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Abstract
In this paper, we present a method for detailed temporally consistent facial performance capture that supports
any number of arbitrarily placed video cameras. Using a suitable 3D model as reference geometry, our method
tracks facial movement and deformation as well as photometric changes due to illumination and shadows. In an
analysis-by-synthesis framework, we warp one single reference image per camera to all frames of the sequence
thereby drastically reducing temporal drift which is a serious problem for many state-of-the-art approaches. Tem-
poral appearance variations are handled by a photometric estimation component modeling local intensity changes
between the reference image and each individual frame. All parameters of the problem are estimated jointly so
that we do not require separate estimation steps that might interfere with one another.

1. Introduction

Facial performance capture is a very important topic in com-
puter vision and graphics and has been actively researched
for several decades. While marker-based approaches have
matured and are readily available in many commercial sys-
tems, dense marker-less facial performance capture still
poses numerous problems. While many approaches yield vi-
sually impressive results, temporal drift, especially in se-
quences with large motions and deformations is a key prob-
lem hindering the use of these methods in real-life applica-
tions. Moreover, most approaches use several separate steps
for performance capture (e.g. reconstruction of one tempo-
rally unaligned mesh per frame - pixel tracking in image
space - mesh alignment for temporal consistency - refine-

ment for drift prevention), all of which have their require-
ments in order to yield good results and may even influence
each other’s accuracy.

In this paper, we present an integrated approach to tem-
porally consistent facial performance capture that largely
reduces temporal drift and does not require a separate 3D
reconstruction of the facial geometry in each frame. The
basic idea is to use an image-based analysis-by-synthesis-
approach, synthesizing each frame of the sequence by warp-
ing and modifying a single reference image per camera cor-
responding to the motion and deformation of the underly-
ing tracking model as well as the estimated illumination
and shading. Contrary to most other approaches, our method
does not require image correspondences between these cam-
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eras, thus their placement may be optimized for coverage of
the face and recording volume in order to enable capturing
natural performances containing large head movements and
rotations as well as to create representations that can be ren-
dered from a broad range of viewpoints. Ambiguities arising
from points that are covered by only one or even no camera
at all are resolved by employing suitable smoothness terms.

Contributions. In this paper, we present an analysis-by-
synthesis approach to temporally consistent facial perfor-
mance capture of complex facial expressions even in long
sequences and with wide-baseline setups. This is made pos-
sible by the following developments:

• An analysis-by-synthesis approach that is highly robust
against temporal drift since all variations in appearance
are modeled by warping and modifying a single reference
image per camera

• Our approach overcomes the drastic variations in appear-
ance resulting from different expressions by the integra-
tion of a photometric component into the tracking

• Our approach does not require separate steps but rather al-
lows to model the captured performance directly in terms
of a semantically consistent, deforming 3D model

We present a discussion of the most relevant related meth-
ods in section 2, followed by the detailed description of our
approach in section 3. We present results and experimen-
tally validate the performance of our method in section 4,
followed by a conclusion.

2. Related Work

Over the last two decades, performance capture has ma-
tured as a research topic. Most commercial solutions rely on
marker-based approaches, e.g. [Wil90,BBA∗07] due to their
robustness. However, markers are visible to the standard
cameras recording the facial action, which makes the tex-
tures captured together with the performance useless with-
out a vast amount of inpainting work. Another problem of
marker-based approaches is that they only allow for recon-
struction of the movement of a sparse point set on the facial
surface and thus often fail to capture the subtleties of good
facial acting.

Model-based methods allow to obtain semantically con-
sistent mesh sequences even from monocular video streams
[EG98, BBPV03, GVWT13] but the model geometry is ei-
ther very coarse or has to be manually adapted for the target
person by a 3D artist.

In order to track the facial geometry in 3D space without
explicit deformation constraints, most approaches require a
calibrated multi-camera or stereo capture setups and con-
trolled lighting conditions. Additionally, temporal drift often
needs to be addressed in explicit separate correction steps
as detailed in the following. Under highly controlled stu-
dio conditions, [BPL∗05] used the optical flow estimated for
several well-placed cameras to deform a laser-scan model

of an actor and capture highly detailed face textures at the
same time. Temporal drift is reduced by computing the op-
tical flow forwards and backwards. In [BHPS10], multiple
stereo camera pairs are used which cover overlapping por-
tions of the face to enhance capture resolution and optical
flow computation for skin regions exhibiting few textural de-
tails above the level of skin-pores. An initial mesh is created
by merging the depth maps obtained from the stereo pairs
and propagated along pre-computed optical flow fields. In
order to prevent temporal drift, an additional correction step
based on the optical flow of the sequence of extracted and
merged textures is applied.

