaging, both in large-scale scientific
studies [GSM∗16, TSH∗18] and for surgical planning [GKN∗11].
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Diffusion MRI repeatedly takes 3D scans with varying measure-
ment parameters. Due to the complexity of the resulting data, vi-
sualization plays a key role for interpretation [SV19]. The most
fundamental variant of dMRI is Diffusion Tensor Imaging (DTI),
which models water diffusion with an anisotropic Gaussian. A rich
set of DTI visualization tools has long been available [VZKL06],
and recent work has started to address advanced aspects such as vi-
sualizing the uncertainty in data and parameter settings [SVBK14],
visual encodings of differences between individuals [ZSL∗16], or
visually exploring groups of subjects [ZHC∗17, AWSW∗19].

Advances in dMRI acquisition have required a continuous adap-
tation and extension of visualization tools. In particular, our work
addresses multi-shell dMRI, for which very few visualization tools
exist [VCHD15]. In multi-shell imaging, data is acquired both at a
high angular resolution and at multiple levels of diffusion weight-
ing (b values). The resulting data is represented by a 3D at each
point of a 3D domain, which makes its visualization challenging.

Direct volume rendering is a classical visualization technique,
and its classification step requires the assignment of voxels to ma-
terial or object classes [LKG∗16]. In dMRI, these could be tissue
types, specific fiber tracts, or pathologies, such as tumors. Auto-
mated methods for dMRI segmentation [WNMH18] perform such
an assignment, but require large-scale annotations and computa-
tional resources for training and do not provide detailed control
over the segmentation result, which is a standard requirement in
applications such a surgical planning [GNK∗01].

We present the first work that permits the interactive training of
classifiers for multi-shell diffusion MRI based on sparse annota-
tions, and the incremental refinement of the results. We follow a
painting metaphor, as proposed by Tzeng et al. [TLM05], and later
refined by others [SS15,QCJJ18]. On slice images, the user brushes
example regions in which the desired classes occur. These annota-
tions are used to train a supervised classifier. In regions where this
does not yield the desired result right away, iterative refinements
can be made by additional brushing.

There are two main challenges in applying this approach to diffu-
sion MRI. The first is to provide a suitable visualization framework
in which the annotations can be made. We describe the design and
implementation of such a system in Section 3. The second chal-
lenge is to find a feature representation of the data that is effective
for supervised classification. In Section 4, we demonstrate that the
naïve approach of working with the raw data at a given voxel is
neither effective, since it does not account for spatial context, nor
efficient, due to the high dimensionality. Domain-specific features
or PCA do not lead to satisfactory results either.

Therefore, in Section 5, we propose an approach that leverages
CNNs. To permit iterative refinement with a turnaround time on the
order of seconds, we decouple the representation learning, which
we perform as an unsupervised pre-process, from the supervised
learning, which is done with an efficient random forest classifier.
Since established CNN architectures are not well-suited for such a
hybrid approach, we design a novel two-branch CNN that simul-
taneously reduces the dimensionality, and encodes spatial context.
We carefully justify its main design choices, and empirically evalu-
ate alternatives. Finally, in Section 6, we confirm the practical util-
ity of our approach in a case study.

2. Related Work

Existing solutions for the direct volume rendering of data from
diffusion MRI are based on specific diffusion models: Kindlmann
et al. [KWH00] suggest strategies for defining transfer functions
for DTI, while Bista et al. [BZGV14] introduce spherical harmon-
ics lighting functions to volume render diffusional kurtosis. Jiao
et al. [JPGJ12] used volume rendering for uncertainty visualiza-
tion in dMRI glyphs, Abbasloo et al. [AWHS16] for uncertainty
visualization in DTI. Applicability of all these models is limited
to cases in which the diffusion MR acquisition matches certain as-
sumptions, such as moderate b values. Our proposed learning-based
approach is model-free, which makes it general enough to deal with
any types of multi-shell and Diffusion Spectrum Imaging data.

Work by Quan et al. [QCJJ18] is similar to ours in that they
also learn features for direct volume rendering in a data-driven
manner. However, their work addresses scalar volumes, not high-
dimensional diffusion MRI. Moreover, their work is based on a
completely different technique, hierarchical convolutional sparse
coding, while our work relies on CNNs. Tzeng et al. [TLM05] used
neural networks in the context of transfer function design early on.
However, they relied on a shallow architecture with a hand-crafted
feature vector, while our focus is on the use of deep learning to
learn a useful feature representation of our more complex data.

Cheng et al. [CCJ∗19] exploited high-level features from deep
learning for volume visualization, but they train a CNN in a super-
vised fashion, which requires a detailed labeling of the structures
that should be visualized later on, and learns features that are spe-
cific to those structures. We train the CNN in an unsupervised pre-
process, with the goal of learning versatile features based on which
many different structures can be visualized later on.

