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Abstract
Computed Tomography Angiography (CTA) is one of the most commonly used modalities in the diagnosis of cerebrovascular
diseases like ischemic strokes. Usually, the anatomy of interest in ischemic stroke cases is the Circle of Willis and its periph-
erals, the cerebral arteries, as these vessels are the most prominent candidates for occlusions. The diagnosis of occlusions
in these vessels remains challenging, not only because of the large amount of surrounding vessels but also due to the large
number of anatomical variants. We propose a fully automated image processing and visualization pipeline, which provides a
full segmentation and modelling of the cerebral arterial tree for CTA data. The model itself enables the interactive masking of
unimportant vessel structures e.g. veins like the Sinus Sagittalis, and the interactive planning of shortest paths meant to be used
to prepare further treatments like a mechanical thrombectomy. Additionally, the algorithm automatically labels the cerebral
arteries (Middle Cerebral Artery left and right, Anterior Cerebral Artery short, Posterior Cerebral Artery left and right) detects
occlusions or interruptions in these vessels. The proposed pipeline does not require a prior non-contrast CT scan and achieves
a comparable segmentation appearance as in a Digital Subtraction Angiography (DSA).

CCS Concepts
• Computing methodologies → Image segmentation; Search with partial observations; • Human-centered computing →
Visualization;

1. Introduction

Strokes in general are defined as an abrupt onset of a focal neuro-
logical deficit caused by a lack of blood supply. Either spontaneous
ruptures (hemorrhagic type) or artery occlusions (ischemic type)
can be causes of an undersupply of the cerebrovascular parenchyma
[WS12]. Due to the speed, high availability and the ability to ac-
quire highly resolved images CT became the most widely used
modality for the diagnosis of acute strokes [SRKD07, LFR∗01].
The diagnosis of ischemic strokes is usually been done using the
Computed Tomography Angiography (CTA), in particular in order
to localize intravascular thrombi that can be targeted for a throm-
bolysis and/or mechanical thrombectomy [tor13]. These thrombi
result in so called (vessel) occlusions, which block the blood flow
in arteries and cause an undersupply of blood in the respective
parenchyma. Consequently as no contrast agent passes through the
occlusion, the entire subtree is not contrast enhanced. The diag-
nosis of ischemic strokes remains challenging, since the region of
interest, the Circle of Willis and its peripheral vessels, the cere-
bral arteries are surrounded by other vessels and bone structures.
This situation is aggravated by the large amount of anatomical
variants of the Circle of Willis including the cerebrovascular sys-
tem [Iqb13]. To know the patients actual vessel tree structure sim-
plifies the planning for the thrombectomy significantly. Therefore,

physicians need to have a good overview of all vessels highlighted
by the CTA acquisition. DSA, the subtraction of a registered CTA
and NCCT volume, provides the best view on all vessels. Still,
DSA requires in total two acquisitions and hence two radial expo-
sures. Furthermore DSA visualizes both, veins and arteries which
is sometimes not desired either especially if a large contrast bolus
was injected, because usually the cerebral arteries are the reason
for acute strokes and thus of interest in the actual diagnosis.

We propose a method called VirtualDSA++ which leads to a
DSA-like segmentation solely based on a CTA scan with no use
of any prior NCCT scan. We name our approach VirtualDSA++ as
no non-contrast CT scan is required for the proposed pipeline and
comparable image appearances are achievable as in a DSA, hence
the phrase "Virtual". The "++" stands for the algorithmic exten-
sions, such as the path finding or selective vein suppression.