A solution for a single stereo pair is presented in
[VWB12] where a template mesh is computed from stereo
correspondences and deformed along separately estimated
scene flow fields [VBZ∗10]. Temporal drift is reduced by a
motion refinement step in which the mesh is updated to re-
duce the reprojection error between each frame and its suc-
cessor.

A more extensive treatment of temporal drift can be found
in [BHB∗11] where the image sequences are divided by
anchor frames automatically selected based on their sim-
ilarity to a handpicked key-frame. The motion is tracked
by a multiresolution forward-backward block matching ap-
proach. To overcome temporal drift, the authors introduce
a “track-to-first” principle as a refinement step where each
frame is individually matched to the key-frame. 3D ge-
ometry is reconstructed for each frame separately using
[BBB∗10], and temporal consistency is achieved by align-
ing the key frame reconstruction to the following reconstruc-
tions, guided by the estimated image motion fields. An im-
provement in reconstruction and tracking quality by factor-
ing out surface shading using ambient occlusion has been
proposed in [BBZG12].

These state-of-the-art methods for dense markerless fa-
cial performance capture divide the tracking process into
several separate steps: Motion field estimation in image
space, possibly per-frame geometry reconstruction and fi-
nally deformation of a template mesh using the estimated
motion fields and/or reconstructions. Furthermore, all these
methods contain an explicit separate treatment of tempo-
ral drift which is one of the most important problems in
deformable surface tracking. Similar to our approach, sev-
eral methods for tracking unstructured 3D data such as point
clouds or depth maps use a deforming template shape to-
gether with suitable additional constraints (e.g. smoothness)
[WJH∗07, dAST∗08, WLVP09].

We use an image-based analysis-by-synthesis approach,
where motion estimation is based on warping a refer-
ence frame in order to synthesize each subsequent frame.
Thereby, the relation between the deforming mesh and the
underlying pixel information remains constant. This ap-
proach, however, can usually only be applied to short im-
age sequences with small lighting and shading variance, be-
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Figure 2: Methodology overview and comparison of our
analysis-by-synthesis (AbS) method with a standard frame-
by-frame (FbF) tracking approach

cause these can lead to increasing intensity differences be-
tween the warped reference and the current frame. This is
especially important in facial performance capture as com-
plex facial expressions can lead to drastic local shading vari-
ations. To handle this issue, we explicitly model shading and
illumination variations which allows us to modify the refer-
ence image not only by geometric distortion but also pho-
tometrically. The benefits of compensating illumination and
appearance changes in analysis-by-synthesis tracking have
been shown e.g. by [WSVT13] for full-body stereo tracking.
Our approach is partly inspired by work on 2D deformable
surface augmentation where shading variations are explicitly
modeled and estimated to achieve temporal consistency and
enable realistic re-texturing [HE08, HE09].

3. Method

Input to our approach are calibrated and synchronized multi-
view video sequences. As an initialization, a reference time-
point is selected and a suitable 3D model of the target face,
e.g. captured from a laser scan or image-based modeling
approaches [BBE14], is aligned to the camera frames by
matching sparse landmarks. Note that as our method does
not require a small baseline camera setup, we rely on this
initialization step to provide correct geometry. If the camera
setup allows conducting 3D reconstructions from the cap-
tured frames, it is also possible to estimate the geometry di-
rectly from the captured sources.

The key idea of our approach is to use the same refer-
ence for motion estimation throughout the whole sequence
instead of relying on motion estimated between consecutive
frames. This is achieved by warping the reference frame of
each camera according to the current motion hypothesis in
order to resemble the current frame as closely as possible.

In this work, “warping” not only means applying geomet-
ric transformations to an image but also locally changing
its intensity, according to the photometric component as de-
scribed below. Figure 2 illustrates our method in contrast to
a standard frame-by-frame tracking approach.