3. A System for Interactive Classification of Diffusion MRI

This section discusses the design of a prototype system for annotat-
ing our data. It provides context visualizations (Section 3.1), spe-
cific mechanisms for placing annotations (Section 3.2), and visual
support for an iterative training procedure (Section 3.3). We also
discuss the volume rendering of classification results (Section 3.4).

A screenshot of our interactive system is shown in Figure 2.
The system is implemented in C++, using Qt for the user inter-
face, OpenGL for 3D rendering, and Teem [Kin20] for some of its
diffusion MRI processing and visualization functionality.

3.1. Context Visualizations

Our system integrates complementary techniques to visualize the
diffusion MRI data at multiple levels of detail: An XYZ-RGB
color coding [PP99] is created based on a diffusion tensor fit to
the subset of dMRI data with b ≤ 1000s/mm2. It is displayed
on two-dimensional slices. Fiber Orientation Density Functions
(ODFs) are created with constrained multi-shell deconvolution
[ALGS17, JTD∗14], and can be displayed with standard glyphs.
Streamline-based tractography results can also be rendered. To
avoid visual clutter, all elements can be shown or hidden on de-
mand. Figure 2 (left) shows a color-coded slice and ODF glyphs.
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Figure 2: Spatially overlapping classes are a challenge in diffusion MRI data. On the left, we visualize them by restricting tract probability
isosurfaces to narrow slabs around a two-dimensional slice. Overlaps between corpus callosum (red) and corticospinal tract (blue), as well
as superior longitudinal fasciculus (green) are especially prominent. Color coding and ODF glyphs on the slice relate the tract segmentation
to the underlying diffusion MRI data. On the right, the user interface of our annotation tool is shown.

(a) Markers from Run 1 (CNN) (b) Markers from Run 2 (PCA)

Figure 3: Markers from our case study, indicating positive (blue)
or negative examples (yellow) for the left corticospinal tract. Ob-
serve that CNN-based features permit a sparser labeling. A trac-
tography is shown for reference, in grayscales.

3.2. Marker Placement and Storage

Using the interface shown in Figure 2 (right), the user can create
markers for an arbitrary number of classes, and assign names and
colors to them. To add or remove markers based on clicks in the 3D
view, window coordinates are unprojected to world space, rounded
to the closest voxel position, and stored at the voxel resolution of
the underlying dataset. We visually represent markers as spheres
centered in the corresponding voxel. Optionally, clipping planes re-
duce visual clutter when many markers have already been placed.

For more efficient interaction, multiple markers can be placed via
click-and-drag. The rounding to voxel coordinates ensures that this
does not introduce redundant markers at a distance below the data
resolution. Markers can be placed in blocks of edge length 2r+ 1,
centered on the current voxel. The label radius r can be tuned by
the user depending on the spatial scale of the structure that is to
be annotated. Two-dimensional blocks are placed when a clipping
plane is active, three-dimensional blocks are placed otherwise. Fig-
ure 3 presents an impression of the markers that were placed with
these tools within our case study.

3.3. Iterative Training Procedure

Once an initial set of markers has been placed, the user can press a
button to train a classifier, based on feature representations whose
details will be given in Sections 4 and 5. Following a previous sys-
tematic comparison of classifiers for volumetric data [SS15], we
select a random forest. It is trained using the markers as labels, and
it is evaluated on all voxels within a brain mask in Python, using the
multi-threaded implementation available in scikit-learn [PVG∗11].
For each user-defined class and each brain voxel, it outputs a prob-
ability that this class is present in the given voxel.

The predicted probabilities can be used for isosurface based vi-
sualization and for transfer function design. During the iterative
process of refining the classifier, we render probability isosurfaces,
and allow the user to place new markers on them, which are again
quantized to voxel resolution. This provides a straightforward way
to correct false positive detections. We fixed the isovalue during this
stage at the empirically determined level p = 0.8. The complete
three-dimensional isosurfaces can be shown to provide a quick
overview of the classification output. Alternatively, they can be re-
stricted to narrow slabs around a given slice, as shown in Figure 2
(left). This helps avoid occluding other elements of the visualiza-
tion, and conveys an impression of spatial overlaps.

