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Abstract. Vector �eld visualization is an important topic in scienti�c

visualization. The aim is to graphically represent �eld data in an intu-

itively understandable and precise way, which should be closely related to

the physical interpretation. A new tool, the texture transport method is

presented, which especially applies to time-dependent velocity �elds. It is

based on an accurate numerical scheme for convection equations, which

is used to compute Lagrangian coordinates in space time. These coordi-

nates are then used as texture coordinates referring to some prescribed

texture in the Lagrangian reference space. The method is combined with

a reliability indicator. This indicator in
uences the �nal appearance of

the texture and thereby leads to reliable visual information. At �rst the

method applies to 2D problems. It can be generalized to 3D.

1 Introduction

The visualization of �eld data, especially of velocity �elds from CFD compu-

tations is one of the fundamental task in scienti�c visualization. A variety of

di�erent approaches has been presented. The simplest method to draw vector

plots at nodes of some overlayed regular grid in general produces visual clutter,

because of the typically di�erent local scaling of the �eld in the spatial domain,

which leads to disturbing multiple overlaps in certain regions, whereas in other

areas small structures such as eddies can not be resolved adequately. The central

goal is to obtain a denser, intuitively better receptable method. Furthermore it

should be closely related to the mathematical meaning of �eld data, which is

mainly expresses in its one to one relation to the corresponding 
ow. If a vector

�eld v : 
 � IR
+
0 ! IR

n for some domain 
 � IR
n is given, and for simplicity

we at �rst assume that v � � = 0 where � is the outer normal on @
 (lateron we

will de�ne corresponding in- and out
ow conditions in a Lagrangian frame) then

the corresponding 
ow � : 
 � IR
+
0 ! 
 is described by the system of ordinary

di�erential equations

@t�(x; t) = v(�(x; t); t)

and the initial condition �(x; 0) = x .

The spot noise method proposed by van Wijk [22] introduces spot like texture

splats which are aligned by deformation to the velocity �eld in 2D or on surfaces



in 3D. These splats are plotted in the 
uid domain showing strong alignment

patterns in the 
ow direction. The originally �rst order approximation to the


ow was improved by de Leeuw and van Wijk in [6], where they use higher order

polynomial deformation of the spots in areas of signi�cant vorticity. The Line

Integral Convolution (LIC) approach of Cabral and Leedom [2] integrates the

above ODE forward and backward in time at every pixelized point in the domain,

convolves a white noise along these particle paths with some Gaussian type �lter

kernel and takes the resulting value as an intensity value for the corresponding

pixel. According to the strong correlation of this intensity along the stream-

line and the lack of any correlation in the orthogonal direction the resulting

texturing of the domain shows dense streamline �laments of varying intensity.

Hege and Stalling [19] increased the performance of this method especially by

reusing portions of the convolution integral already computed on points along

the streamline. Max et al. [12] proposed a similar method on surfaces. Max and

Becker [13] present a method for visualizing 2D and 3D 
ows by animating tex-

tures. Turk [21] discusses an approach by which a certain number of streamlines

is automaticly equally distributed on the computational domain.

Especially for 3D velocity �elds particle tracing is a very popular tool. But a few

particle integrations released by the user can hardly scope with the complex-

ity of 3D vector �elds. Z�ockler et al. [20] use pseudo randomly distributed and

illuminated and transparent streamlines to give a denser and receptable repre-

sentation, which shows the overall structure and enhances important details.

An e�ective method to calculate stream surfaces in 3D, which nicely depicts sep-

aration phenomena has been presented by Hultquist [9]. Van Wijk [23] proposed

the implicit stream surface method. For a stationary 
ow �eld the transport

equations v � r� = 0 are solved for given v and certain in
ow and out
ow

boundary conditions in a precomputing step. Then isosurfaces of the resulting

function � are streamsurfaces and can e�ciently be extracted with interactive

frame rates even for larger data sets.

Most of these methods are designed and implemented on 
ow �elds, which are

constant in time. If we for instance apply line integral convolution in the time-

dependent case successive images of a time sequence are in general not correlated.

Grey level values at grid points change very rapidly because the streamlines at

time t and t+ �t on which the convolution is performed have almost no overlap

even for very small �t. Therefore we ask for an approach using texture based

methods as well-suited tools to ensure a overall representation of �eld data,

which avoids the above drawback in the non stationary case. We adopt the idea

of the implicit streamsurfaces and discuss the corresponding transport problem

for time-dependent data, solve it numerically for certain boundary and initial

conditions and use the result to generate an appropriate texture mapping.