2. Related Work

In the last few years, several works have been published addressing
the segmentation of the cerebrovascular tree. Most of these publica-
tions were based on MRI angiography (TOF), ranging from classic
image processing [MMNG15, MMNG17] to deep learning meth-
ods and achieved good and promising results [LRA∗19, LWF∗17,
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TEF∗18, HMA∗20, CDY∗18]. However, a segmentation on MRI
angiography data can not be fairly compared to CTA data, since
no other non-vessel structures can seriously interfere the segmen-
tation. In CTA the presence of bone structures highly overlaps with
vessel tissue regarding their intensity values and that as a difference
to MRI makes it difficult to segment [LFP∗17, HF07]. Due to the
speed and the high availability CT is still a commonly used modal-
ity in the stroke diagnosis, especially as it is used in clinical practice
as a first line imaging tool to distinguish the ischemic and the hem-
orrhagic type. Segmentations using CTA only are quite rare as they
often incorporate a prior NCCT and process the conjunct data into
DSA-like images before finally segmenting them [MVv∗05,HF07].
With the use of deep learning methods Nazir et al. proposed 2020 a
patch-wise segmentation network similar to a ResNet consisting of
Inception Modules [SLJ∗15]. In a cross validation setup they have
achieved a Dice score of 89.46 %. But as in all supervised deep
learning methods, labeled data is essential, and especially for the
cerebrovascular vessel tree extremely time consuming to produce.
Nazir et al. reported the annotation by hand of one single CTA data
set takes five to six hours each [NCS∗20], making the development
of large scale applications or the reproducability very difficult.

The labeling of the Circle of Willis is a well studied field at least
for MRI data. Atlas based approaches are the most commonly used
way of realising the vessel labeling, e.g. as it was done with TOF
MRI data in [VdGJB∗15, MMNG17] and with 4D-flow MRI data
by Dunas et al. [DWA∗16] with the corresponding follow up work
[DWA∗17]. In all approaches, the atlas map is being labeled with
respect to the vessel sections and after a registration compared to a
data set at hand. All three publications achieve sensitivities between
90% and 100%. As these works also cover the computation of the
respective atlas maps, only data sets of healthy patients were used,
which makes a clinical evaluation hard for ischemic stroke cases.
Nonetheless, the methods by Dunas et al. [DWA∗16,DWA∗17] can
detect vessels missing due to anatomical variants but as no cases
with large vessel occlusion were part of their work, no predictions
can be done on how their method will perform on stroke cases. La-
beling on CTA data compared to MRI data leads to the same chal-
lenges as in the segmentation: Bone tissue can easily be confused
with perfused vessels and thus disturb the labeling.

The automated detection of large vessel occlusions on CTA data
is also a recent field of study. Amukotuwa et al. [ASDB19] for in-
stance, proposed 2019 a method for the automated detection of ar-
eas affected by large vessel occlusions. They proposed an image
processing pipeline, which processes the CTA data and compares
the intensity values of the vessel structures in both hemisphere area
by area. Occlusion (positive class) were detected with a sensitivity
of 96,% and a specificity of 79 %. However, the occlusion itself is
not actually located in their work, rather the affected region. As an
alternative to an image processing based approach, a Deep Learn-
ing based detection of the affected region has been done as well by
Sheth et al. [SLRB∗19]. In their work they have used a chain of
Inception Modules [SLJ∗15] using shared weights for both hemi-
spheres, which shows similarities to Amukotuwa et al.’s work. As
ground truth, they have used CTP acquisitions to determine the af-
fected region and achieved an AUC of 88 %.

3. Segmentation
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Figure 1: Image processing pipeline for the segmentation, mod-
elling and labeling of the cerebrovascular vessel tree. Inputs are
marked as blue and outputs as green. Arrows which enter the boxes
vertically represent images whereas arrows which enter horizon-
tally are either masks or additional information required for the
respective action, e.g. the transformation matrix resulting from (b)
enters the trafo module (c) horizontally in order to transform the
Vessel atlas.

Figure 1 shows the image pipeline we propose, which leads au-
tomatically leads into the segmentation and subsequently into the
modelling of the cerebrovascular vessel tree. In addition to that,
the pipeline returns the label markers for the large cerebral ves-
sels, Middle Cerebral Artery left and right (MCAL and MCAR),
Anterior Cerebral Artery (ACA), Posterior Cerebral Artery left and
right (PCAL and PCAR). The pipeline starts with the CTA data
set where all bone structures are being segmented in (a) using the
bone removal method by Chen et al. published in [CSKK∗]. In
parallel the CTA volume is being registered (b) onto the brain at-
las by Kemmling et al. [KWB∗12]. Both volumes are registered
with a non-rigid transformation field using the in-house registration
engine. The registration algorithm is a multi-scale dense match-
ing method enabled by the gradient of the local cross correlation
similarity measure. The deformations are estimated based on the
composition of the time-dependent velocity fields combined with a
Gaussien smoothing regularization. Alternatively, the volumes can
be registered using publicly available registration tools as well. The
resulting transformation field of (b) is reused to transform an at-

