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Formula
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Figure 1: Exploring Mixture Data: A sorted heatmap visually groups blocks of similar chemical substances (rows and columns). Pattern
strength is analyzed by variation in internal and external data. Linked widgets connect the discovered groups to additional domain knowledge.

Abstract

Modeling and predicting thermodynamic properties of binary mixtures is crucial in chemical engineering. Understanding how
the mixture behavior, represented as a scalar matrix, depends on properties of pure substances offers valuable insights into
substance interactions. While there is robust support for pattern-based sorting of matrices in general, limited support exists for
evaluating patterns against external attributes available in many fields. In this paper, we introduce an interactive software to
detect and analyze block patterns in scalar matrices using annotated domain knowledge. Therefore, we revisit canonical matrix
patterns, explore their translation to this application, and describe a workflow to fit the matrix ordering. Our interactive software
allows users to explore hierarchical aggregation levels, rating them based on additional domain-specific data properties of
various type. Using our tool, chemical engineers are able to identify and interpret cluster structures in their mixture data. These
insights contribute to the development of improved prediction methods for thermodynamic properties, forming the foundation

for modeling and simulation in chemical engineering.
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1. Introduction

The analysis of matrix data is of paramount importance in applica-
tion domains like graph theory, biology, engineering, sociology, or
archaeology [Liil0]. Heatmaps are a central inspection tool in ap-
plication domains as they directly visualize scalar matrix data itself
without the need for abstractions. Patterns evident in the heatmaps
offer data-driven understanding of the interrelation between row
and column elements. As the observable patterns are inseparably
dependent on the ordering, we describe a workflow for pattern-
focused assessment of scalar matrix orderings on thermodynamic
application data.

Application domain data is usually not constrained to only the
matrix elements, but each row or column can further be described
by features differing in data type or scale from the matrix elements.
Contrasting the matrix elements with these additional feature val-
ues is called enrichment analysis and can provide crucial insights
about the quality or relationships within or between matrix pat-
terns. While extensive support for general heatmap visualization
exists through domain specific tools [FGR*17] and common plot-
ting libraries, the support for enrichment analysis is often limited to
the application case. The enrichment is either too domain-specific
[LSKS10] or supports only minimal data types [FGR*17]. As the
sole purpose of enrichment is to compare it to patterns in the ma-
trix, the focus should be on matching the two data sets to judge the
bidirectional quality of identified patterns. We therefore present an
interactive software that links matrix patterns to views of common
enrichment data types as well as propose validation measures to
guide the analysis.

2. Application Background

Modeling and predicting thermodynamic properties of mixtures
is of paramount importance in chemical engineering, since their
knowledge is the basis for design and optimization of processes
in many industries, like chemical, pharmaceutical, and biotechno-
logical industry. The vast majority of prediction methods rely on
features of the pure substances that make up the mixtures [JH21],
e.g., their composition with regard to structural groups as in so-
called group-contribution methods [GCS15]. A better understand-
ing of the relationship between properties of pure substances and
mixture properties holds the potential of significantly improving
present and future prediction methods, with a direct impact on pro-
cess design and optimization in chemical engineering. With our
software, we address this challenge by analyzing the activity co-
efficient of binary mixtures, a measure that describes the deviation
from ideal mixture behavior. While the software is currently visu-
ally slightly specialized, it is applicable to any other domain with
similar data types.

The data considered for the analysis falls into two categories: a
scalar property of substance mixtures, i.e. the heatmap, and prop-
erties of pure substances, the enrichment. The data for binary mix-
tures can conveniently be arranged in matrices. The heatmaps in
Figure 2 (top) represent one such thermodynamic property of bi-
nary mixtures, namely the activity coefficient of a solute (row) at
infinite dilution in a solvent (column). The left heatmap is sorted
by substance IDs—for comparison, the right one is sorted to show
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Figure 2: Input data: Each row and column in the heatmap rep-
resents the mixture properties of a substance that has additional
properties shown in the bottom table. (top left) A heatmap sorted
by substance ID does not permit pattern analysis. (top right) The
same data sorted by row and column similarity reveals patterns in
mixtures that shall be related to pure substance properties.

visible patterns. Uniform regions in the matrix indicate that the re-
spective solutes (solvents) are similar with regard to the activity
coefficients.