Our approach consists of a two-component energy mini-
mization problem for each frame minimizing an intensity-
based error between the synthesized and the real images
for each frame. A data term models geometric as well as
photometric variations between the images. The geometric
component models rigid motion as well as deformation of
the face, whereas the photometric component models in-
tensity variations, as induced by shading and illumination
changes between the images. Additionally, several regular-
ization terms minimize the influence of noise and outliers in
the image-based estimation process.

3.1. Parameter Estimation

In the following, we will index the cameras used for capture
by c, the time points by i and the K vertices of the mesh
used for tracking the surface by k. The image of camera c
at timepoint i will be denoted by Ii,c and without loss of
generality we will assume the reference frame to have been
captured at time point 0.

For estimating the motion and deformation of the face
from reference image I0,c of camera c to one of its succes-
sors Ii,c, we aim at minimizing the difference between Ii,c
and a rendered image Ji,c =Wc

(
I0,c,θi

)
, where Wc is a

view-dependent warping function that applies all geometric
as well as photometric changes to the reference image I0,c,
as induced by the estimated tracking parameters θi between
the time points 0 and i. The parametrization of this warp
function is given by

θi =


ri
ti
ui
ϕi

 (1)

where ri represents the 3 degrees of freedom of object ro-
tation, ti is its translation in world coordinate space, ui is
a vector containing x,y,z-offsets for each vertex represent-
ing the object’s deformation and ϕi is a vector containing
one value per vertex for the photometric adaption of the key-
frame texture. Since the object to be tracked is represented
by a triangle mesh, the rendering can easily be sourced out
to the GPU where it can be performed extremely fast even
for complex meshes.

The residual vector for measuring the distance between
images Ii,c and Ji,c is given for each pixel p of Ii,c by

r(img)
i,c (p,θi) =

(
Ii,c (p)−Ji,c (p)

)
(2)

Ji,c =Wc
(
I0,c,θi

)
(3)
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Figure 3: Side-by-side comparison of input frames and flat-shaded tracked geometry

and is computed for all pixels p ∈ Ω, the image region cov-
ered by the output ofWc

(
I0,c,θi

)
, the rendered model with

the tracking parameters applied.

The final cost function for the data term is then given by

E(img)
i = ∑

c
Φ

(
r(img)

i,c

)
(4)

where Φ is a suitable kernel function, e.g. the Square-norm
or a robust norm-like function.

3.2. Geometric and Photometric Components

The position v(k)i of a vertex with index k of the mesh

parametrized by θi is given relative to its position v(k)0 at
time 0 by

v(k)i = Ri

(
v(k)0 +u(k)

i

)
+ ti (5)

where Ri is a rotation matrix and ti a translation vector
which together define the rigid transformation of the mesh,
and u(k)

i is an offset vector which describes the local de-
formation for each vertex individually. The rotation Ri is
parametrized by ri = [rx ry rz]

T , which are the first elements
of θi.

Let x denote the point on the mesh surface corresponding
to an image pixel p in the synthetic image Ji. If T (x) is the
mesh triangle containing x, its position can be expressed by
its barycentric coordinates:

x = ∑
k∈T (x)

v(k)i β
(k)
i (x) (6)

where β
(k)
i (x) is the barycentric coordinate of x with respect

to vertex k. The color of Ji (p) for a simple warp-based ren-
dering approach would be given by

Ĵi,c (p) = I0

(
∑

k∈T (x)
Ψc

(
v(k)0

)
β
(k)
0 (x)

)
(7)

where Ψc is the camera projection function for view c. In or-
der to account for intensity variations during the sequence to
be tracked, we extend (7) by multiplying with an additional
photometric component per vertex:

Ji,c (p) = Ĵi,c (p) ∑
k∈T (x)

β
(k)
i (x)ϕ

(k)
i (8)

= Wc
(
I0,c,θi,p

)
(9)

where ϕ
(k)
i is the photometric component ofWc correspond-

ing to vertex k. Note that the photometric component is
treated as view-independent in this work so that all compo-
nents of the estimated parameters θi are independent of the
number of views and the view positions.

