
Performance Improvements of Poincaré Analysis for Exascale
Fusion Simulations

D. Pugmire1 , J. Y. Choi1 , S. Klasky1 , K. Moreland1 , E. Suchyta1 , T. M. Athawale1 , Z. Wang1 , C.-S. Chang2 , S.-H.
Ku2 , and R. Hager2

1Oak Ridge National Laboratory, USA
2Princeton Plasma Physics Laboratory, USA

Abstract
Understanding the time-varying magnetic field in a fusion device is critical for the successful design and construction of
clean-burning fusion power plants. Poincaré analysis provides a powerful method for the visualization of magnetic fields in
fusion devices. However, Poincaré plots can be very computationally expensive making it impractical, for example, to generate
these plots in situ during a simulation. In this short paper, we describe a collaboration among computer science and physics
researchers to develop a new Poincaré tool that provides a significant reduction in the time to generate analysis results.

CCS Concepts
• Human-centered computing → Scientific visualization; Visualization techniques; • Applied computing → Physics;

1. Introduction

Fusion energy research is focused on understanding the science
needed to develop energy sources based on the controlled fusion of
light atomic nuclei. Fusion energy is an active area of research that
promises to provide large amounts of clean energy. One promis-
ing avenue for achieving fusion energy is using a machine called
a tokamak. A tokamak confines a plasma using magnetic fields
within a torus. Scientists around the world are actively research-
ing high-fidelity models to predict the performance and behavior of
fusion in tokamak devices. Significant efforts are currently under-
way to plan experiments on the International Thermonuclear Ex-
perimental Reactor (ITER) tokamak under construction in France.
ITER, and follow-on devices, will operate in physics regimes not
achieved by any current or past experiments, making advanced and
predictive numerical simulation critical for success.

The tokamak contains many magnetic coils producing a strong
magnetic field that confines the charged particles within the plasma.
One set of magnetic coils generates an intense torroidal field, in
the direction around the torus. A second set of coils generates a
magnetic poloidal field in the direction around a cross-section of
the torus. These two fields result in a twisted magnetic field that
twists the plasma, resulting in confinement. Additional coils are
used to drive the shape of the plasma during confinement.

The time-varying behavior of the magnetic fields is complex and
vital to the performance of the tokamak. This makes analysis tools
for understanding the dynamic nature of the magnetic field critical.
The complexity of the three-dimensional, periodic magnetic field
lines makes direct visualization difficult. Because the field lines are

periodic, the complexity can be reduced by making use of a re-
currence or Poincaré map. This technique reduces the dimension
of each field line from three down to two by intersecting the peri-
odic orbit with a lower-dimensional subspace (called the Poincaré
section). Here we intersect each field line with a plane to create a
sequence of points. The pattern produced by each field line pro-
vides valuable insight into the topology of the complex magnetic
field lines inside the plasma.

Proper characterization of the magnetic field requires a large
number of orbits to a large number of field lines. It is common
to create Poincaré maps containing tens of thousands of field lines,
each consisting of thousands of orbits. In practice, the field lines
are computed using particle advection to trace the path of massless
particles through the magnetic field. Calculating the orbit of each
field line consists of taking a large number of advection steps us-
ing a numerical solver. To ensure the accuracy of such long field
lines, an appropriately small step size must be used for the numeri-
cal solver. This in turn results in a large number of solves for each
orbit. As an example, for an orbit that takes 500 advection steps,
computing 1000 orbits results in 500,000 advection steps for each
field line. For 50,000 field lines, this results in a total of 2.5x1010

advection steps.

In this short paper, we describe a collaboration among com-
puter science and physics researchers to provide a significant re-
duction in the time required to perform Poincaré analysis on the
magnetic fields in plasma simulations using the X-Point Gyroki-
netic Code (XGC) [HYK∗16] code. Before the collaboration be-
gan, the tool used by the physicists to perform this analysis took

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/visgap.20241120 https://diglib.eg.orghttps://www.eg.org

VisGap’24 – The Gap between Visualization Research and Visualization Software (2024)
C. Gillmann, M. Krone, G. Reina, T. Wischgoll (Editors)

https://orcid.org/0000-0003-0647-2634
https://orcid.org/0000-0002-6459-6152
https://orcid.org/0000-0003-3559-5772
https://orcid.org/0000-0002-7051-3288
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0003-3163-6274
https://orcid.org/0000-0003-1123-9925
https://orcid.org/0000-0002-3346-5731
https://orcid.org/0000-0002-9964-1208
https://orcid.org/0000-0002-4624-3150
https://doi.org/10.2312/visgap.20241120