Properties of pure substances as represented in the table in Fig-
ure 2 (bottom) enrich each row/column of the heatmap. We call
them substance features and distinguish into two types here: (1)
rigorous properties, which are measurable or unambiguously de-
ducible from the molecular structure of the substance, and (2)
more indistinct descriptors, which are defined based on experi-
ence or chemical intuition. As properties of type (1), we consider
dipole moment, molar weight, polarizability, anisotropy, normal-
ized anisotropy, relative number of H-bond acceptors, relative num-
ber of H-bond donors, normal melting temperature (Tm), and crit-
ical temperature (Tc), which are all of numerical type. As (rather
subjective) descriptors of type (2), we consider the affiliation of a
substance to a chemical class, like *branched alkanes’, *cyclic alka-
nes’, or "heteroaromatics’, which are single-label classes, as well
as attributes defined based on the molecular structure, like cyclic’,
*aromatic’, or "long-chained’, which are multi-label classes.

The activity coefficient is essential for chemical process engi-
neering in practice, but was, thus far, hard to predict precisely. Due
to recent advances [JBM20], the data was expanded to more than
50k binary mixtures, 234 solutes and 214 solvents. This novel ap-
proach generates mixture data from other mixtures rather than re-
lying on substance-driven methods [GCS15]. Hence, it enables un-
biased comparison between mixture and enriched substance prop-
erties. Correlation with measurable properties like dipole moment
may provide guidance for future prediction methods. Moreover,
aligning mixture groups with established class labels like het-
eroaromatics can assess their suitability for prediction techniques.

© 2024 The Authors.
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3. Requirement Analysis

The present work results from a cooperation between the Informa-
tion Visualization Group and the Laboratory of Engineering Ther-
modynamics from the University of Kaiserslautern-Landau and
includes experts in data analysis, visualization, thermodynamics,
chemical engineering, and chemistry. We loosely followed the de-
sign study methodology proposed by Sedlmair et al. [SMM12].
In the discovery phase, the groups exchanged necessary domain
knowledge and collected the data. A central pillar of the design
phase were continually improved prototypes that were build using
accessible visualization tools like seaborn [Was21] and holoviews
[Ruda], which include necessary visualization and data aggrega-
tion tools like clustermap [Was21], i.e., heatmap visualization with
associated cluster trees, and statistical aggregates of the data like
grouped violin plots. These early prototypes helped us build a com-
mon ground for communication, explore shortcomings of existing
solutions, and refine the *wish list” of the domain experts.

During the joint discussions of these prototypes, we made the
following design observations: Central features are access fo raw
data and use of established chart types. Our work centers around
pattern mining in complex data. Using chart types that are familiar
to the user and represent the raw data makes it easier to judge the
effect of the automatic analysis routine. For example, we stick to a
clustermap as the central plot. Flexibility of the software is another
important aspect. During the progressive data analysis, we realized
that the data basis is not fixed. New insights may require the in-
tegration of new substance properties. Hence, a flexible design is
necessary that can adapt to arbitrary numbers of descriptors and
new data types. Linked interactive filtering in multiple/all directions
discloses relationships between views. In each prototype iteration,
the users intuitively tried to experiment with linked selections first.
Thus, we made interaction and linking central components.

The main challenge in mixture prediction is that most methods
rely on implicit knowledge of experts. With today’s rising availabil-
ity of data problem-driven visualizations should move the infor-
mation location towards data- and therefore computer-driven ap-
proaches [SMM12]. Thus, the central goal of our work is finding
data-driven patterns in mixture data and linking them to proper-
ties of pure substances. Likewise, we are also interested in breaks
in expected patterns, i.e., if substances that belong, according to
chemical intuition, to the same chemical class show few similari-
ties. In a nutshell: we aim at understanding what similarity among
substances actually means, but with regard to their behavior in mix-
tures. Up to now, no software is available in this field to answer
these questions and current research in thermodynamics basically
depends on manual work of experienced physical chemists.