3.3. Regularization via the Mesh Laplacian

In order to obtain smooth surface deformations, decrease
noise and drift, as well as to resolve ambiguities (e.g. at ver-
tices visible in only one or even no camera), we employ a
twofold regularization approach based on the mesh Lapla-
cian which penalizes both strong variations in local mesh
geometry over time as well as divergence from the starting
mesh. The Laplacian differential [Sor05] of a vertex v(k)i de-
scribes its position as relative to its one-ring (the set of direct
neighbors) N (k). In this work, we use the uniform Laplacian
for which this differential is given by

d̂(k)
i = v(k)i −

1
|N (k)| ∑

j∈N(k)
v( j)

i (10)
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These differentials, however, are not invariant to a rotation
of the mesh [Sor04] and thus, we rotate them by the inverse
rotational component of the rigid transformation estimated
for the corresponding frame, yielding

d(k)
i = RT

i d̂(k)
i (11)

The residual for the regularization term enforcing smooth
surface deformations and decreasing the influence of noise is
given by the difference between the Laplacian differentials
of the current mesh and the ones of the mesh used in the
previous frame:

r(de f )
i =


d(0)

i
...

d(K−1)
i

−


d(0)
i−1
...

d(K−1)
i−1

 (12)

Similarly, residual r(acc)
i for preventing error accumula-

tion in the mesh geometry is defined as the difference be-
tween the Laplacian differentials of the current mesh and the
ones of the mesh in frame 0. The regularization penalty thus
amounts to

E(reg)
i = Φ

(
λ1r(de f )

i +λ2r(acc)
i

)
(13)

where λ1,λ2 are weight factors which control the regulariza-
tion process and are dependent on the mesh resolution (we
used 2 and 20, respectively, in our experiments).

The photometric component is also regularized by a
mesh-based Laplacian term which uses the differentials
given by

c(k)i = ϕ
(k)
i −

1
|N (k)| ∑

j∈N(k)
ϕ
( j)
i (14)

and directly penalizes them such that

r(regp)
i =


c(0)i

...
c(K−1)

i

 (15)

E(regp)
i = Φ

(
r(regp)

i

)
(16)

3.4. Optimization Strategy

In order to ensure quick convergence and to bridge large mo-
tions between successive frames, we employ a coarse-to-fine
optimization scheme with a downsampling factor of 0.5. On
each resolution level, we first compute a rigid fit of the model
using the image-based error (4) without the regularization
terms and only the first six elements of the parameter vec-
tor θi in (1). Afterwards, we jointly refine the rigid position
and compute the deformation parameters by minimizing the
error over the full parameter vector θi. This approach favors
rigid motion over deformation, thereby stabilizing the track-
ing and minimizing local drift in the computed vertex offsets

Figure 4: Results form Dataset B with 4 cameras and 4K
camera resolution, challenging eye movement and eyelash
geometry

ui. We use the Charbonnier penalty function

Φ(r) =
√

rT r+ ε2 (17)

which is a robust error norm reducing the influence of out-
liers to the error function. In the data term, this makes the
optimization more robust against noise in the data, while
in the smoothness term, it allows for discontinuities in the
deformation and photometric parameters. The overall cost
function is given by

Ei = E
(img)
i +E(reg)

i + γE(regp)
i (18)

where γ is used to weight the regularization of the photomet-
ric component and has been set to 0.1 in our experiments.

The optimization is done in an iterative fashion with the
single steps calculated by a generalized Gauss-Newton up-
date rule

θi+1 = θi−4θi (19)

JT
ε diag

(
d2

Φ

dr2

)
Jε4θi = JT

ε

dΦ

dr
(20)

where Jε is the complete Jacobian matrix of the overall resid-
ual in the toral error function (18).

This generalized Gauss-Newton update directly takes the
derivatives of the kernel function Φ into account which are
dΦ

dr = r and d2
Φ

dr2 = 1 in the case of the L2
2-norm. Note that this

approach is related but not equal to iteratively reweighted
least squares estimation [Gre84] and is more general in
the sense that it uses the true second derivative of the ker-
nel. If the computed update step leads to an error increase,
i.e. Ei (θi+1) > Ei (θ), we start a line search in order to gen-
erate updates θi+1 (α) = θi −α4θi, α < 1 that could still
decrease the error.
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Since we aim at minimizing the error function (18) with
a quadratic optimization algorithm, we need the Jacobian
matrices of the residual functions for all error terms in-
volved. If we use RGB color images and the mesh has K
vertices, the Jacobian of r(img)

i from equation (4) is a sparse
(3|Ω|)× (6+4K) matrix with its first 6 columns fully occu-
pied and the following 4K columns being sparse. This matrix
contains 3 rows for each pixel p, one for each color channel,
and each row will be given by