D. Pugmire et al. / Performance Improvements of Poincaré Analysis for Exascale Fusion Simulations

up to several hours. Because of this, the amount of analysis that
can be performed was very limited. Further, because the magnetic
field evolves over the course of the simulation, a detailed analy-
sis of the time-varying evolution was not possible. This collabora-
tion resulted in a new Poincaré tool being developed using VTK-m
[MSU∗16], a visualization toolkit that provides portability across
CPUs and GPUs. This new tool was run on four different work-
loads using both CPUs and GPUs on a modern supercomputer. It
achieved time speedups of between 5.8× and 8.9× on the CPU
and between 11.4× and 15.4× on the GPU. In addition, because
the new Poincaré tool required fewer resources, the cost of running
was significantly lower. The cost savings for the four workloads
were between 14.4× and 22.4× for the CPUs and between 58.4×
and 77.1× for the GPU.

One of the major challenges in this collaboration was ensuring
that the complex representation in the simulation code of the mag-
netic field was accurately conveyed in the new visualization tool.
The VTK-m accelerated tool has made it possible for Poincaré
analysis to be performed in situ for large-scale simulations running
on supercomputers located at the Oak Ridge Leadership Comput-
ing Facility (OLCF) [SKP∗22].

2. Related Work

2.1. Poincaré Maps

Poincaré maps are an important tool developed for the study of dy-
namical systems. One of the key advantages is that it provides a di-
mension reduction to study periodic systems [Mor00]. In the case
of our fusion example, this reduction is from 3D to 2D. Löeffel-
mann et al. [LKG97] provide a summary of the usage of Poincaré
maps for visualization across a variety of application areas and
demonstrate their usefulness in flow analysis. Poincaré maps have
been applied to fusion in a number of works, including the follow-
ing [SCT∗10, SCTC12, TGS11].

2.2. Streamlines and Particle Advection

A widely used visualization algorithm for flow fields is a technique
called streamlines [SML04]. The technique starts with a velocity
vector field representing the flow of a fluid at each point in the do-
main, which is a common output from computational fluid dynam-
ics simulations. This fluid is visually represented by one or more
curves that trace the trajectory of that part of the flow. This is mod-
eled and computed as a massless particle instantaneously moving
with the velocity determined by the field at the particle’s position.
The particle is placed at a seed point and then is advected by push-
ing it by the vector field. The computation (described in more detail
in Section 3) solves a differential equation to find the curve that is
tangent to the vector field everywhere.

Although these traces of advected particles can be visualized di-
rectly as streamlines, they also form the basis of numerous visual-
ization algorithms, some of which require the advection of a great
many particles [Hul92,GHP∗16]. Because particle advection is the
greatest computational cost of these algorithms, much research has
been invested in optimizing this process [ZY18, YSB∗23]. The
work in this paper leverages the particle advection provided by

the VTK-m library [MSU∗16]. VTK-m provides a flexible parti-
cle advection algorithm that is optimized for a variety of proces-
sors [PYK∗18].

Technically, a magnetic field is not a flow field; it does not de-
scribe the movement of matter. However, we are interested in ex-
tracting magnetic field lines: curves that are tangent to the magnetic
field everywhere. This is the same property a particle advection tra-
jectory has to its velocity field, and thus it is valid to extract these
magnetic field lines by treating magnetism as a flow and leverag-
ing the aforementioned particle advection algorithms. This paper
often refers to flowing particles even though that does not match
the physical process.

3. Methods

Computing the Poincaré map consists of two basic steps. First,
compute field lines originating from each seed location. Second,
intersect the fieldlines with the Poincaré section. Fieldlines, or
streamlines, are generated by computing the trajectory of a mass-
less particle through a vector field. This is a classic initial value
problem, dy

dt = f (t,y), where y(t0) = y0. Here, y0 is the (seed)
location at time t0, and f (t,y) is the vector field. For streamline
computation, a common method for computing the trajectory of
the particle (y(t)), is using the 4th order Runge-Kutta iterative
method [PTVF92]. For a given step size h > 0, positions along the
trajectory (yi) can be computed by:

yn+1 = yn +
h
6
(k1 +2k2 +2k3 + k4) (1)

where
k1 = f (tn, yn)

k2 = f (tn +
h
2
, yn +h

k1
2
)

k3 = f (tn +
h
2
, yn +h

k2
2
)

k4 = f (tn +
h
2
, yn +hk3)

Figure 1: Example of an XGC mesh that has been clipped to show
the interior. 2D planes are equally spaced around the central axis
of the tokamak. Two planes are shown in the clipped region to il-
lustrate the semi-unstructured nature of the mesh.

The key requirement of the RK4 method is to be able to evaluate
f (t,y) (i.e., the magnetic field) at each point within the domain.