3.4. Optical Properties and Final Volume Rendering

Transfer functions for direct volume rendering can be decomposed
into two steps. The first one is classification: It maps data to mate-
rial probabilities. In our approach, this is performed by the random
forest. The second step assigns color and opacity. For this, we al-
low the user to set a color C j for each class j, as well as a simple
opacity transfer function that maps class probabilities p j to opacity
in a piecewise linear fashion. We adopt the widely used notation in
which C j are pre-multiplied by their opacities, but we blend colors
slightly differently than Drebin et al. [DCH88]. In particular, the
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(a) Reference segmentation (b) Transfer function with learned classifier

Figure 4: After the tracts have been classified, the user can assign arbitrary colors and opacities, and interact with them fully interactively.
This example shows our Tract Set 1. Different opacity settings allow us to view the tracts separately, as well as jointly, to investigate both
their individual details and their spatial relationship.

denominator in our blending equation

C =
∑

c
j=1 p jC j

∑
c
j=1 p j

, (1)

accounts for the fact that our class probabilities are not normalized.
This is due to the fact that, in diffusion MRI, it is very common for
voxels to belong to multiple classes, e.g., in case of fiber crossings.
Section 4.1 will discuss this in more detail. After the initial classi-
fication, which takes a few seconds, the volume rendering is run in
pre-classified mode, fully interactively.

Figure 4 shows volume renderings of four specific fiber tracts.
Subfigure (a) shows the reference segmentation by Wasserthal et al.
[WNMH18], Subfigure (b) the result of a transfer function whose
classification step has been learned with our CNN-based features.
Since the tracts overlap and occlude each other, we show them sep-
arately in addition to the joint rendering at the center.

4. Representations of Multi-Shell Diffusion MRI Data

We found that the efficacy of the above-described system for inter-
active classification depends greatly on the choice of feature repre-
sentation for the diffusion MRI data.

This section describes a framework for evaluating alternative
representations (Section 4.1). Our main findings are that using the
raw data (Section 4.2) makes training relatively slow, and does not
yield sufficiently accurate result. Extracting features via Principal
Component Analysis (Section 4.3) improves both speed and ac-
curacy. However, the most accurate results, often by far, could be
achieved by learning a representation with a dual-branch CNN,
which we developed specifically for this purpose. It will be de-
scribed, further justified, and evaluated in Section 5.

Many domain-specific features have been proposed for multi-
shell diffusion MRI. They provide a natural additional baseline, but
did not yield competitive quality in our experiments. For reference,
their results are provided in a supplement.

4.1. Experimental Setup

Since even the refinement of a pre-trained neural network is far too
time consuming for interactive use, we perform classification with
a random forest. It has been selected over alternatives such as Sup-
port Vector Machines based on the in-depth comparison in [SS15],
which found that random forests require less hyperparameter tun-
ing, and that their computational effort scales more favorably with
the size of training data.

We evaluate different feature representations based on data from
the Human Connectome Project (HCP) [VESB∗13]. The diffusion
MR images from the HCP have a spatial resolution of 1.25 mm
isotropic (145×174×145 voxels), 270 gradient directions with 3 b-
values (1000, 2000, 3000 s/mm2) and 18 b = 0 images [SJX∗13].
We applied the brain mask provided with the dataset.

As reference segmentations, we used manually curated white
matter tracts that have been provided for 105 HCP subjects by
Wasserthal et al. [WNMH18]. We randomly selected one of these
subjects (784565) for our experiment. The reference dataset con-
tains high-quality dissections of 72 tracts. Providing sufficient
markers to distinguish between all of them in a single interactive
session is unrealistic. Therefore, we selected two subsets with dif-
ferent characteristics:

Set 1 contained the cingulum (CG), corticospinal tract (CST),
fornix (FX), and corpus callosum (CC). In this set, left and right
hemispheric parts were combined, resulting in four classes for the
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Figure 5: A visual comparison of direct volume rendering results that have been achieved on Tract Set 2 after learning the classification step
of the transfer function from identical user-provided markers, but based on different feature representations. Features have a clear effect on
classification accuracy and visualization quality. Exploiting CNN-based representation learning (MS2d) permits the closest approximation
of the ground truth (GT). These results have been achieved with sparse training data, and can easily be improved by adding more markers.

above-mentioned tracts, which are illustrated in Figure 4. An addi-
tional “other” class combines all remaining tracts.

Set 2 contained the inferior occipito-frontal fascicle (IFO), infe-
rior longitudinal fascicle (ILF), and superior longitudinal fascicle
(SLF). Here, we kept the left and right hemispheric parts separate,
resulting in six classes (plus “other”), which are shown in Figure 5.

Following Wasserthal et al. [WNMH18], we generated binary
masks from the streamlines by rasterizing them and retaining only
the largest connected components, removing single voxels and
small groups of voxels that were not connected to the rest. The re-
sulting binary mask is a 4D array with 145×174×145×C elements,
where C is the number of classes.