At the inlet of a 
uid container we prescribe in
ow boundary conditions, which

are the in
ow coordinates, respectively the in
ow time. Furthermore out
ow

boundary conditions are given at the outlet and slip conditions on the remaining

part of the boundary. In the interior the linear transport equations with respect



to the prescribed velocity v(x; t) describe the 
uid motion, i.e. the transport of

the in
ow time and in
ow coordinates. The set of points in space and time which

shares a speci�c in
ow coordinate coincides with a particle line, whereas the set

of points with the same in
ow time and in
ow coordinates on a bounded sur-

face respectively line on the inlet, describe the movement of the corresponding

surface or line in time. Therefore in 2D we take the space spanned by the in
ow

time and the in
ow coordinates as texture space and prescribe a texture with

strong correlation in the direction of time. Then using the numerical results of

the transport calculation, in explicit the numerical in
ow time and in
ow coor-

dinates as texture coordinates we obtain a dense representation of particle lines

in terms of visible texture correlation. This representation continuously depends

on time and we can easily animate the evolution. In 3D we proceed similar as

in the implicit streamsurface method proposed by van Wijk and texture the re-

sulting streamsurfaces analogously.

The paper is organized as follows. In Section 2 we will in detail explain the

continuous transport problem and the related coordinate systems. The numer-

ical scheme and especially its improvement by higher order shape functions is

discussed in section 4, whereas in Section 3 we deal with the question of reliabil-

ity and propose a method to represent this adequately in the resulting images.

Furthermore in Section 6 we brie
y give �rst results in 3D. Finally we draw

conclusion and outline future research directions.

2 Lagrangian coordinates and transport equations

Velocity �elds in numerical simulations are mostly given in the spatially �xed

Eulerian coordinate system, whereas its physical meaning in terms of moving


uid particles is more closely related to the Lagrangian frame. This observation

is the starting point of various visualization techniques. The method we propose

here displays Lagrangian coordinates using a texture mapping, which map a

certain pattern from a Lagrangian coordinates system to the Eulerian frame. To

start with, let us assume
 � IR
2 to be a domain describing a 
uid container with

an inlet boundary �+ � @
 and an outlet boundary �� � @
. Furthermore we

suppose the 
uid velocity v : 
�[0; T̂ ]! IR
2 to be given for a �xed time T̂ . In the

application this velocity will be delivered by a numerical simulation, which runs

simultaneously or has stored its results in �les on disk. This numerical simulation

is based on an additional computational grid. Therefore, to avoid some sampling

procedure with its obvious drawbacks, the post processing method has to be

based on the same grid (cf. Section 4).

Let us now interpret the coordinates X on the inlet boundary �+, respectively

the in
ow time T as depending variables, which are transported with the 
uid.

Then they are described by the following transport equation for a density �

@t�+ v � r� = 0 in 
 ;

� = �� on �+
;

(1)



thereby we obtain � = X for �� = X on �
+, respectively � = T for �� = T

on �+. At the outlet �� no boundary condition has to be described if v � � � 0

for all times, where � is the outer normal of the domain 
. This transport

can be interpreted as a simultaneous and global particle tracing. On a particle

path x(t) the solution � of the above transport equation is constant, because

_x(t) = v(x(t); t) and

d

dt
�(x(t); t) = @t�(x(t); t) + _x(t) � r�(x(t); t)

= 0 :

Fig. 1. LIC convolution along the T component.

Therefore points of constant X value are located on the particle line starting at

position X on �+. Analogously a constant T value indicates points on a surface

which is the image of a corresponding surface on the inlet under the 
ow �(�; T ).

In this sense X;T as functions on 
 � [0; T̂ ] can be regarded as Lagrangian

coordinates describing the motion of particles which pass through �+. Particles

which have earlier entered the 
uid container are not considered so far.

The transport equation becomes a well{posed problem by prescribing suitable

initial conditions. If every particle paths starting at a position in 
 has left

the domain, the solution � no longer depends on these initial conditions. For

moderate values of T̂ this might not be the case and for certain applications

especially the initial phase of the physical simulation is of great importance.