The XGC code uses a semi-unstructured mesh to represent the
physics of the plasma. Fundamentally, the mesh is cylindrical with
periodic boundary conditions along the cylinder’s axis. The mesh

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

2 of 7

D. Pugmire et al. / Performance Improvements of Poincaré Analysis for Exascale Fusion Simulations

is structured along the axis of the cylinder and each toroidal cross-
section is a 2D unstructured triangular mesh. The cross-section is
rotated around the central axis to create the 3D mesh (see Figure 1).
The mesh consists of wedge elements that are formed from pairs of
triangles from adjacent planar cross sections.

3.1. Poincaré Algorithm

Algorithm 1 Algorithm for computing a Poincaré map.
1: /* Initialization */
2: P = Poincaré section
3: S = Input seed locations
4: Maxp = Maximum number of punctures
5: Result = Empty
6:
7: for all s in S do
8: /* Compute the Poincaré map for the field line at s */
9: n = 0

10: p0 = s
11:
12: /* Iterate until max number of punctures computed */
13: while n < Maxp do
14: p1 = RK4Solve(p0)
15: L = line segment from p0 to p1
16: if L intersects P then
17: Add intersection of L and P to Result
18: n = n+1
19: end if
20: p0 = p1
21: end while
22: end for

Algorithm 1 contains pseudocode for computing the Poincaré
map. Initialization consists of specifying the initial seed locations,
defining the Poincaré section (i.e., 2D plane), and the maximum
number of punctures to compute as well as initializing a structure
to store punctures (Lines 2 - 5). For each seed location s (Line 7),
the fieldline is iteratively computed using a RK4 solver. At each it-
eration of the solver, the line segment between the current location
and the previous location is checked against the Poincaré section
to determine if an intersection occurred (Line 16). If so, the inter-
section point is added to the result. This process continues until the
maximum number of punctures occurs, or the particle terminates.
For brevity, the code to check for particle termination is not shown
in the code listing.

3.2. Implementation in VTK-m

VTK-m uses a data parallel abstraction to achieve high perfor-
mance on many-core devices [MMP∗21]. Given a vector of data,
VTK-m will apply a function to each element of the array. These
functions often come in the form of “functors,” which is an object
that can be called like an ordinary function. The input data to the
VTK-m implementation of the Poincaré algorithm is an array of
initial particle positions. The functor object is initialized with the
Poincaré section, RK4 step size and the maximum number of punc-
tures. The execution portion of the functor consists of lines 7- 22

in Algorithm 1. At runtime, each input particle and the functor are
mapped to a thread and executed on the specified device, effectively
making the for loop parallel.

The bottleneck of the algorithm is not the arithmetic used to
compute Equation 1 for the RK4 solution but rather the field evalu-
ation to get the numbers to plug into the equation. At each iteration
of the algorithm, the cell containing the current location of the point
must be determined. Because the mesh is unstructured, this requires
a cell search. This search can be optimized by taking advantage of
the toroidal symmetry of the mesh. Using this symmetry, the point
can be specified by (x,y,φ), where x and y are coordinates of the
2D cross-section and φ is the angle around the torus. The point can
be easily projected onto the 2D cross section by setting φ = 0 (i.e.,
(x,y,0)). The cell-finding operation is now reduced to two dimen-
sions.

To accelerate the cell-finding operation for unstructured grids,
VTK-m provides two different acceleration structures. The first
uses two levels of structured grids [KBS11]. The first level is a
coarse grid of bins that covers the spatial extents of the data. Each
bin within the first level contains a finer grid where the number
of bins is proportional to the number of cells contained in the first
level grid. Each bin in the fine-level grids contains a list of unstruc-
tured cells that are contained. The second acceleration structure is
much simpler. It uses a single fine-structured grid. As before, each
bin contains a list of the unstructured cells that are contained. For
each method, the 2D cross-section mesh is passed in, and the accel-
eration structure is built. The acceleration structure is passed into
the VTK-m functor to be used for field evaluations.

The major costs for either structure are the time to retrieve the ap-
propriate bin and the time to search through the cells in the bin. The
advantage of the simpler uniform bin approach is that the appropri-
ate bin can be found with a single lookup rather than the two-part
lookup of the two-level grid. However, the two-level grid avoids
bins containing large numbers of unstructured cells when the un-
structured cells are unevenly distributed.

In either case, whenever the algorithm looks up a cell, it remem-
bers both the unstructured cell found and the bin containing it. Sub-
sequent field evaluations will be nearby and are often in the same
cell or a nearby one. Before searching for a bin, the algorithm first
checks the saved unstructured cell for containment and then the
saved bin.