The training and test data for the classifier is given as

(x1,y1), ...,(xn,yn) where xi ∈ Rp,yi ∈ {0,1}C (2)

The exploration of different feature representations xi, with vary-
ing dimension p, will be a key aspect of this section. yi repre-
sents a C-dimensional label vector for the ith voxel, with value 1
in the position of corresponding classes. For example, in Set 1,
yi = [0,0,1,0,1] means that xi simultaneously belongs to the CST
and CC. We chose this encoding because most white matter voxels
contain a mixture of different tracts. Figure 2 illustrates such over-
laps. Our representation avoids conflating partial voluming effects
(“Which fraction of the voxel is occupied by tract X?”) with the
probabilistic output of the random forest (“How certain is it that
the voxel contains some fraction of tract X?”). It also implies that
probabilities will be normalized separately for each class. In other
words, the classifier can predict the simultaneous presence of any
number of classes, with separate probabilities for each.

To facilitate an iterative refinement, training should be successful
even with relatively sparse initial labels. Therefore, we compare
results from training the classifier based on data in only three slices.
They have been selected so that, when taken together, they contain
all classes. For Set 1, these are sagittal slice 72, coronal slice 87,
and axial slice 72. For Set 2, they are sagittal slices 44 and 102, and
coronal slice 65. The test sets contain all voxels within the brain
mask, because we would finally like to classify the full volume.

An established quality metric for classification is the F1 score,
which is also known as the Dice score in the context of image seg-
mentation. It is defined as

F1 = 2× P×R
P+R

(3)

and accounts both for the achieved precision P and recall R. F1
is computed per class. For brevity, we sometimes report the aver-
age over all classes. In our experiments, significant increases in F1
went along with increases in both precision and recall. Therefore,
we focus on F1 in our main manuscript, and relate it to other ob-
jectives, such as computational effort. In the supplement, we also
report precision and recall separately.

4.2. Raw Diffusion Signal

The simplest option is to use the raw diffusion signal intensities
as features. Since the diffusion MR images within the HCP com-
prise 288 measurements (270 diffusion weighted, 18 unweighted),
the resulting feature vectors have dimension p = 288. Computa-
tion times in Table 1 are on a six-core 3.4GHz workstation with
64 GB of RAM. They indicate that the high dimensionality leads to
a high computational effort for training the random forest classifier.
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Se
t1

Pre-Processing CG CST FX CC Avg. Std. RF training RF testing

Raw Signal 0 s 0.2064 0.4812 0.2911 0.6868 0.4164 0 7.17 s 8.08 s
PCA (k=11) 26.31 s 0.3733 0.4785 0.3387 0.6871 0.4694 0 2.01 s 6.54 s
MultiScaleAE2d 343.33 s 0.4642 0.6214 0.3594 0.7550 0.5500 0.0155 2.75 s 6.59 s

Se
t2

IFO-l IFO-r ILF-l ILF-r SLF-l SLF-r Avg. Std. RF training RF testing

Raw Signal 0.1804 0.2301 0.2531 0.1535 0.1959 0.2661 0.2132 0 7.55 s 11.93 s
PCA (k=11) 0.2234 0.3549 0.2803 0.1754 0.3482 0.3212 0.2839 0 2.23 s 10.53 s
MultiScaleAE2d 0.4532 0.4995 0.5082 0.4224 0.5679 0.6565 0.5179 0.0167 3.04 s 10.81 s

Table 1: Higher classification accuracy is achieved when combining random forests with CNN-based representation learning compared to
using raw data or PCA. Due to the stochastic nature of CNN training, we report mean and standard deviation over ten runs. Values for the
individual tracts are F1 scores; the average was computed as the arithmetic mean over all tracts from a set. Pre-processing denotes the time
required to generate the corresponding features. This can be done before interaction starts and is reported only with Set 1 because the same
features can be re-used for Set 2. All F1 scores correspond to sparse annotations and can be increased by providing more markers.

Figure 6: The first k = 11 principal components explain 95.86% of the variance in the raw diffusion MR signal (left). The average F1 score
is greatest when applying PCA to the raw signal and using k = 11 principal components, both on Set 1 (center) and Set 2 (right).

Moreover, the classification accuracy is unsatisfactory, especially
on Set 2. This can be explained by the fact that Set 2 requires a
distinction between corresponding tracts in the left and right hemi-
sphere, which is challenging based on the per-voxel signal alone.

4.3. PCA features

Principal Component Analysis (PCA) is widely used for feature
extraction. In the context of classification, PCA is often combined
with feature standardization. This amplifies features with low vari-
ance, and assigns the same importance to all of them. It is partic-
ularly helpful when combining features on different measurement
scales. In our case, all 288 measurements are on a common scale,
and it is not obvious whether standardization will be helpful: On
one hand, we can expect it to boost the impact of measurements
with high b value, which have the lowest numerical range, but pro-
vide the highest angular contrast. On the other hand, these same
measurements also have the lowest signal-to-noise ratio, which
might make it less beneficial to amplify them. Therefore, we tried
both. We found that features computed with the raw diffusion sig-
nal yield better classification results compared to the features com-
puted on standardized diffusion signal.

A second important hyperparameter in PCA-based feature ex-
traction is the dimensionality k. Its effect is illustrated in Figure 6.