Therefore we suppose that ~X and ~T are extensions of X j
�
+ respectively 0 on


 and choose them as initial conditions for the two transport problems. E. g. if


 � IR
+ � IR and �+ � 0� IR we choose ~X(x1; x2) = (0; x1), ~T (x1; x2) = 0.

In Section 4 we will discuss a numerical algorithm to compute an approximation

of the transport solution and thereby of the Lagrangian coordinates.

Next we have to de�ne an appropriate pattern in the texture space �+ � [0; T̂ ].

There are several desirable features which should be realized by the textural rep-

resentation of the Lagrangian coordinates. It should simultaneously code time

and inlet coordinates. Furthermore to enable long time animation of moving 
u-

ids the pattern in the texture space should be periodic in T and the zooming into

detailed areas has to be supported by a scaleability property. These requirements

are ful�lled by the following construction:



physical space

texture space

(x ,t )i i

(X         ,
 T         )

(x ,t )i i
(x ,t )i i

Fig. 2. A sketch of the applied mapping from texture space into physical domain 
.

{ Choose some white noise on a rastered domain [0; 1]2, those coordinates are

denoted x; t corresponding to the Lagrangian coordinatesX;T and duplicate

this domain three times shifting it in the t-direction by �1,0 and 1 (compare

Fig. 1).
{ Then use the LIC type convolution along the T component with a �lter

length smaller than 1 (compare Fig. 1).
{ If a smoothing in x is intended repeat the same duplication and convolution

in x direction with a second �lter length. This molli�cation scale should be

signi�cantly smaller in order not to destroy the correct perception of the


ow direction.
{ Thereby we obtain a texture on the original domain [0; 1]2 with a previously

�xed rasterization. By periodic shifting in both directions we �nally obtain

a 2 periodic texture.
{ Depending on the projection from world to screen coordinates we scale the

computed Lagrangian coordinates X and T by some factor �. If �0 is an

initial scale which especially depends on the size of the domain 
 � [0; T̂ ]

and s = (detP )
1
3 where P is the 3�3 projection matrix describing the linear

part of the a�ne mapping from world to image space, then �:=�0 s is an

appropriate choice for this scaling factor.
{ Finally we obtain as texture coordinates �X; �T mapping points in 
 into

the 2 periodic texture space IR2 with the fundamental cell [0; 1]2 which covers

f�(X(x; t); T (x; t)) jx 2 
; t 2 [0; T̂ ]g (compare Fig. 1).

Due to this construction the resulting texture on
 at time t 2 [0; T̂ ] continuously

depends on t and the scaling from world space into image. Furthermore the

resulting pattern is independent of this scaling. This avoids aliasing e�ects as

long as the �lter length in x direction is large enough.

Finally one degree of freedom is still left in the generation of an image. We can

code by coloring a second scalar physical quantity, i. e. pressure. Alternatively

color can be used to accentuate the motion on the streakline pattern. Therefore

in addition a time periodic coloring of the greyscale texture is applied. In that

case the T component of the Lagrangian coordinates is represented twice, by

the periodic structure of the texture in T direction and by the coloring. If we

disclaim the �rst we can abandon the T component of the texture to a reliability

quanti�cation of the numerical transport results. We will focus on this important

aspect in the next paragraph.



3 Texture visualization and reliability

Although we use a higher order Finite Volume method to solve the transport

equation for a given velocity v numerically, there are unavoidable error sources.

In general, especially for CFD applications, v itself is computed by some numer-

ical algorithms, which implies approximation errors compared to the true 
uid

velocity in the physical application and leads to errors in data v which we plug

into the numerical transport scheme. Furthermore due to the still considerable

numerical viscosity and the approximation restriction of the shape functions we

obtain additional important errors contributions. Let us suppose that, by some

error estimator [10, 18, 11] or a weaker error indicator we can measure local in

space and time the resulting accumulated error. We will denote this measure

�(x; t) with x 2 
, t 2 T̂ and regard it as a function in the linear Finite Element

space.

Our intention is now to use � information in the generation of the vector �eld

images. In areas where � is small, the numerical solution of the transport equa-

tion and thereby the texturing of the domain 
 is reliable, whereas in regions

with large �{values, the actual meaning of the texture is unclear and possible

makes no sense.