3.3. Field Evaluation

For many applications, the vector field values are defined at the
vertices of each cell. Evaluation at a location within the cell inter-
polates the values at each of the vertices. However, the magnetic
field in XGC is much more complicated. Because calculating field-
lines contains many iterative steps, accuracy is paramount as small
errors can rapidly grow and produce incorrect results.

In XGC, the magnetic field vector consists of an axisymmetric
(i.e., defined at the cross-sectional plane and constant along the
cylindrical axis) background field, B0 and a non-axisymmetric per-
turbation, δB. For a particle located at (x,y,φ), the magnetic field
is sum of the background field and the perturbation: B0(x,y) +

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

3 of 7

D. Pugmire et al. / Performance Improvements of Poincaré Analysis for Exascale Fusion Simulations

δB(x,y,φ). The background field, B0, is evaluated using cubic
spline interpolation using the 2D coordinates (x,y). The perturba-
tion is represented as the component of the magnetic vector poten-
tial parallel to the background magnetic field A∥(x,y,ϕ), on a set of
Nϕ planar, unstructured triangle meshes, where Nϕ is the toroidal
resolution of the XGC simulation. In practice, for large runs, Nϕ is
between 32 and 64, depending on the physics being studied. The
corresponding perturbed magnetic field is δB =∇× (A∥B0/|B0|).
For interpolation of data between planes, the magnetic vector po-
tential and its derivatives are interpolated linearly along the mag-
netic field line through the position of the particle. This requires
interpolation on two cross-sectional planes, which is also linear. To
minimize interpolation errors, the mesh in XGC is approximately
aligned with the magnetic field such that a field line starting on a
vertex on one plane maps along B0 to a position at or very close to a
mesh vertex on the adjacent plane. For a more detailed explanation
is given in [MHC∗19, HO13, HYK∗16].

Accurately calculating the non-axisymmetric perturbation of the
magnetic field, (δB), was the most challenging part of the collabo-
ration. The XGC implementation of the Poincaré tool is embedded
within the XGC simulation code. The Poincaré tool is run by us-
ing an input deck for the simulation that specifies how to configure
and run the analysis. As such, the code for performing a full sim-
ulation and Poincaré analysis share some non-trivial overlap that
must be carefully separated. Further, given that XGC is written in
Fortran, and VTK-m is written in C++, the code separation must
be done carefully and is easy to get wrong. We instrumented the
XGC code with debug logs to check the calculation of key quan-
tities in the derivation of the magnetic field at each step of a point
along a field line. The coordinates of individual field lines were also
saved so that they could be compared (both visually and textually)
to the coordinates generated by the VTK-m implementation. When
differences in coordinates were detected, we were able to compare,
step by step, the computation of the different values associated with
the calculation of B0 and δB in both codes and determine where the
errors occurred. Once these were identified and fixed, we ran both
the XGC and VTK-m implementations of the code over many dif-
ferent seeding scenarios and physics parameters and compared the
resulting Poincaré plots to ensure they were identical.

In an attempt to optimize the calculation of the perturbed magnet
field, we pre-computed B0(x,y)+ δB(x,y,φ) at each vertex in the
3D mesh to avoid the complexity of the field evaluation at every
RK4 iteration. However, the effects of linear interpolation of the
values within the 3D elements of the mesh over a large number
of iterations resulted in errors that compounded over thousands of
RK4 steps and produced significantly inaccurate results. In the end,
this optimization had to be abandoned.

4. Results

The experiments were performed on the Frontier [fro] supercom-
puter at Oak Ridge National Laboratory. Frontier is a 1.102 Ex-
aFLOPS supercomputer consisting of 9472 nodes. Each node con-
tains a 64-core AMD Epyc CPU and four Radeon Instinct MI250X
GPUs.

To study the performance, we ran both the XGC and VTK-m

(a) Whole seeding (b) Edge seeding

Figure 2: Seed placement allows for analysis of different parts of
the plasma. Whole seeding along with the resulting Poincaré map
is shown in (a), and the edge seeding and results are shown in (b).

versions of the Poincaré tool. We use the XGC implementation as
a baseline. While the XGC simulation code can run on GPUs, the
XGC Poincaré analysis tool is only implemented on the CPUs. The
VTK-m implementation was run on both the CPU and GPU. The
results from the runs on CPUs give us a direct comparison between
the XGC analysis code and the VTK-m equivalent. The runs on the
GPU highlight the added benefits afforded by the portability of the
VTK-m implementation.

The XGC implementation was run on the CPUs of five Frontier
nodes and uses OpenMP for parallelization across the multi-core
CPUs. The VTK-m implementation was run in two configurations
– CPU and GPU. The CPU implementation was run on two Frontier
nodes and the GPU implementation was run on a single node using
two of the four GPUs.