Empirically, we found that k = 11 gave the best classification re-
sults on both sets. Moreover, k = 11 already explain 95.86% of the
variance of data. As shown in Table 1, PCA permitted a more ac-
curate classification compared to using the raw signal, at a reduced
training time. It requires a certain time for pre-processing, but this
can be performed before the interactive session.

5. Design and Evaluation of a Dual-Branch Autoencoder

CNNs are known for their ability to learn useful feature represen-
tations of high-dimensional data [GBC16], but training them is too
time consuming for interactive use. Therefore, we propose to train
a CNN in a pre-process, and to feed the learned features into a
random forest classifier. Specifically, we train an autoencoder, a
neural network that learns a lower dimensional feature representa-
tion (called “bottleneck”) from which the high-dimensional input
can be reconstructed as accurately as possible. Autoencoders can
be trained without any human intervention.

The U-Net [RFB15] is a specific CNN architecture that is widely
used for medical image segmentation, and is also the basis of state-
of-the-art diffusion MRI segmentation [WNMH18]. It may seem
natural and straightforward to use its features for our purposes.
Unfortunately, we did not find this to be effective. In particular,
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Figure 7: Our proposed dual-branch convolutional autoencoder.
The top branch uses 1×1 convolutions in order to learn a concise
representation of the high-dimensional per-voxel information. The
lower branch forces the input through a low spatial resolution bot-
tleneck to learn regional information. Features from both branches
are concatenated (+) to form a 44-dimensional feature vector that
can be fed into the random forest classifier.

the U-Net encoder generates a representation that is far too high-
dimensional to permit efficient training of a random forest.

We are not aware of any prior works on optimizing CNN archi-
tectures for the combined use with random forests. In Section 5.1,
we present a dual-branch architecture that we developed specifi-
cally for this purpose. We carefully justify key design decisions
such as our preference of 2D over 3D convolutions (Section 5.2),
our use of a multi-scale approach (Section 5.3), and the suitability
of an autoencoder loss for learning discriminative features (Sec-
tion 5.4). All experiments used PyTorch [PGC∗17] on a Linux
machine with a six-core 3.4GHz CPU, 64 GB of RAM, and an
NVIDIA GeForce RTX 2080 Ti with 11 GB of video memory. The
code is available at https://github.com/MedVisBonn/
DualBranchAE.

5.1. Our Dual-Branch Convolutional Autoencoder

Our dual-branch convolutional autoencoder acts on coronal slices
of our input data. Its architecture is sketched in Figure 7, and it
comprises two branches that follow different goals.

The upper branch learns a concise representation of the high-
dimensional information at each voxel. It is motivated by observ-
ing that dimensionality reduction via PCA increased classification
quality. The use of 1× 1 convolutions in this branch ensures that
information from different voxels remains separated. Stacking sev-
eral 1×1 convolutions, each followed by a parametric rectified lin-
ear unit (PReLU), while gradually decreasing the number of chan-
nels from the original 288 to 22, allows our network to learn more
complex nonlinear transformations compared to a linear PCA.

The lower branch learns a representation that reflects informa-
tion from a spatial neighborhood. This should increase the ability to
distinguish between tracts that might be difficult to discern purely
based on the local diffusion behavior. The lower branch reduces an
original resolution of 145×145 voxels through a bottleneck with a
spatial resolution of only 6×6 voxels, by repeatedly applying 5×5
convolutions with a stride of two, which leads to a corresponding
downsampling. As in the upper branch, a PReLU activation is ap-
plied after each convolution, and the number of channels is gradu-
ally decreased from 288 to 22.

We concatenate features from both branches at the original voxel
resolution. For this, we upsample the 6× 6 bottleneck from the
lower branch, using bilinear interpolation with an upsampling fac-
tor of 25 = 32 to match the five strided convolutions. This leads to
an intermediate result of resolution 1612, from which we crop out
the part corresponding to our original 1452 slice. The remaining
voxels at the boundary are irrelevant. They result from padding the
original 1452 input to 2852 voxels so that our final features only
rely on the valid part of the convolution. The padded voxels are not
required for the 1×1 convolutions in the upper branch, and are thus
cropped at its beginning.

The choice of 145× 145 as the input size is motivated by the
resolution of coronal slices in the HCP data. We emphasize that,
due to the convolutional nature of our network and the padding,
this does not constrain the resolution of possible inputs. Smaller
inputs simply require more padding, larger inputs can be processed
with the well-established overlap-tile strategy [RFB15].

The decoder reconstructs the original input data from the con-
catenated representations of both branches. It consists of two
padded 5× 5 convolutions, of which only the first one is followed
by a PReLU. The decoder is required during the pre-process, so that
the encoder can be trained to preserve as much input information
as possible. After the network has been fully trained, the decoder
becomes irrelevant for extracting the features of interest, which are
taken from the activation maps that are highlighted with a shaded
box in Figure 7.