Therefore we �rst create a texture � with a smooth transition from clearly visible

pattern with a high signal bandwidth to an uniform grey valued texture. As

already explained, if we code the Lagrangian coordinate T solely by color, the

corresponding t texture component is no longer needed. Then we are able to

parameterize the above transition over t 2 [0; 1]. Let us suppose that the current

one dimensional texture �(�; 0) is periodic with its fundamental cell [0; 1], i. e.

a white noise �(�) on [0; 1] periodicly expanded on IR and �nally convoluted by

some block �lter kernel ��(�) with support �. Here �� denotes the characteristic

function on [��; �]. Then we have two methods at hand to de�ne the required

transition.

{ We can expand the support of the �lter kernel from � at t = 0 to 1 at t = 0.

In detail we de�ne the texture at t 2 [0; 1] by �(x; t):=�
�(t) �� where �(t) is

a monotone function on [0; 1] with �(0) = � and �(1) = 1.

{ Alternatively we can successively decrease the texture signal's amplitude.

I. e. for given �(�; 0) and �� =
R 1

0
�(x; 0)dx de�ne

�(x; t) = (1� �(t))�(x; 0) + �(t)��

where � is a monotone increasing function on [0; 1] with �(0) = 0 and �(1) =

1 . In particular a spline � with vanishing derivatives at 0 and 1 has proved

useful in the applications.

Finally these two methods can be combined by concatenation of the two opera-

tors (cf. Fig. 3 for the resulting texture).

With this new parameter family of one dimensional texture spaces at hand we

now consider the implications of the error indicator on the choice of the actual



texture coordinates. Let us suppose that � is a function with values in [0; 1],

where small values indicate small error bounds and values closed to 1 large er-

rors and therefore small reliability of the computational results. Then we take

(�X; �) as texture coordinates which map the latter introduced texture onto the

computational domain. Again this texture is scalable and continuously depends

on time. The following examples for di�erent applications all use this texture

for the Lagrangian X coordinate and color for the corresponding T coordinate.

Thereby a simple error indicator which measures local gradients has been ap-

plied.

η (x,t)

x

t

Fig. 3. Fundamental cell of the texture space with error dependent blurring and the

periodic color ramp for the coding of time.

4 Higher order numerical transport scheme

Numerical schemes for hyperbolic conservation laws are accompanied by some

numerical viscosity, which leads to a signi�cant data molli�cation and a \smear-

ing out" of the solution structure. This phenomena is well-known for shock prop-

agation in CFD, but it already appears in case of linear transport problems.

There is a trade o� between the amount of this numerical viscosity and the oc-

curring of oscillations. Especially in the current application to much numerical

viscosity would destroy the evolution of interesting 
ow patterns represented in

the numerical solution of our 
ow problem. Therefore, after some �rst testing

we reject the usage of standard �rst order Finite Volume schemes and choose

the higher order Discontinuous Galerkin method as an appropriate solver, with

considerable smaller numerical viscosity.

The oscillations, which are well-known for any type of higher order �nite volume

scheme, are avoided by invoking a limiting process.



Let us suppose M to be some unstructured mesh covering the computational

domain 
 and consisting of regular Elements Ei for i in some index set I
M
. On

this grid we introduce the space V of piecewise polynomial function, which are

not required to be continuous on element faces. Then we consider the transport

equation (1), written in conservation form

@

@t
�+ divf(�) = � divv

where f : IR ! IR
n and fi(�):=vi�, multiply it with some  2 V and integrate

over E 2M. Thereby we obtain

@

@t

Z
E

� +

Z
E

divf(�) =

Z
E

� divv  

Applying integration by parts we obtain

@

@t

Z
E

� +

Z
@E

f(�) � �  =

Z
E

� divv  + f(�)r 

If we now require � 2 V �[0; T ] and replace the 
ux term f(�)��, which describes

the 
ow over the faces of E by some numerical 
ux g(��; �+) where �� and �+

denote the piecewise polynomial, but discontinuous function � in E, respectively

in the adjacent cells ~E at the faces of E, with

g(�; �) = f(�) � �

g(��; �+) = �g(�+; ��)

we obtain the semidiscrete Discontinuous Galerkin method. The Engquist-Osher


ux [7] is used in the current texture transport algorithm. Finally we discretize

this by some Runge Kutta scheme in time and to avoid oscillations combine the

resulting algorithm with a limiter which cut o� local extrema after each Runge

Kutta iteration step. For a detailed discussion on the Discontinuous Galerkin

Method we refer to Cockburn et. al. [3{5]. In our implementation we approximate

� = T;X on each volume E by a linear function. Let us emphasize that we obtain

standard �rst order Finite Volume schemes if we take into account piecewise

constant shape functions in space and a forward Euler scheme in time.