We used two variations in the number of seeds and two vari-
ations in the placement of the seeds for a total of four different
configurations. The seeds are placed along regular angular inter-
vals around the center of the cross-section. We used a total of eight
angular intervals and placed 1280 and 3200 seeds along each an-
gular interval. This gives seed numbers of 10,240 and 25,600. We
also varied the placement of the seeds along each angular interval.
For whole seeding (see Figure 2(a)), the seeds are placed uniformly
from the center of the cross-section to the edge. For edge seeding
(see Figure 2(b)), the seeds are placed further away from the center,
or nearer to the edge of the plasma. Whole seed placement is used
to analyze the overall nature of the magnetic field in the plasma.
The placement of seeds along the edge is a common way to ana-
lyze the very turbulent regions of the plasma that occur along the
edge region. Figure 3 shows a zoomed-in view of Poincaré maps
generated from two different time steps using edge seeding. The
image is zoomed in to view the bottom left of the cross-section,
called the ”X” point, where turbulence in the plasma is complex.

Table 1 contains the timing results for the XGC tool and VTK-m
implementations for each configuration. We also ran the VTK-m
implementations using both the Two-Level and Uniform Bins cell
locators, but the performances were similar (within 1.5% of each
other). The results we report are using the Uniform Bins cell loca-
tor. Because the triangles in the cross-sectional grid are uniformly
distributed, the added complexity of the Two-Level grid does not
provide any benefit. We performed some tuning on the optimal
size of the Uniform Bin acceleration structure and found that a

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

4 of 7

D. Pugmire et al. / Performance Improvements of Poincaré Analysis for Exascale Fusion Simulations

Figure 3: Poincaré maps generated from two time steps using edge
seeding. Zooming in to regions of interest makes it possible to see
topological features that develop as the plasma develops.

Table 1: Time (in seconds) for XGC and VTK-m runs on CPUs and
GPUs for both Whole and Edge seeding with 10,240 and 25,600
seeds. The time speedup factors for the VTK-m runs on the CPU
and GPU are given in two right-most columns.

Num XGC VTK-m Time Speedup
Seeds Seeding Time CPU GPU CPU GPU
10240 Whole 2001.8 249.0 171.5 8.0 11.7
10240 Edge 1762.6 197.0 154.3 8.9 11.4
25600 Whole 3785.8 655.5 245.7 5.8 15.4
25600 Edge 3435.3 522.0 223.1 6.6 15.4

size of 12,000×12,000 generally provided the best results. The
speedups for the VTK-m implementation are significant. Running
on the CPU, the VTK-m implementation provides between 5.8×
and 8.9× speedup over the XGC implementation. On the GPU,
VTK-m achieves between 11.4× and 15.4× speedup over the XGC
implementation. Speedups on the GPU are limited by two factors.
First, the number of threads that can be utilized. The computation
is parallelized over the seeds, and the number of seeds commonly
used for Poincaré maps is not enough to saturate the number of
threads available on the GPUs. Second, and much more impor-
tantly, the cell-finding operation for unstructured grids is bound by
the cost of memory access and not computation. As the seeds are
traced, they circulate throughout the volume in non-uniform ways.
Because the acceleration structure used for cell-finding is too large
to be kept in fast GPU memory, there is significant time spent ac-
cessing data in slower memory spaces.

Table 2 contains a comparison of the total cost (in node-seconds)
for the XGC and VTK-m implementations for each configuration.
The XGC tool was run on five nodes of Frontier and so the XGC
Cost column in Table 2 is 5× the runtime reported in Table 1. For
the VTK-m implementation, the CPU runs were performed on two
nodes of Frontier, and the GPU runs were performed on two GPUs
within a single node. Because of this difference in the number of
nodes used, the cost savings for the VTK-m implementation are
more pronounced than the speedups. For the CPU runs, the VTK-m
implementation running on two nodes, results in cost savings be-
tween 14.4× and 22.4×. For the GPU runs, the VTK-m imple-
mentation results in cost savings between 57.1× and 77.1×. We
calculate the cost factor for VTK-m using one node, although it

Table 2: Total cost (in node-seconds) for XGC and the savings fac-
tor for the VTK-m runs on the CPU and GPU. The XGC runs used
five nodes and the VTK-m used two Frontier nodes for the CPU
runs and one node for the GPU runs.

Num XGC VTK-m Cost Savings
Seeds Seeding Cost CPU GPU
10240 Whole 10009.2 20.1 58.4
10240 Edge 8813.2 22.4 57.1
25600 Whole 18929.1 14.4 77.1
25600 Edge 17176.3 16.5 77.0

technically uses only half of the node, which results in cost savings
between 114.2× and 154.2×.