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

152



F. Thamm & M. Jürgens & H. Ditt & A. Maier / VirtualDSA++

las again by Kemmling [FSF∗12] specifically designed to repre-
sent the Circle of Willis and large vessels attached to it. The reg-
istered vessel atlas is binarized by thresholding (t1 = 0.005) and
dilated (7× 7× 11) to close noisy gaps that emerged by interpo-
lations in the transformation. The result of (a) is filtered in (d) us-
ing the hessian based vesselness filter by Frangi et al (two scales,
σ1 = 1.00, σu = 1.50). [FNVV98] which reacts well on tubular
structures as they occur on vessel shaped tissue. As vessel struc-
tures are not the only tissue where tubular structures might appear,
the filter response is being masked out in (e) using the dilated ves-
sel atlas described earlier. This removes large noisy clusters which
typically appear in the nose region. The mask is further binarized
using a threshold (t2 = 4). In (f) a slice-wise Hough transformation
on circles is applied on the thresholding result, to model the tubular
structures enhanced by the vesselness filter. In (g) the circle cen-
terpoints found in (f) are masked out using the binarized mask so
only centerpoints are left which are inside of a vessel. The masked
centerpoints of (g) are used as seed points for a region growing
step in (h) using a relative threshold of 5%. Additionally, in order
to remove noisy clusters, only connected components are returned
with a volume larger than 10 ml. The result of (h) is forwarded into
the labeling algorithm, described in Section 4, which yields the fi-
nal label markers and moreover detects missing or occluded ves-
sels. The resulting mask of (h), sampled as seed points is again
used for a region growing step in (i), segmenting the boneless CTA
scan from (a). Empirically an HU range between 130 HU and 1500
HU for the region growing led to the best and robust results. In
order to fill tiny gaps, which occur in the broad vessel structures
near the cerebellum, a slice-wise closing (1× 1× 0) is applied on
(i) and modelled in (j) using the MeVisLab implementation of the
Dtf-Skeletonization algorithm published by Selle [Sel00]. Finally,
the graph algorithms described in Section 5, vein suppression and
the path finding are applied in (k), representing the last step of the
pipeline and return therefore the output model.

4. Vessel Labeling

The segmentation pipeline uses two different atlases. One for the
brain tissue and one for the cerebrovascular structures. The label-
ing method we propose is enabled by placing multiple markers on
the vessel atlas for each large vessel. After a registration of the brain
atlas, these vessel markers are transformed into the CTA data set at
hand. Figure 3 shows the markers placed on the Anterior Cerebral
Artery and how they approximate the vessel pathway. To finally
place a label to the corresponding vessels, our approach determines
the closest point on the vessel segmentation wall to each marker
and chooses the one with the smallest distance as the final marker.
Either the marker itself or the closest point on the vessel can be
used as label position. We extend the labeling concept by the pro-
posal of a method to use the multiple markers as indicators for oc-
cluded vessels. For this matter our approach computes the distances
of each marker to closest vessel wall. Firstly, if the distance from
all markers to the next vessel is beyond the repsective radius, these
markers are considered as missing. If 70 % of the multiple markers
are classified as missing, the whole vessel is classified as occluded.
All markers have individual radii dependent on the branch, defin-
ing the range within a vessel must be. The radii were determined
empirically for the MC and ACA with 15 mm and for PCA with

Figure 2: VirtualDSA++ segmentation viewed on the Circle of
Willis together with the internal placed label marker according
to [VBR]. Highlighted in green is a path computed by the path
search algorithm. The blue cube represents the root node, described
later in Section 5.1

Figure 3: VirtualDSA++ result together with the transformed
marker chain on the top right approximating the ACA pathway.
The marker displacements result from the coarse representation of
probablistic vessel atlas.