5 Examples in 2D

At �rst we considered an incompressible 
ow around a circular obstacle in a

rectangular channel. At moderate Reynolds numbers we expect the K�arm�an

vortex 
ow pattern. Here the numerical velocity v is calculated by a mixed

Finite Element method with quadratic shape functions for v [1]. To resolve the



Fig. 4.A comparison between �rst and higher order method for the numerical transport

of the X component using isolines on the physical domain 
 at a certain time.

approximation quality also in the numerical solver for the transport problem

we re�ne the triangular Finite Element mesh, subdividing each triangle into

16 smaller triangles, and then start the second order Discontinuous Galerkin

method to calculate the X;T coordinates. Several �gures above already re
ect

the obtained results. Fig. 6 depicts several timesteps from the evolution of 
ow

in time and Fig. 7 underlines the scalability of the texture for several di�erent

magni�cation factors. The zooming region is outlined in black in the original full

image.

Finally we compute and display the texture transport for a compressible velocity

�eld given by the numerical solution of the 2D Euler equations. Two obstacles

are placed in a channel and we increase the prescribed in
ow velocity successively

in time. Fig. 8 compares the induced 
ow pattern at di�erent times.

6 Vector �elds in 3D

Fig. 5. 3D texture transport

The method of the Lagrangian coordinate transport can obviously be transfered

to the three dimensional case. Thereby we especially compute the transport of

two dimensional inlet coordinates X 2 �+ . For a visualization of the results in

terms of texture rendering, we pick up the implicit streamsurface idea presented

by J. Wijk [23]. Consider implicitly de�ned curves 
 = fX 2 �+ j g(X) = 0g for



some regular function g on �+. Let us denote by s : [0; 1]! �
+ a parameteriza-

tion of 
, which is supposed to be periodic if 
 is closed. Then the imageX(
; �) of


 under the coordinate map X is a streamsurface. This surface can be extracted

on the discrete grid by any discrete isosurface algorithm. With respect to the

parameterization s it can be textured over the same texture space, already used

in 2D applications. If we furthermore consider a family of implicit parameterized

curves, we also obtain a continuous transition in the texture images concerning

continuous modi�cations of this parameter in an interactive exploration. Instead

of implicit curves on �+ we can also ask for the images of implicit surfaces on

�
+ � [0; T̂ ] and texture them correspondingly. Fig. 5 shows a �rst picture of

such a surface deformation by the Lagrangian coordinate mapping. Therefore

an ellipsoid has been prescribed on �+� [0; T̂ ]. The underlying velocity is a test

data set on a cylindrical domain.

7 Conclusions

A new method for the visualization of vector �eld data has been presented. It

applies to stationary and time dependent data in 2D and combined with the

implicit streamsurface method of van Wijk it has strong provisions for the three

dimensional case as well. Based on the numerical solution of the transport equa-

tion for the Lagrangian coordinates (related to the in
ow boundary) texture

coordinates are calculated which map a pattern in the Lagrangian coordinate

space onto the computational domain. The resulting pattern shows a strong

alignment in the direction of particle paths and can be animated in time. The

method is computationally expensive concerning the numerical solution of the

transport problem, which may run in parallel to the actual numerical 
ow sim-

ulation or afterwards in a preparatory step for the post processing. Compared

to this the actual post processing is fast and interactive especially on machines

with hardware texturing. Future research will be on the distributed calculation of

transport and the e�cient extraction of well suited texture patterns in 3D. Here

we will combine the proposed method with multilevel visualization techniques

[14, 16, 15]. The authors thank E. B�ansch for providing the numerical data of the

von K�arm�an vortex street.

This paper is a part of the PhD-thesis one author (J. Becker) is working on.
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Fig. 6. Texture transport in the von K�arm�an vortex street.

Fig. 7. Several intermediate steps in a continuous zoom into the physical space 
.

Fig. 8. Texture transport applied to a compressible 
ow arround two cylinders.