∂Ji,c (p)
∂θi

=


Qi (x)z

z
Bi (p)z

Ĵi,c (p)bi (p)


T

(21)

where Qi (x) is the Jacobian of the rotation of x by Ri, and

zT =∇Ji,c (p)
dΨc

dx
(22)

is the 1×3 row vector denoting the product of the image gra-
dient of Ji,c at p and the 2×3 Jacobian matrix of the projec-
tion function Ψc with respect to x. In practice, we blend the
image gradient of Ji,c with the gradient of the target image
as suggested in [HS80] to obtain

∇J ∗i,c =
1
2
(
∇Ji,c +∇Ii,c

)
(23)

Vector bi (x) represents the barycentric coordinates of x
as a sparse K×1 vector which contains one row per vertex.
If vertex k is an element of T (x), the corresponding row
of bi (x) is set to β

(k)
i (x). Matrix Bi (p) is a 3K× 3-matrix

containing one 3×3-block for each row of bi (x) and is given
by

Bi (p) =
[(

D(0)
)T
· · ·
(

D(K−1)
)T
]T

(24)

D(k) = diag


b(k)i (x)

b(k)i (x)
b(k)i (x)


 (25)

where b(k)i (x) is the k-th element of bi (x). Since all elements
of bi (x) are zero except for the three elements corresponding
to the vertices of triangle T (x), Bi (p) is sparse.

The Jacobians of both, r(de f )
i and r(acc)

i from equation
(13), with respect to the vertex offsets ui are given by sparse
3K × 3K-matrices which contain the coefficients for com-
puting the Laplacian differentials, multiplied by RT

i .

4. Results and Experimental Evaluation

For the results we used data from two different real capture
sessions. Dataset A (dark haired woman, green background)
was captured using two synchronized and calibrated cam-
eras with a resolution of 1920× 1080 and 60 frames per
second. Dataset B (blond hair, grey background) was cap-
tured with 4 cameras at 4K resolution (figure 4). The refer-
ence model was derived with an image-based reconstruction

Figure 5: Effect of the photometric component on the ren-
dering (detail): target frame (top left), value map of the
photometric component (top right), warped reference frame
with (center left) and without (center right) the photometric
component applied during rendering, absolute difference of
warped images and target image (bottom)

method [SKHE11], using 7 pairs of D-SLR cameras. Fig-
ure 3 displays a side-by-side comparison of example input
frames and the tracking results in order to illustrate the ver-
satility of the method for both tracking complex deforma-
tions as well as substantial off-plane rotations (e.g. top row,
center pair).

In order to experimentally confirm the performance of
our approach, we conducted several tests putting our method
next to other approaches to face tracking realized in the same
framework for a direct comparison.

Effects of photometric component. Figure 5 illustrates
the effect of the photometric component on rendering the
warped reference frame. The top row shows the target frame
and a value map of the photometric component. The cen-
ter row shows the warped reference frame with (left) and
without (right) photometric component being applied. The
bottom row displays the absolute difference images between
the target frame and the synthesized frames from the cen-
ter row. These images illustrate that the photometric compo-
nent has accounted for several brightness changes during the
tracking, especially at the eyelids and the forehead.

The effects of the photometric component on the track-
ing itself is illustrated in figure 6 where a result image of
a tracking pass without the photometric component (left) is
compared to the corresponding image created by tracking
with the photometric component (right). While prominent
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Figure 6: Comparison of tracking results for our analysis-
by-synthesis approach with the photometric component be-
ing disabled (left) and enabled (right). Upper row: tracking
results as rendered meshes, target frame (right). The arrows
point at regions where local brightness changes have caused
errors in the estimated deformation. Bottom row: overlays of
the rendered mesh and the target frame

cues like eyes, lips and eyebrows have been tracked correctly
without the photometric component, less textured regions
are more sensitive to brightness changes on the surface, such
that these effects may lead to errors if not treated properly.
The bottom row contains overlays of the rendered tracking
mesh and the target images for visual comparison.