We train all parts of this network jointly and from scratch, us-
ing the mean squared error (MSE) between the input and output as
the loss. We tried different ways of pre-processing the input and
found that it worked best to scale the signal within the whole vol-
ume to range [0,1], by accounting for the maximum over all voxels
and channels. Empty slices were excluded from the training set. In
earlier versions of our architecture, the upper branch had fewer con-
volutional layers than the lower one. This led to problems with the
gradient flow, which prevented proper training of the lower branch
and motivates the proposed balanced architecture.

Training does not require any annotations, and can be done in a
fully unsupervised manner, before the interactive session. The pre-
processing time in Table 1 (around six minutes) includes data pre-
processing, training, and feature generation. Since training involves
a random initialization of network weights, and random shuffling of
slices, results differ slightly between runs. Table 1 reports the mean
of the achieved F1 scores, over ten runs. For the average F1 over
all tracts, it also reports the standard deviation over runs. The mean
benefit of using CNN-derived features was much greater compared
to that variability.
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Processing time MSE Avg.F1 (Set 1) Avg.F1 (Set 2). # Params.

MS2d-L5-dec5x5 (proposed) 319.13 s 64,436 0.5500 0.5179 1,541,608
MS2d-L5-dec1x1 263.95 s 82,781 0.5459 0.4925 840,424
MS3d-L3-dec5x5x5 1430.73 s 215,584 0.4559 0.2729 7,456,264
MS3d-L3-dec1x1x1 1110.37 s 115,047 0.5133 0.4124 3,833,480
MS2d-L3-dec5x5 254.69 s 50,043 0.5184 0.3860 1,516,264
MS2d-L3-dec1x1 196.0 s 37,989 0.5184 0.3573 815,080

Table 2: An empirical investigation into the effect of several of our design choices. In particular, feasible 3D architectures have a smaller
radius of their receptive field (L3 indicating three convolutional layers in the encoder) and do not allow us to match the classification quality
of our proposed 2D architecture. At the same time, they have a greatly increased number of parameters and take much longer to train.

5.2. 2D vs. 3D Convolutional Autoencoders

Our decision to process two-dimensional coronal slices prevents
our architecture from exploiting the full three-dimensional spatial
structure that is inherent in the data. It is straightforward to replace
the two-dimensional convolutions in the lower branch and in the
decoder with three-dimensional counterparts. However, as it can
be seen from Table 2, we were unable to match the classification
quality that is achieved with our proposed approach with any fea-
sible three-dimensional architecture. At the same time, the compu-
tational effort at the pre-processing stage is increased significantly
when using three-dimensional convolutions. We see two main rea-
sons for the observed advantages of using a 2D architecture:

First, 3D architectures force us to limit the radius of the recep-
tive field. The receptive field of an activation in a CNN is defined as
the size of the neighborhood in the original image which will affect
the value of the activation. In our proposed 2D architecture, a fea-
ture in the 6×6 bottleneck layer has a receptive field of 1252. This
means that, through the repeated strided convolutions, it is able to
integrate information across almost the entire field of view within
the two-dimensional slice. Unfortunately, given that each voxel in
our data contains 288 values, and that CNN training involves stor-
ing network weights, activation maps, and gradients in addition to
the input, the amount of memory required to train a 3D network
with a receptive field of size 1253 exceeds the capacity of current
consumer-grade graphics hardware.

Second, even though replacing 2D with 3D convolutions is con-
ceptually simple, it greatly increases the number of parameters
(network weights) that have to be trained. This makes it more diffi-
cult and time consuming to train 3D CNNs.

The empirical observations in Table 2, which again reports av-
erages over ten runs of each architecture, support this. In particu-
lar, it includes the architecture MS3d-L3-dec5x5x5 which is a di-
rect three-dimensional counterpart of our proposed one (MS2d-L5-
dec5x5x5), but had to be limited to three convolutional layers to fit
into memory. This amounts to a larger receptive field in terms of
the number of voxels (293 = 24,389 > 1252 = 15,625), but to a
much smaller one in terms of radius. Due to the inability to train
on the full 3D volume simultaneously, we had to use an overlap/tile
strategy [RFB15]. The number of parameters in this architecture
is much higher than in the proposed one. Training it for the same
number of epochs (50) takes more than four times as long as for

MSE F1 (Set 1) F1 (Set 2)

Both branches, h = 44 64,436 0.5322 0.4987
Upper branch, h = 22 52,057 0.4005 0.2219
Upper branch, h = 44 45,346 0.4087 0.2417
Lower branch, h = 22 395,882 0.4536 0.4045
Lower branch, h = 44 403,087 0.4531 0.4122

Table 3: The proposed combination of two CNN branches improves
F1 scores (but not MSE) compared to using either branch in isola-
tion, even when allowing each branch to generate h = 44 features.

the proposed 2D architecture, and it neither converges to a similar
autoencoder loss (MSE), nor do its features allow us to match the
resulting classification accuracy.