4. Related Work

Research directions on pattern analysis in matrices are threefold:
Patterns are either defined within the matrix, on the tree that consti-
tutes an ordering, or the distribution of annotated attributes in the
ordered matrix.

Matrix Patterns For observable patterns in symmetric binary
matrices, Behrisch et al. provide a comprehensive analysis in Mag-
nostics [BBH*17]. However, they state that the defined patterns are

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

specific to symmetric matrices, which are commonly sparse and
binary, and do not generalize to data tables [BBH*16]. Wilkin-
son [Wil05] describes canonical data patterns observable in gen-
eral heatmaps — asymmetric scalar matrices. For patterns found in
real applications, we argue in subsection 5.1 that Lekschas et al.
[LBK*18] present a more suitable description of patterns, although
their approach is focusing on small recurring motifs in symmetric
scalar matrices.

Tree Patterns To visualize patterns in a tree, Parthl et al.
[PLS*13] classify four options to visualize attributes: directly on
the node; small-multiples of the graph; linked views of graph and
attributes; or adaption of graph layout. Small-multiples work for
comparing attributes in graphs [BMGKOS], but do not match with
the strict order of a matrix. Degree-of-Interest trees aggregate the
tree-layout depending on a function of interest [CN02]. While ini-
tially interest was defined over interaction with a node, Lineage
[NGCL19] extends this idea to attributes in genealogy. They pro-
pose several strategies for a binary Degree-of-Interest, which we
extend to a continuous measure of node variation. Chen et al.
[CMP10] show that the interactive exploration of matrices over a
dendrogram provides insight. Combining the benefits of Lineage
[NGCL19] for on-node mapping and the linked views of GAP
[WTC10] and GUIRO [BSP20], we derive our design for anno-
tating external attributes in section 6.

Enrichment Patterns Heatmap literature typically allocates
minimal effort to enriching heatmaps with external attributes. No-
table exceptions include VIS-STAMP [GCMLO06], incorporating
linked parallel coordinates and a map for context and filtering,
and Lex et al.’s genealogy-specific system [LSKS10], which links
domain-specific views to a sorted 2.5D heatmap. Clustergram-
mer [FGR*17] stands out as a recent, well-implemented paradigm
for heatmap plotting, adding color-coded columns for categori-
cal features. Additional data is accessible via hyperlinks to open
databases. In HiPiler [LBK*18] individual matrix snippets are en-
riched via border colors, though this does not transfer well to many
categories or continuous distributions. Since our annotated data
drastically exceeds the number of distinguishable class colors or is
continuous, we opt for aggregating label variation and visualizing
variable distributions rather than directly relying on color-coded at-
tribute values.

5. Method

To answer the questions described in section 3, we propose a three-
step workflow. We start with an overview of practically observable
patterns in scalar matrices in subsection 5.1 and continue with a
block-focused assessment of ordering techniques in subsection 5.2.
We close with augmentation strategies for validating these patterns
with external data in subsection 5.3. Subsequently, we discuss the
design of suitable supporting plots to identify relationships with
enrichment data in section 6.

5.1. Matrix Patterns in Scalar Asymmetric Matrices

The solute-to-solvent ratio in mixtures is generally not interchange-
able, e.g., you would not solve water in salt. Hence, there is a one-
way relationship between each pair of solute and solvent and the
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Figure 3: The observable patterns depend on the type of matrix
(rows). The columns mark which patterns have been (indirectly)
described for each type.

corresponding matrix is inherently asymmetric. From the estab-
lished matrix patterns summarized in Figure 3, we therefore deduce
the ones that are applicable to our asymmetric practical data.

We start with established patterns that do not transfer to our use
case. Simple and Equi patterns [Wil05] are assuming a uniform
global correlation unlikely to be found in real data. Similarly, the
Band/Circumplex and Bandwidth patterns [Wil05; BBH*16] are
only relevant if the diagonal holds meaningful information, i.e. for
symmetric matrices. Loops [LBK*18] are only sensible in adja-
cency matrices.