5 mm. If an occlusion is located closely next to the markers and the
vessel model interrupts, all markers have a common closest point
on the vessel wall. This leads to a linear increase of the distance
measure with ascending marker index as the indexing goes in order
from proximal to distal. A linear regression allows to compute the
slope of the linear relation. Subsequently, the slope itself serves as
an indicator for the occlusion. If the slope is small, the marker chain
is placed rather parallel to the vessel. If the slope is large and pos-
itive, the marker chain diverges from the closest vessel point, thus
an interruption in the vessel flow is to be expected. If the slope is
negative, the marker chain approaches the vessel wall with ascend-
ing index, which can be caused by inaccuracies in the atlas and are
not considered as an indicator for abnormalities.
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Figure 4: Vein suppression feature of VirtualDSA++ on different distances. From left to right: 50 mm, 100 mm, 200 mm and 400 mm. The tiny
blue cube is located at the Communicans Anterior Vessel and indicates the root node. Starting with 50 mm only vessels directly connected to
the root node are rendered. Increasing the distance up to 400 mm reveals step by step all vessels found including parts not of interest in the
ischemic stroke diagnosis, e.g. Sinus Sagittalis.

5. Search on Models

Step (k) in Figure 1, described as "Graph Search" uses the ves-
sel tree model computed in (j) as an algorithmic interface. First
we introduce in Section 5.1 the path finding problem on the vessel
model as a generic concept from which applications can be derived.
Secondly we use the shortest distance as optimization problem and
present two applications namely the path search in 5.2 and the in-
teractive vein suppression in 5.3.

5.1. Iterative Search

The model in step (j) of the pipeline in Figure 1 can now be used
to apply path search algorithms and with that applications arise.
The search is based on bifurcation level instead of on pixel basis,
as only bifurcations are relevant for any path decisions, which ac-
celerates the algorithm significantly and allows an interactive use
of it. The model of (j) itself is equivalent to a graph where all bi-
furcations represent nodes and vessel section represent edges. In an
initial state, the user sets a so-called root node. The root node rep-
resents the node where for all nodes paths are computed to. The key
idea is to apply the AI path search algorithm A* between the root
node and all other nodes in the tree and cache internally all result-
ing paths to provide quick access. Based on the optimality criterion
and heuristics chosen for the A* algorithm, different applications
arise from that generic concept. In this publication, we take the
computation of shortest distances to the root node as subject of op-
timization and present the features enabled by this. A* requires a
heuristic, thus we choose the Euclidean distance between the cur-
rent node and the root node. The real cost value is computed based
on the actual length of a vessel section, not based on the distance
between two nodes. Trees which are not attached to the root node

can be rendered and be considered into the path search as well. De-
pending on the choice of the optimality criterion this is possible
by determining the most optimal node in these unattached trees.
These quasi-optimal nodes are treated again as root nodes within
their own tree. For the shortest distance criterion the quasi-optimal
node is the closest point of the unattached tree to the root node.

5.2. Path Search

The plain path search results can be used to be rendered as overlays
to the model itself. Figure 2 shows the example for the path finding
according the smallest distance rendered in green. This feature can
be used to guide an interventional action or as an annotation tool
for findings.

5.3. Vein Suppression

Vessel sections can be shown or concealed interactively according
to their distance to the root node. For example, the ischemic stroke
diagnosis becomes easier, if the root node is placed into the Circle
of Willis, and the vein structures (Sinus Sagittalis) which are not
of interest in the actual diagnosis are concealed, because they have
large distances to the root node. In this case we call it vein suppres-
sion as veins are hidden in the first place. This is shown in Figure
4 for different walking distances ranging from 50 mm to 400 mm
from Communicans Anterior Vessel as root node. Under this link,
we provide additional video material for the demonstration of the
interactive path finding and the vein suppression.

6. Conclusions

We proposed in this work an image processing pipeline, which seg-
ments automatically the cerebrovascular tree in CTA head scans,
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and results in a modelling of the vessel system. In this publication,
we presented the search for shortest pathways as the subject of op-
timization and derived two applications by that. Firstly, the render-
ing of shortest paths between two nodes, which might help inter-
ventions as a mechanical thrombectomy for instance. Secondly, we
presented the interactive Vein Suppression as another feature de-
rived from the path search on the tree model. This feature allows to
interactively conceal parts of the vessel tree which are not of inter-
est in the ischemic stroke diagnosis. Quantitative evaluations will
follow in future works.
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