Reducing the number of parameters in the 3D architecture by re-
placing the 5× 5× 5 convolutions in the decoder with 1× 1× 1
(MS3d-L3-dec1x1x1) led to a better convergence, and its features
at least allowed us to match (on Set 1) or surpass (on Set 2) the clas-
sification quality achieved with a 2D architecture of the same depth
(MS2d-L3). However, it still does not match the quality achieved
with our proposed architecture. This remained true when training
the 3D architecture for a much larger number of epochs. The results
are not included in the table, because this experiment was too time
consuming to repeat it ten times. We believe that the main reason
for this result is the smaller radius of the receptive field. Matching it
in 3D is impossible due to insufficient memory. We note that other
state of the art CNN based approaches for processing this type of
data are also using 2D architectures [WNMH18, WNHMH19].

5.3. Benefit from Dual-Branch Architecture

Our proposed CNN uses separate branches to learn per-voxel
and regional features. We experimentally confirmed that this con-
tributes to its success by trying out alternative architectures that use
only the upper, or only the lower branch, either with the same num-
ber of features as one branch of our architecture (h = 22), or as both
branches combined (h = 44).

This ablation study has been performed with only a single
run per architecture. Therefore, Table 3 compares results to the
worst out of ten runs of our proposed CNN, which combines both
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Processing F1 (Set 1) F1 (Set 2)

No training 41.63 s 0.4407 0.4463
MSE loss 319.13 s 0.5500 0.5179
Seg. loss (Set 1) 332.42 s 0.5959 0.4813
Seg. loss (Set 2) 305.91 s 0.5842 0.5189

Table 4: Even without training the weights of our CNN architec-
ture, its features permit a reasonable classification. Training with
an MSE loss improves them further; a small additional benefit re-
sults from training with a sparse segmentation loss.

branches. Results indicate that combining both branches brings a
clear benefit in classification quality, even though the upper branch
by itself achieved a lower reconstruction error.

5.4. Benefit from Autoencoder Training

An important observation from Tables 2 and 3 is the fact that suit-
ability of a representation greatly depends on the task. In particular,
a representation that achieves a more accurate reconstruction is not
necessarily better for classification. In the extreme case, in Table 3,
using the lower branch by itself was much worse with respect to
reconstruction compared to the upper branch by itself, but superior
for classification. This led us to question how suitable it really is to
train our architecture with an MSE loss. This decision is motivated
by the fact that it can be done as a fully unsupervised pre-process,
but it yields features that are optimized for reconstruction, not for
the classification task that we want to perform.

We conducted experiments to investigate two related questions:
First, is it even worth it to perform the training? Even CNNs with
random weights have been found to yield features that are useful
for different tasks [UVL18], and it is not obvious whether optimiz-
ing the weights for reconstruction will improve their suitability for
classification. Second, how much better can we expect our features
to become if we train our network with a supervised loss function,
based on the user-provided markers? How close is the computa-
tional effort of this to being feasible within an interactive session?

For these experiments, ten runs have been performed with
our proposed architecture (MS2d-k5-dec5x5). For training with a
sparse segmentation loss, the final layer of the decoder has been
modified to predict the classes, i.e., the number of channels has
been set to the number of classes, the activation function has been
changed to sigmoid, and a cross-entropy loss function has been
evaluated on those voxels for which labels were known, i.e., the
slices specified in Section 4.1. The resulting features were again
used to train a random forest, in the same manner as before.

Comparing results in Table 4 and Table 1 indicates that, even
without any training, CNN-based features permit a better classifi-
cation than the raw signal on Set 1, and a much better classification
than either the raw signal or PCA on Set 2. Pre-processing time
in this case is due to the need of data normalization and a single
forward pass through the network.

Training with the MSE loss optimizes the features so that they

Run 1 (CNN) Run 2 (PCA)

Final F1 0.63 0.42
# of annotated voxels 8376 17450

Table 5: Classification results (F1 score) achieved in our case
study, and number of voxels annotated by the expert in each run.

preserve more information about the input. Even though this does
not directly optimize their ability to distinguish between the desired
classes, it clearly improves their usefulness for classification.

Despite our relatively lightweight CNN architecture, training
with a segmentation loss was too slow for interactive use. More-
over, training a random forest based on the learned features (results
in Table 4) achieved more accurate segmentations than the CNN
by itself (F1=0.5472 on Set 1, F1=0.4805 on Set 2). We expect that
matching the accuracy in Table 4 with a CNN alone would require
a more complex decoder, which would make training even more
costly. These observations support our decision to apply random
forests on features from an unsupervised CNN to achieve useful
results within short training times.