Block The most common pattern throughout applied literature is
the block pattern, where coherent rectangular areas appear in the
sorted matrix. A block can be described by a range of row- and
column-IDs and a corresponding scalar value. Due to noise in real
data, the block area is commonly not as uniform as in the synthetic
example in Figure 4 (top-left). A block denotes that a number of
entities (set of rows) share similar values in a number of features
(set of columns). For binary mixtures, this pattern denotes that the
related set of solutes exhibits similar activity coefficients in any
solvent from the respective set, i.e. they form a common class.

Line The line pattern is a special variant of the block pattern.
Here, a single row or column features extremal values that set the
data points apart. Multiple similar entities/features can exist. If or-
dered accordingly, they will form a long narrow block spanning
multiple rows/columns. Lines are entities that are highly dissimilar
from any other data point therefore indicating outliers. In binary
mixtures, water plays such a special role as it leads to extreme ac-
tivity coefficients if mixed with different components as can be seen
in Figure 4 (right).

Domain In a domain, a larger block region contains additional
sub-blocks where the color is darker or lighter, as represented in
Figure 4. Like blocks, domains can be characterized by their re-
spective row and column IDs. The nesting structure requires a hi-
erarchical description model. We found cluster trees suitable to de-
scribe the nesting structure and the distinctness of sub-blocks. From
a chemical-engineering perspective, we can interpret this type of
pattern as a rather large group of solutes and solvents that mix sim-
ilarly with another group, while there are subgroups that are even
more similar.

Checkerboard Checkerboard patterns are an arrangement of
globally alternating blocks of high and low values. While they are

block

1 :
& B
|

! : i :‘...
domain checkerbox 1 [ ]

Figure 4: Patterns in asymmetric matrices: (left) Four patterns are
identified in asymmetric matrices. (right) In real data, the patterns
feature various degrees of expressiveness.

a common phenomenon in gene expression data, they are barely
visible in mixture data, indicating groups of high intra- but low
inter-activity.

We conclude that the occurring patterns can all be described as
(hierarchical) blocks, which have been shown to be sufficient for
heatmap interpretation [Che02; WTCO8] and are the most common
in practical data [FGR*17; EWJP17]. However, for any pattern to
be visible, the order of a matrix is of tremendous importance.

Matrix Reordering Algorithms As manual reordering is too
tedious for real datasets, we resort to a choice of reordering al-
gorithms. In Behrisch et al.’s [BBH*16] extensive evaluation of
available algorithms focused on block-diagonal patterns, they con-
clude that hierarchical clustering, specifically optimal leaf-ordering
[Bra07], excels at producing local patterns. That is even though hi-
erarchical clustering is intended to cluster, not to induce a global
linear order on matrix rows [Liil0]. Recent studies on effective-
ness of ordering algorithms in continuous matrices also suggest
that Robinsonian and machine learning techniques are best to detect
block patterns [BdS22]. Since we further aim to capture hierarchi-
cal domain patterns, we opt for hierarchical clustering with optimal
leaf-ordering — a Robinsonian technique that is long-established in
biological contexts [ESBB9S; SS02; CP04; WTC10].

5.2. Evaluation of Blocks in Matrices

Hierarchical clustering has two parameters: a metric that defines the
distance between two rows/columns, and a linkage type that defines
the distance between two clusters. The choice of these parameters
is crucial for the clustering result and therefore the matrix ordering.
While all common combinations can be explored in our tool, we
describe a generally applicable workflow to compare hierarchical
clusterings regarding their ability to uncover block patterns.

The strength of a block pattern can be quantified over its unifor-
mity. As a well-established and therefore readily understood mea-
sure of uniformity in a dataset, we use the standard deviation of
values within a block. Alternative choices with similar results are
mean square error or mean absolute error. The two dendrograms de-
fined by hierarchically clustering rows and columns can be pruned

© 2024 The Authors.
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at any point, partitioning the matrix into blocks. We express the
quality of such a partitioning by the average uniformity of each
individual block. To account for the relative importance of each
block, we weight the score of each block with the number of con-
tained elements, then average over all blocks. Since we perform
separate clusterings on each of the axis, separating into 1 to n clus-
ters per axis leads to n? numbers of possibilities for block layouts.
We assume that a matrix ordering that forms more distinct block
patterns with the same number of blocks is preferable.