The use of fewer nodes becomes even more important when
doing in situ processing. XGC uses the in-transit processing
model [CAA∗20, CCD∗18] for in situ analysis and visualization
tasks. In this model, additional nodes are allocated for analysis and
visualization. After the simulation completes a time step, the data
are transferred to the additional nodes for asynchronous processing.
For simulations that could run for days or weeks, the use of fewer
nodes for analysis and visualization results in even more significant
cost savings.

5. Summary and Future Work

In this paper, we have described a collaborative effort among com-
puter scientists and physicists to develop a new tool for performing
analysis and visualization of the magnetic fields in fusion devices.
Poincaré plots are notoriously expensive to generate due to high
computational costs. Because of the complexity of the magnetic
fields in tokamaks, the definition of the vector field needed for gen-
erating field lines is often code-specific and complex. Working to-
gether with the XGC physics team, we developed a tool that re-
produces the complex definition of the magnetic field and uses the
concepts in VTK-m to efficiently map the computation onto both
multi-core CPU and GPU devices. The development of this new
tool has made it possible for physicists to perform unprecedented
analysis on XGC simulations running on some of the most power-
ful supercomputers in the world. Previously, it was only possible to
perform Poincaré analysis on a limited number of timesteps from
a simulation. This work has made it possible to generate Poincaré
plots in situ for every time step of the simulation. This provides the
XGC team with a powerful new tool to study the physics of burning
plasmas.

Although we have achieved significant speedups in computing
Poincaré maps, there is still room for additional performance. The
bottleneck in the algorithm is the cost of cell location. There are two
major ways to address this problem. The first is to avoid performing
cell locations using an adaptive step-sized solver. These techniques
improve over the brute-force nature of fixed step-size methods to
adjust according to the local changes in the vector field. We plan
to explore the use of these solvers to increase performance while
maintaining accuracy. The second is to improve the performance
of the cell location on GPUs. The costs for memory access can
vary dramatically on the GPU depending on where the memory is

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

5 of 7

D. Pugmire et al. / Performance Improvements of Poincaré Analysis for Exascale Fusion Simulations

located. We plan to explore methods to achieve better caching of
data in faster memory to improve overall performance.

Acknowledgements

This research used resources of the Oak Ridge Leadership Comput-
ing Facility, which is a DOE Office of Science User Facility sup-
ported under Contract DE-AC05-00OR22725. This work was sup-
ported in part by the U.S. Department of Energy (DOE) RAPIDS
SciDAC project under contract number DE-AC05-00OR22725 and
by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

References

[CAA∗20] CHILDS H., AHERN S. D., AHRENS J., BAUER A. C.,
BENNETT J., BETHEL E. W., BREMER P.-T., BRUGGER E., COT-
TAM J., DORIER M., DUTTA S., FAVRE J. M., FOGAL T., FREY S.,
GARTH C., GEVECI B., GODOY W. F., HANSEN C. D., HARRISON
C., HENTSCHEL B., INSLEY J., JOHNSON C. R., KLASKY S., KNOLL
A., KRESS J., LARSEN M., LOFSTEAD J., MA K.-L., MALAKAR
P., MEREDITH J., MORELAND K., NAVRÁTIL P., O’LEARY P.,
PARASHAR M., PASCUCCI V., PATCHETT J., PETERKA T., PETRUZZA
S., PODHORSZKI N., PUGMIRE D., RASQUIN M., RIZZI S., ROGERS
D. H., SANE S., SAUER F., SISNEROS R., SHEN H.-W., USHER W.,
VICKERY R., VISHWANATH V., WALD I., WANG R., WEBER G. H.,
WHITLOCK B., WOLF M., YU H., ZIEGELER S. B.: A terminology
for in situ visualization and analysis systems. The International Jour-
nal of High Performance Computing Applications 34, 6 (2020), 676–
691. URL: https://doi.org/10.1177/1094342020935991,
doi:10.1177/1094342020935991. 5

[CCD∗18] CHOI J. Y., CHANG C.-S., DOMINSKI J., KLASKY S.,
MERLO G., SUCHYTA E., AINSWORTH M., ALLEN B., CAPPELLO
F., CHURCHILL M., DAVIS P., DI S., EISENHAUER G., ETHIER S.,
FOSTER I., GEVECI B., GUO H., HUCK K., JENKO F., KIM M.,
KRESS J., KU S.-H., LIU Q., LOGAN J., MALONY A., MEHTA K.,
MORELAND K., MUNSON T., PARASHAR M., PETERKA T., POD-
HORSZKI N., PUGMIRE D., TUGLUK O., WANG R., WHITNEY B.,
WOLF M., WOOD C.: Coupling exascale multiphysics applications:
Methods and lessons learned. In 2018 IEEE 14th International Confer-
ence on e-Science (e-Science) (2018), pp. 442–452. doi:10.1109/
eScience.2018.00133. 5