Training with a segmentation loss optimizes the features pre-
cisely for the final task. However, it only accounts for the small
subset of voxels for which a label is available, while the MSE loss
is driven by all voxels. We found a clear benefit from the supervi-
sion in Set 1, but only a minor one in Set 2. Training with a mis-
matched segmentation loss was worse than using the MSE loss in
one case (learning features with labels from Set 1, using them for
Set 2), better in the other.

6. Case Study

Even though the experiments reported above indicate a clear ad-
vantage of the CNN-derived features over more basic alternatives,
they have been conducted with a fixed set of training samples. To
evaluate our architecture in the interactive setting for which it was
designed, we conducted a case study in which we asked a domain
expert to visualize the left corticospinal tract in an example dataset.

Our domain expert was a fourth-year PhD student working in the
field of diffusion MRI analysis. He was therefore well-familiar with
brain anatomy and standard diffusion MRI visualizations, but he
was not involved in the development of our tool, and had not used it
before. After a brief demonstration of the system, he was given ten
minutes to become familiar with it and ask for help when needed.
Afterwards, we asked him to create the most accurate representa-
tion of the left corticospinal tract that he could manage within eight
minutes, without further help or intervention from our side. In pilot
experiments, we obtained initial useful results within two to three
minutes. Consequently, eight minutes were chosen as a time limit
to provide the opportunity of refining the classifier, and to avoid in-
ducing stress, especially given the relatively brief training period.

The experiment was repeated twice, first with the CNN-derived
features, second with PCA features. The order was chosen so that
any additional practice the expert might gain during the experi-

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

9



A. Torayev and T. Schultz / Interactive Classification of Multi-Shell Diffusion MRI

(a) External reference

(b) Run 1 (CNN) (c) Run 2 (PCA)

Figure 8: Compared to an external reference for the left corti-
cospinal tract (a), using CNN-derived features in the first run of
our case study (b) produced a much cleaner and more accurate
result compared to PCA-based features (c).

ment would benefit the PCA features, which we expected to pro-
duce poorer results. Figure 8 presents the visualizations that were
achieved in each case, and Table 5 reports the F1 scores from com-
paring our expert’s result to the external reference provided on the
same dataset by Wasserthal et al. [WNMH18].

In agreement with our findings from the previous experiments,
the CNN-derived features facilitated a much more accurate clas-
sification than the PCA features. Table 5 also lists the number of
voxels in which the expert placed a marker. This number is more
than twice as high in the second run. Figure 3 provides a visual im-
pression, with anatomical context provided by a slice image and a
tractography of the corticospinal tract (grayscales). It becomes ev-
ident that, when using PCA features, much more effort went into
trying to refine the classifier, despite the less favorable end result.

As an additional cross-check, we used the markers from the first
run to train with PCA features (F1=0.36), and the ones from the
second run to train with CNN-derived features (F1=0.58). This re-
sult confirms that the much better performance in the first run was
due to the features, not to a potentially less fortunate training set
created during the second run. It is unsurprising that, for each fea-
ture representation, best results are achieved for the training set that
was refined based on that same representation.

7. Conclusions

Interactive classification can facilitate the visualization of high-
dimensional volume data. Moreover, intelligent systems for inter-
actively creating 3D segmentations have the potential to reduce the

typically immense annotation effort for training CNN-based seg-
mentations. This has motivated our development of an interactive
system for classification of diffusion MRI. In contrast to most ex-
isting diffusion MRI visualizations, our method is fully data-driven
and does not depend on any specific diffusion model, such as the
diffusion tensor or specific HARDI models. This makes it suitable
for advanced variants of diffusion MRI, such as multi-shell acqui-
sitions, for which visualization options are currently very limited.

Even beyond diffusion MRI visualization, there has been sub-
stantial interest in painting-based transfer function design [TLM05,
EHK∗06, RPSH08, GMY11, SS15, QCJJ18]. In this more general
context, to our knowledge, we present the first approach that lever-
ages the power of representation learning via deep neural networks.
In order to overcome the problem that their computational effort
prevents training deep neural networks in an interactive setting,
we propose a hybrid architecture that trains a CNN in an unsu-
pervised pre-process and feeds the resulting feature representation
into a computationally more efficient random forest classifier. Since
standard CNN architectures such as the U-Net [RFB15] are not
well-adapted for use in such a hybrid pipeline, we design a novel
dual-branch CNN architecture, and carefully justify its design deci-
sions. We are confident that even other applications in which high-
dimensional volumetric data arise can benefit from our approach.

Results in Section 5.4 suggest that, in the future, it might be
worthwhile to refine the pre-computed unsupervised features once
labels start becoming available. This could happen in a background
thread or on a second GPU, while the interaction is proceeding.
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