To find the default parameter setting for our tool, we analyzed
the induced matrix orderings for all combinations of common dis-
tance measures (Euclidean, Manhattan, cosine) and linkage param-
eters. Single, average, and complete linkage minimize the shortest,
average, and longest distances between any two points in a cluster,
respectively. In Figure 5 (top) we present three charts for Euclidean
distance with different linkage strategies. The x- and y-axis denote
the number of clusters, and the color-value indicates the quality
score for this partitioning. The standard deviations for single link-
age are consistently higher than those for complete- and average
linkage.

We note that the standard deviations decrease along a path from
bottom-left (single block) to top-right (finest granularity). To ease
comparability, we reduce the heatmap to a line in Figure 5 (center).
Therefore, we choose a suitable path through the heatmap that cap-
tures the fastest decline in standard deviation. In our experiments,
a suitable path occurred along the diagonal, though the path could
be shifted or bent for more asymmetric data. We observe that com-
plete linkage results in consistently the lowest standard deviations
for all three metrics. Average linkage contains characteristic drops
(marked in pink) that are also visible in the 2D plot, which indi-
cate strong local changes in the block quality. Euclidean and Man-
hattan distance showed equally low scores in our tests. We chose
Euclidean(-complete) as our default, as it is the most common. To
verify our result, we search for the ‘elbow’ in the line for Euclidean-
complete (solid orange), which gives us the Pareto optimum, the
best trade-off between minimized number of clusters and low error
rates. We find it at approx. 7-10 clusters. The partitioned matrix
with 10 clusters each is shown in Figure 5 (bottom). Coloring the
blocks by their mean (left) partitions the heatmap into regions of
predominantly high or low activity coefficients. The distribution of
the standard deviation (right) provides insight into the error rates
within each block.

Note that it is crucial to keep the variation comparable across
rows and columns, i.e., the matrix data needs to be standardized. In
our application case, that was already achieved by having the same
measure for all data points.

5.3. Validating Patterns using Domain Knowledge Variation

Finally, we want to guide the interpretation of patterns based on
enriched substance properties; among others, we thereby want to
identify the subset of properties that characterizes the substances
(rows and columns) the best with regard to their mixture behav-
ior (matrix entries). Clusters where domain knowledge matches
with the similarity in the matrix signal a correlation, which is usu-
ally considered interesting [FGR*17; RSW*19]. On the other hand,

© 2024 The Authors.
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Figure 5: Effects of clustering parameters: (top) Comparison of
linkage criteria for arbitrary combinations of cluster granularity
in x- and y-direction. (center) Comparison of clustering parameters
for same granularity in x and y. (bottom) Effects for division into
10 clusters in x- and y-direction.

clusters that do not match with domain knowledge are even more
interesting, since they can spark new ideas for undiscovered rela-
tionships. A clustering is considered to be matching the domain
knowledge, if both approaches group the same annotated elements
together. Hence, we consider the variation of associated domain
knowledge within a cluster as its validation score. This concept is
illustrated in Figure 6, where the inner nodes of the dendrograms
are colored based on the validation score of user-selected substance
descriptors.

As we have seen in section 3, substance descriptors come in
three data types: single-label (chemical class), multi-label (com-
position with regard to functional groups), and numerical (measur-
able and deducible quantities). This also covers most of the data-
types potentially occurring in other application domains. The di-
rect color-coding of descriptors is limited by available colors and
screen space [FGR*17; RSW*19]. Hence, we recommend dedi-
cated scalar measures for these three types of data.

For the single-label case, we suggest entropy:

n

— Y pixlogy(pi) &)

i=1

€single =

where p; is the probability of label i in a given cluster. Entropy
is maximal for uniformly distributed data and increases with in-
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Figure 6: Interactive dendrograms for cluster analysis and refinement: Each dendrogram is color-coded with a dedicated measure for a
different data type. Dark colors indicate nodes with high variation. A dedicated interaction tool provides detailed information about the

respective descriptors.

creasing numbers of elements, which is what we expect for our
application. Alternative information theoretic measures [ALF21]
would work, but e.g. purity considers only the biggest class and
not the full distribution within a cluster. Other measures, such as
pair-counting and set-matching [ALF21], rely on ground truth la-
bels, which are typically not available in exploration workflows.
Figure 6 (A) shows the entropy for the single-class labels, which
were manually assigned based on chemical intuition (a total of 41
labels, e.g., cyclic alkanes, water-soluble alcohols, etc. were con-
sidered). Hovering over the dendrogram nodes shows a tooltip with
the most frequent labels. For the left tooltip, two labels make up
71% of the classes, which results in low entropy. The right tooltip
shows a cluster with many different substances and, accordingly,
high entropy.