[fro] Frontier supercomputer. https://docs.olcf.ornl.gov/
systems/frontier_user_guide.html. Accessed: 2024-02-13.
4

[GHP∗16] GUO H., HE W., PETERKA T., SHEN H.-W., COLLIS S. M.,
HELMUS J. J.: Finite-time lyapunov exponents and lagrangian co-
herent structures in uncertain unsteady flows. IEEE Transactions on
Visualization and Computer Graphics 22, 6 (June 2016), 1672–1682.
doi:10.1109/TVCG.2016.2534560. 2

[HO13] HARIRI F., OTTAVIANI M.: A flux-coordinate independent
field-aligned approach to plasma turbulence simulations. Computer
Physics Communications 184, 11 (Nov. 2013), 2419–2429. URL:
http://dx.doi.org/10.1016/j.cpc.2013.06.005, doi:
10.1016/j.cpc.2013.06.005. 4

[Hul92] HULTQUIST J. P. M.: Constructing stream surfaces in steady 3D
vector fields. In Proceedings Visualization ’92 (Oct. 1992), pp. 171–178.
doi:10.1109/VISUAL.1992.235211. 2

[HYK∗16] HAGER R., YOON E., KU S., D’AZEVEDO E.,
WORLEY P., CHANG C.: A fully non-linear multi-species
fokker–planck–landau collision operator for simulation of fu-
sion plasma. Journal of Computational Physics 315 (2016),
644–660. URL: https://www.sciencedirect.com/

science/article/pii/S0021999116300298, doi:https:
//doi.org/10.1016/j.jcp.2016.03.064. 1, 4

[KBS11] KALOJANOV J., BILLETER M., SLUSALLEK P.: Two-level
grids for ray tracing on gpus. Comput. Graph. Forum 30 (04 2011),
307–314. doi:10.1111/j.1467-8659.2011.01862.x. 3

[LKG97] LÖFFELMANN H., KUCERA T., GRÖLLER E.: Visualizing
Poincare Maps together with the underlying flow. Tech. Rep. TR-186-
2-97-06, Institute of Computer Graphics and Algorithms, Vienna Uni-
versity of Technology, Favoritenstrasse 9-11/E193-02, A-1040 Vienna,
Austria, Mar. 1997. human contact: technical-report@cg.tuwien.ac.at.
URL: https://www.cg.tuwien.ac.at/research/
publications/1997/Loeffelmann-1997-VPM/. 2

[MHC∗19] MORITAKA T., HAGER R., COLE M., LAZERSON S.,
CHANG C.-S., KU S.-H., MATSUOKA S., SATAKE S., ISHIGURO S.:
Development of a gyrokinetic particle-in-cell code for whole-volume
modeling of stellarators. Plasma 2, 2 (May 2019), 179–200. doi:
10.3390/plasma2020014. 4

[MMP∗21] MORELAND K., MAYNARD R., PUGMIRE D., YENPURE
A., VACANTI A., LARSEN M., CHILDS H.: Minimizing development
costs for efficient many-core visualization using mcd3. Parallel Com-
puting 108 (09 2021), 102834. doi:10.1016/j.parco.2021.
102834. 3

[Mor00] MORRISON P.: Magnetic field lines, hamiltonian dynamics, and
nontwist systems. Physics of Plasmas 7, 6 (2000), 2279–2289. 2

[MSU∗16] MORELAND K., SEWELL C., USHER W., LO L.-T.,
MEREDITH J., PUGMIRE D., KRESS J., SCHROOTS H., MA K.-L.,
CHILDS H., ET AL.: VTK-m: Accelerating the visualization toolkit for
massively threaded architectures. IEEE computer graphics and applica-
tions 36, 3 (2016), 48–58. 2

[PTVF92] PRESS W. H., TEUKOLSKY S. A., VETTERLING W. T.,
FLANNERY B. P.: Numerical Recipes in C, second ed. Cambridge Uni-
versity Press, Cambridge, USA, 1992. 2

[PYK∗18] PUGMIRE D., YENPURE A., KIM M., KRESS J., MAYNARD
R., CHILDS H., HENTSCHEL B.: Performance-portable particle advec-
tion with VTK-m. In Eurographics Symposium on Parallel Graphics and
Visualization (EGPGV) (June 2018), pp. 45–55. doi:10.2312/pgv.
20181094. 2