Drift prevention via Analysis-by-Synthesis. One of the
main contributions of this paper is that the presented track-
ing is highly robust against temporal drift. While this may
be evident when contemplating the use of the key-frame I0
as the source of all synthesized frames Jt , a simple compari-
son with a standard frame-by-frame approach shows that this
choice indeed strongly decreases temporal drift. The method
we use for comparison is built within the same tracking
framework, with the only difference that we use frame It−1
as the rendering source for Jt , instead of I0, allowing to
directly infer the influence of the reference chosen for warp-
ing. Figure 7 displays the estimated geometry for frame 30
of a challenging sequence with quick changes in expression
and pose. Equal weights have been used for all smoothness
terms. The estimated geometry of both approaches seems
visually valid although our proposed single-reference ap-
proach (center) has followed the deformation more closely
(e.g. lip shape). As shown in the second row (overlay of
the tracked geometry and the target image), however, the
position of the mesh has already drifted by a substantial
amount for the frame-by-frame tracking approach. As ex-
pected, the tracking results when using I0 as the reference
frame throughout the sequence do not exhibit any visible

drift. Adding a backward warping component like the one
being used to alleviate drift in [BPL∗05] did not significantly
decrease drift in our experiment.

Figure 7: Comparison of estimated geometry for frame-by-
frame tracking (left) versus our approach with a single refer-
ence frame (right). Upper row: tracking results, target frame
(right). Lower row: overlay of tracked geometry and target
image. The shifting effect of temporal drift in the frame-by-
frame approach is clearly visible.

Table 1 shows the mean squared error (MSE) between
a target frame and the corresponding synthesized instance
of frame I0 for the different tracking methods used in our
experiments, indicating the consistency of each tracking
method. The top row shows the error for our approach us-
ing I0 as the reference frame for the whole sequence, the
center row for conventional frame-by-frame tracking and
the bottom row for frame-by-frame tracking with an ad-
ditional backwards warping term. The table illustrates that
the proposed method yields the best results in this compari-
son. The photometric component provides an additional er-
ror decrease. Surprisingly, forward-backward estimation of
the optical flow (bottom row) error did not yield better re-
sults than simple forward frame-by-frame tracking in this
experiment. The slight error increase when applying the pho-
tometric component to a frame-by-frame approach results
from the increased adaptability between pairs of successive
frames which in this case tends to amplify drift.

5. Conclusion

We have presented an analysis-by-synthesis approach to
temporally consistent facial performance capture. Since our
method uses a single reference frame (per camera) which
is warped to synthesize all subsequent frames, it is robust
against temporal drift as has been validated experimentally
by comparison with an approach that uses pairs of subse-
quent frames for tracking. Bradley et al [BHPS10] correctly
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Warping no PC PC
I→0 0.0041 / 0.0026 0.0025 / 0.0020
I→i−1 0.0154 / 0.0165 0.0166 / 0.0182
I→i−1,I←i 0.0164 / 0.0163 0.0166 / 0.0169

Table 1: Comparison of MSE error between synthesized and
target frame with different tracking approaches, for left /
right camera. Rows: warping reference frame and direction.
Columns: photometric component disabled / enabled

observe that “If it were possible to accurately compute flow
between the first video image and every other frame, there
would be no accumulation of error. Unfortunately, tempo-
rally distant video images in a capture sequence are usually
too dissimilar to consider this option.” The proposed method
tackles this dissimilarity problem by adding a photometric
component which allows to estimate brightness changes re-
sulting from deformation, movement and self-shadowing,
which are then applied to the reference frame when synthe-
sizing a target image.

The image warping used for image synthesis is directly
induced by the deformations applied to the reference model
for each time point. This makes our method an integrated,
single-step approach as opposed to most state-of-the-art
methods that use at least one stage for tracking pixel motion
and another stage for following this motion with a tracking
mesh. Also, a drift correction step is needed in most state-
of-the-art methods but is not necessary in our approach.

In future work, we aim to extend our method by illumi-
nation estimation to allow for more detailed estimation of
geometric deformations, e.g. at wrinkles, by analyzing their
self-shadowing behavior. In order to use the results for ap-
plications such as free-viewpoint rendering, we will also add
a texture synthesis component which will stitch the textures
captured by the individual cameras into one complete texture
representing the area covered by all cameras together.
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