For multi-label assignments, we use a measure from machine
learning, namely binary cross entropy, which is commonly used
as a loss function to quantify how well a predicted multi-labeling
approximates the ground truth:

LN
Cmulti = 5 Y (1 —yi) *logy (1 — pi)) — (yi *logy pi)
i1

2)
=L g ()
N i=1

For all labels y in a cluster, y; = 1 if the label is correctly predicted
to be in the cluster and y; = O if it is falsely predicted and p; is the
fraction of elements with this label in the cluster. Since we again
lack the ground truth necessary for cluster validation, we assume
the ideal case in that clusters are supposed to be pure, i.e., all labels
N occurring in a cluster are expected to be present in all elements
of a cluster. With y = 1, the formula simplifies significantly. Fig-
ure 6 (B) shows the binary cross entropy for a set of structural at-
tributes characterizing the substances (e.g., cyclic, aromatic, long-
chained); the set of structural attributes was defined manually here,
but any categorical multi-labeling, like the well-established group-
contribution method UNIFAC [FJP75], could be used. The tooltip
again shows the most frequent labels and denotes how many sub-
stances share a label.

For numerical data, we chose the mean standard deviation of
standardized values Gmean, Which means we compute an average
standard deviation over all included continuous measures:

\4
Y o, with

v=1

VI

In a first step, we make variables comparable by standardizing each
variable individually based on their distribution in the full dataset
m. We then determine the variation within a cluster by computing
the individual standard deviation G, for each variable restricted to
the values of the cluster n. To make the measure independent of the
number of variables, we output the mean of the standard deviations
over all variables V. We chose this formula, since standardization
of features will be necessary in almost all application scenarios,
and it indicates directly how the standard deviation within the clus-
ter compares to the global one. Figure 6 (C) shows Gmean for five
continuous descriptors. Selecting a node in the tree shows violin
plots for the numerical descriptors, contrasting the selected cluster
(colored-coded in the tree and the violin) with the rest of the data.

6. System Design and Implementation

Using the substance feature variation, the user can now manually
traverse the tree and search for clusters with a semantic meaning.
For their interpretation, they need detailed information about the
substance features, which we provide in interactively linked wid-
gets. The interface is deduced from the previously compiled design
goals: Hover and explicit plots offer access to raw data; enrichment
plots scalable with regard to number of features and data type give
flexibility; and linked interaction provides intuitive exploration.

Figure 1 shows the entire GUI The collapsible parameter side-
bar on the left covers algorithmic and style settings that can be
controlled by the user. The visualization section on the right con-
tains multiple linked views on the data with interaction capabilities.
We have already discussed the design of the clustermap. For the

© 2024 The Authors.
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enrichment substance features, we provide four additional visual-
izations. (1) A table containing the names and molecular formulas
of the substances, (2) a 2D projection of matrix rows or columns
to reveal relative distances, (3) an extension matrix plot showing
multi-labels, e.g. the composition of the molecules with regard to
structural groups, and (4) violin plots to analyze distributions of nu-
merical features. We thereby extend previous enrichment support
[FGR*17] to more and potentially continuous variables, indepen-
dent of application domain.