[SCT∗10] SANDERSON A., CHEN G., TRICOCHE X., PUGMIRE D.,
KRUGER S., BRESLAU J.: Analysis of recurrent patterns in toroidal
magnetic fields. IEEE Transactions on Visualization and Computer
Graphics 16, 6 (2010), 1431–1440. doi:10.1109/TVCG.2010.
133. 2

[SCTC12] SANDERSON A., CHEN G., TRICOCHE X., COHEN E.: Un-
derstanding quasi-periodic fieldlines and their topology in toroidal mag-
netic fields. Topological Methods in Data Analysis and Visualization II:
Theory, Algorithms, and Applications (2012), 125–140. 2

[SKP∗22] SUCHYTA E., KLASKY S., PODHORSZKI N., WOLF M.,
ADESOJI A., CHANG C., CHOI J., DAVIS P. E., DOMINSKI J.,
ETHIER S., FOSTER I., GERMASCHEWSKI K., GEVECI B., HAR-
RIS C., HUCK K. A., LIU Q., LOGAN J., MEHTA K., MERLO
G., MOORE S. V., MUNSON T., PARASHAR M., PUGMIRE D.,
SHEPHARD M. S., SMITH C. W., SUBEDI P., WAN L., WANG
R., ZHANG S.: The exascale framework for high fidelity cou-
pled simulations (EFFIS): Enabling whole device modeling in fu-
sion science. The International Journal of High Performance
Computing Applications 36, 1 (2022), 106–128. URL: https:
//doi.org/10.1177/10943420211019119, doi:10.1177/
10943420211019119. 2

[SML04] SCHROEDER W., MARTIN K., LORENSEN B.: The Visualiza-
tion Toolkit: An Object Oriented Approach to 3D Graphics, fourth ed.
Kitware Inc., 2004. ISBN 1-930934-19-X. 2

[TGS11] TRICOCHE X., GARTH C., SANDERSON A.: Visualization of
topological structures in area-preserving maps. IEEE Transactions on
Visualization and Computer Graphics 17, 12 (2011), 1765–1774. doi:
10.1109/TVCG.2011.254.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

6 of 7

https://doi.org/10.1177/1094342020935991
https://doi.org/10.1177/1094342020935991
https://doi.org/10.1109/eScience.2018.00133
https://doi.org/10.1109/eScience.2018.00133
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://doi.org/10.1109/TVCG.2016.2534560
http://dx.doi.org/10.1016/j.cpc.2013.06.005
https://doi.org/10.1016/j.cpc.2013.06.005
https://doi.org/10.1016/j.cpc.2013.06.005
https://doi.org/10.1109/VISUAL.1992.235211
https://www.sciencedirect.com/science/article/pii/S0021999116300298
https://www.sciencedirect.com/science/article/pii/S0021999116300298
https://doi.org/https://doi.org/10.1016/j.jcp.2016.03.064
https://doi.org/https://doi.org/10.1016/j.jcp.2016.03.064
https://doi.org/10.1111/j.1467-8659.2011.01862.x
https://www.cg.tuwien.ac.at/research/publications/1997/Loeffelmann-1997-VPM/
https://www.cg.tuwien.ac.at/research/publications/1997/Loeffelmann-1997-VPM/
https://doi.org/10.3390/plasma2020014
https://doi.org/10.3390/plasma2020014
https://doi.org/10.1016/j.parco.2021.102834
https://doi.org/10.1016/j.parco.2021.102834
https://doi.org/10.2312/pgv.20181094
https://doi.org/10.2312/pgv.20181094
https://doi.org/10.1109/TVCG.2010.133
https://doi.org/10.1109/TVCG.2010.133
https://doi.org/10.1177/10943420211019119
https://doi.org/10.1177/10943420211019119
https://doi.org/10.1177/10943420211019119
https://doi.org/10.1177/10943420211019119
https://doi.org/10.1109/TVCG.2011.254
https://doi.org/10.1109/TVCG.2011.254

D. Pugmire et al. / Performance Improvements of Poincaré Analysis for Exascale Fusion Simulations

[YSB∗23] YENPURE A., SANE S., BINYAHIB R., PUGMIRE D.,
GARTH C., CHILDS H.: State-of-the-art report on optimizing particle
advection performance. Computer Graphics Forum 42, 3 (2023), 517–
537. doi:https://doi.org/10.1111/cgf.14858. 2

[ZY18] ZHANG J., YUAN X.: A survey of parallel particle tracing al-
gorithms in flow visualization. Journal of Visualization 21 (Feb. 2018),
351–368. doi:10.1007/s12650-017-0470-2. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

7 of 7

https://doi.org/https://doi.org/10.1111/cgf.14858
https://doi.org/10.1007/s12650-017-0470-2