All widgets are interactively linked. Selecting a substance or sub-
stance group in one of the widgets triggers a highlighting operation
in all the other ones, supporting the user in finding relevant features.
Individual data point selections are drawn with bigger lines and
bright orange color. In Figure 1 two high-level nodes were selected
subsequently. The respective subtrees are color-coded blue and red.
The table only shows currently selected substances. As kernel den-
sity estimates have been proven to work for cluster attribute com-
parison [SDMT16], the violin plots contrast the current selection
against the remaining data or a previously saved selections. We
combine violin plots with hover-able rug plots to ease the reading
of outliers and to provide interaction capabilities, e.g. selection of
individual substances. In case a user is uncomfortable with violin
plots, they can change to equally arranged histograms. Even if care-
fully chosen, the matrix imposes a linear ordering that cannot cap-
ture the potentially complex neighborhood relationships between
rows/columns. We include a non-linear projection that mirrors the
colors of user selections. We chose MDS over other non-linear pro-
jections for its simplicity to explain to domain scientists. The hover
tool provides the exact values and substance names of the glyphs
in every view. A demonstration of all interactions is given in the
accompanying video. The implementation is built in Python with
Bokeh and Panel [Rudb] as the charting and interaction libraries.
The tool is available at https://github.com/Jan-To/EnrichMatrix.

7. Case Studies

From our analysis in subsection 5.2, we know that we work on a
suitable ordering. Therefore, we demonstrate how the software can
be used to first find pattern-correlating numerical features and then
confirm or question reference classifications.

7.1. Matrix Pattern Correlation with Continuous Features

Finding informative substance properties is crucial for the develop-
ment of prediction methods for thermodynamic properties. To date,
this task is based on intuition of human experts and, generally, by
considering properties of pure substances. The software developed
in this work facilitates an unbiased analysis based on mixture data,
namely by studying which substance properties are particularly ho-
mogeneous in matrix clusters. We notice two prevalent groups in
the matrix, which correspond to the highest ranked nodes in the
dendrogram. We selected and saved them with different colors in
Figure 1. In an initial review of the substance table, we already
observe a high degree of homogeneity among the substances. The
blue cluster mainly contains non-polar hydrocarbons, whereas the
red cluster includes highly polar compounds. The distributions of
the substance properties in the violin plots, confirm our observa-
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Figure 7: (Center): Water-soluble nitriles (CN_wl) can be found in
two clusters, which indicates different mixture behaviors. (Right):
Example for a cluster with high homogeneity regarding single-
labels, which, however, includes multiple expert-labeled classes.

tion: we find rather small dipole moments and relatively high po-
larizabilities, a characteristic of non-polar molecules, in the blue
cluster compared to the red cluster, while the red cluster exhibits
greater heterogeneity. Hence, we conclude that the polarity of the
molecules is one of the most important properties with regard to ac-
tivity coefficients. While this agrees well with chemical intuition,
polarity is usually integrated in the input of previous hand-crafted
mixture prediction, so it is interesting to quantitatively find this in
our unbiased mixture data. Thus, we can interactively analyze data-
driven relationships between matrix patterns and multiple external
feature distributions.

7.2. Transparent Evaluation of Reference Classifications

Classifying substances is fundamental for the development of pre-
dictive thermodynamic models, but a non-trivial task that is usually
done by a human expert in a subjective manner. The software de-
veloped in this work enables a data-based evaluation of such classi-
fications. We therefore change the color coding of the tree nodes to
the occurrence of a specific class label as defined by an expert, e.g.,
water-soluble nitriles (CN_wl), cf. Figure 7 (center). In this mode,
we notice that the water-soluble nitriles are part of two clusters as
found based on the mixture data. Taking into account that the other
substances in the two clusters are strongly different with regard to
their class membership, we can conclude that *water-soluble ni-
triles’ is not a very characteristic group label regarding the behavior
of substances in mixtures and should not be used for this purpose.
A reverse procedure is also conceivable: if we look for a cluster
that is very homogeneous in its feature values, we quickly find the
blue cluster, cf. Figure 7 (right), which is surprisingly quite het-
erogeneous according to its expert group labels. We find branched,
cyclic, and short alkanes together with linear and branched alkenes,
which apparently all show a very similar mixture behavior. Based
on this observation, we can deduce that a separate consideration
of these tagged groups is not pertinent and that a group classifi-
cation should rather be based on the (relevant) substance proper-
ties, which are very homogeneous in this cluster, namely, dipole
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moment, polarizability, and anisotropy (not shown). Through the
multidirectional analysis between matrix patterns, class labels and
feature values we enable domain scientists to validate, invalidate
and suggest annotated matrix classifications.

8. User Evaluation

In addition to the case studies by our domain scientist authors, we
conducted a qualitative user study with six PhD students to evaluate
the accessibility and effectiveness of our tool in practical use. All
six are pursuing a degree in chemical engineering, albeit most do
not specialize in the analysis of mixture data. Only one of them
was familiar with the matrix data before the study, but has only
seen numerical representations without annotations.

After a brief introduction to the data, the tool, and its func-
tionality, we asked three introductory questions, after which they
could explore the data on their own. We encouraged the partici-
pants to think aloud, took notes of their comments, and additionally
recorded the audio during each session. In the end of the session,
we conducted a short interview to capture a summary feedback on
usability and productiveness. Each session took between 30 and
60 minutes. All participants started their analysis on the screen or-
dered as determined in subsection 5.2 and were given the same
tasks: Can you find patterns in the matrix and characterize them
with domain knowledge? Can you determine substance properties
that significantly influence the mixture behavior? Which patterns
coincide with domain knowledge?

Most participants were able to immediately identity, explore and
correlate patterns in the matrix. Selections in all plots were made
abundantly. One person was overwhelmed with the abundance of
simultaneous views and another felt unfamiliar with the concept of
dendrograms, though both reservations resolved quickly and with-
out intervention. The filtered table was equally used as the violin
plots and checked against each other for reliability. The implica-
tions of the various node colorings in the dendrogram were ex-
tensively explored. The participants used them to recognize both
consistent and inconsistent clusters and confirmed them within the
violins.

The users particularly praised the wide range of consistent in-
teraction and selection possibilities (4 users), the visual clarity
(3 users), and the accessibility of complementary information (3
users). The participants commented on the beginner-friendly design
through abstractions to color and violins, enabling analysis without
knowledge of statistical methods (3 users), though the person fa-
miliar to the dataset liked that raw data is accessible by hovering at
all times. Improvement suggestions were aimed to enhance the user
experience. Participants were missing a ‘reset’ button (3 users), im-
ages of the structural formula of substances (2 users), and resizing
violin plots (2 users).

Overall, the positive feedback from our user study showed that
application domains can greatly benefit from visual analytic inter-
faces compared to current workflows. Interactive linked views as
well as visual abstractions are quick to learn and use as long as
design and interactions are intuitive. With regard to our specific
application, users were able to successfully check various levels of
cluster validation (data, visible pattern, dendrogram, violin) against

each other. The participants were so interested in the interaction
possibilities that, even though most of them had no relationship
with the data, everybody continued exploring after the official ses-
sion ended. That participants were excited about the tool’s interac-
tion possibilities and wanted to apply their own data, indicates (1)
that relating attributes to matrices is a common problem and (2)
that the need for visual analytics software in application domains is
still huge.

9. Conclusion and Future Work

In this paper, we introduced an analysis software for asymmetric
scalar matrices that are complemented with meta-data for row and
column entities. Central building blocks are a pattern-focused sort-
ing of the heatmap and the guided variation analysis of the meta-
data across multiple linked views. While the workflow and most
parts of the software are independent of the application domain, we
focus on chemical engineering, particularly, the exploration of the
relationship between the activity coefficients in binary mixtures and
properties of the pure substances. We demonstrate that the software
can be used in practice to find informative descriptors for modeling
mixture properties based on a cluster analysis of the mixture data,
and contrast it with existing domain knowledge. The analysis with
our software provided data-driven directions towards suitable sub-
stance descriptors and classification schemes for binary mixtures,
advancing the field from manual analysis by physicochemical intu-
ition.

Our analysis software currently has limitations. Firstly, we rely
on hierarchical clustering for its interpretability and inherent hier-
archy for domain patterns, though alternative ordering techniques
may be viable. Secondly, displaying all data points simultaneously
limits the matrix size to ~500x500 due to pixel resolution, but so-
lutions like scrolling or agglomeration have been successfully em-
ployed before [CMP10]. Thirdly, enrichment data must be avail-
able; however, in our experience with other engineering sciences,
this data is typically accessible, and engineers are often eager to
consolidate it. Hence, an apparent direction for future research is
the application to new domains. The infrastructure of the system is
designed to be generic by handling multiple data types and lends
itself directly to the integration with data from other domains.
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