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(a) Wallpaper1 256×256 (tiled). (b) Cloth9 512×512. (c) Wood4 256×256 (tiled).

Figure 1: Result renderings for extrapolation guided by scanned images.

Abstract
In this paper, we address the problem of acquiring bidirectional texture functions (BTFs) of large-scale material
samples. Our approach fuses gonioreflectometric measurements of small samples with few constraint images taken
on a flatbed scanner under semi-controlled conditions. Underlying our method is a lightweight texture synthesis
scheme using a local texture descriptor that combines shading and albedo across devices. Since it operates directly
on SVD-compressed BTF data, our method is computationally efficient and can be implemented on a moderate
memory footprint.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Digitizing and scanning I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism —
Color, shading, shadowing, and texture

1. Introduction

The important role of material models in computer graphics
has been known for a long time; yet, to this day, the acqui-
sition of data-driven models from real-world material sam-
ples still underlies many practical limitations. Photographi-
cally measured bidirectional texture functions (BTFs) as in-
troduced by Dana et al. [DNvGK97] can recreate a wide
range of optical phenomena but require long capture times
and large measurement setups to satisfy the need for far-field
illumination for large material samples. Most setups support
sample sizes not larger than 10cm× 10cm, indicating the
demand for alternative methods to capture the appearance of
expanded samples.

In this work, we propose to combine full bidirectional
measurements of a small sample with sparse measurements

of a large-scale material sample in order to synthesize a
fully relightable large-scale representation of the material.
The proposed method relies on the observation that BTFs
are highly redundant and that small samples are often rep-
resentative of the overall appearance. In particular, research
on BTFs has shown that they can be expressed efficiently
in terms of a basis of eigentextures and eigen-BRDFs (to
be precise, apparent BRDFs or ABRDFs incorporating non-
local shading [WHON97]). Inspired by this insight, we de-
vise a texture synthesis scheme that extrapolates an existing
BTF with guidance from additional constraint images. Our
constraints are provided by differently shaded images which
we obtain by placing the material sample on a flatbed scan-
ner in different orientations. After aligning these constraint
images, we can extract, for each texel, a feature vector that
combines shading and albedo terms. These features are laid
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out such that they can be transferred between dissimilar cap-
ture devices. The texture synthesis then translates to a sim-
ple nearest-neighbor search that, for each texel in the stack of
constraint images, finds a suitable ABRDF in the small-scale
BTF dataset. Furthermore, we demonstrate compatibility of
the feature vectors with other texture synthesis methods like
Kwatra et al.’s texture optimization [KEBK05]. We give an
evaluation against ground-truth data sets, supplemented with
a demonstration of the practicability in real-world scenarios.

2. Related Work

In this section, we provide a short overview on literature re-
lated with BTFs in general, as well as on synthesis of larger
textures or reflectance datasets from sparse ones.

2.1. Bidirectional Texture Functions

Bidirectional Texture Functions (BTFs), as introduced by
Dana et al. [DNvGK97], are an extension of bidirectional
reflectance distribution functions (BRDFs) to the spatial do-
main. They are not defined with respect to the true object
surface but to some planar interface through which light
is exchanged. Unlike surface-referenced spatially varying
BRDFs (SVBRDFs), this allows BTFs to account for non-
local shading effects like interreflections, self-shadowing
and sub-surface scattering. Formally, a BTF can be formu-
lated as a six-dimensional function B(x,y,θi,φi,θv,φv) 7→ r
of surface position (x,y), lighting direction (θi,φi) and view-
ing direction (θv,φv); accounting for wavelength adds an-
other dimension. A more thorough description and compar-
ison of different reflectance models can be found in several
textbooks and reports [MMS∗05, WLL∗09, HF13] .

Our research is centered around image-based BTF rep-
resentations which are acquired using camera domes as
proposed by Müller et al. [MMS∗05] and Schwartz et
al. [SSWK13]. For a comparison of several capturing de-
vices, see e.g. the survey by Schwartz et al. [SSW∗14]. The
material samples used throughout our experiments belong to
the database published by Weinmann et al. [WGK14]. To
handle the datasets sized up to two terabytes, we apply the
full matrix factorization compression scheme [KMBK03]
based on truncated singular value decomposition (TSVD).

2.2. Expansion and Completion of (Sparse) Datasets

The intuition of BTFs as stacks of textures motivates the use
of texture synthesis algorithms on BTFs. A survey by Wei
et al. [WLK∗09] provides an overview of example-based
texture synthesis until the year 2009. Several attempts have
been taken to apply such schemes to BTFs. For example,
Tong et al. propose to synthesize a new BTF directly onto
a surface in a pixel-wise manner [TZL∗02]. Other methods
rely on image quilting [ZDW∗05] or tiling [HH05, LPF∗07]
or focus on special cases like textures with complex geome-
try such as fur [FHNK05].

The extent to which these methods support the goal of
faithfully capturing the visual appearance of a large-scale
sample is very limited. For SVBRDFs, an approach toward
this goal was given by Dong et al. [DWT∗10]. While their
idea is similar to ours in that it combines spatially dense but
angularly sparse key measurements with a small set of repre-
sentative BRDFs, a straightforward extension of this method
to BTFs is obstructed by the presence of non-local effects in
the contained ABRDFs.

An approach specifically for BTFs was presented by Filip
et al. [FVK14] who combine sparse reflectance measure-
ments with a method to construct approximate BTFs. Their
portable gonioreflectometer is capable of handling samples
of size 30cm× 30cm; for even larger sample, the authors
suggest to scale the device or perform a patch-wise mea-
surement. On the other hand, flatbed scanners as employed
in our approach are readily available in very large sizes.

Miandji et al. [MKU15] devise a compressed sensing
framework to reconstruct images and higher-dimensional
pendants from noisy image sets using pre-trained dictionar-
ies from natural images. They demonstrate their method on
4D light fields, which suggests applicability to sparsely mea-
sured BTFs. However, not only is the method quite compute-
intensive, it also requires a large number of samples,while
our method operates on four differently lit top-view images.

In this work, we revisit the method recently proposed by
Steinhausen et al. [SMdB∗15], who use guided texture syn-
thesis to extrapolate BTFs for large-scale material samples.
Starting point is a fully measured, TSVD-compressed BTF
for a cut-out of the sample. Additionally, four images of the
full-size sample are acquired using a flatbed scanner. From
these images, color constraints and normals-like surface de-
scriptors are generated which then serve as the guiding con-
straints for a pixel-based texture synthesis algorithm. To this
end, the authors borrow the idea of Woodham’s Photomet-
ric Stereo [Woo80] and apply it to the flatbed scanner im-
ages [PMW∗09, PS13]. Unlike these works, however, the
goal is not to obtain accurate surface mesostructure which
would suffer from nonlocal illumination effects. We argue
that, even when looking at a single pixel, the presence of in-
terreflections and shadowing provides cues about its neigh-
borhood that can be a valuable source of guidance for syn-
thesizing the local appearance. As an advantage over Filip’s
method, this input setting offers a higher angular and spa-
tial resolution of the BTF data and a higher spatial resolu-
tion of the guiding constraints. We evaluate Steinhausen’s
method [SMdB∗15] with special regard to error measures
on ground-truth data.

3. Method Overview

In this section, we give an overview of our BTF acquisition
which builds upon Steinhausen et al.’s method [SMdB∗15].
It consists of two main phases: An acquisition of sparse input
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data is followed by an extrapolation step. The following two
subsections are dedicated to the preparation of input data,
while Sec. 3.3 deals with the process of assembling a new
BTF from the prepared data sets.

3.1. BTF Acquisition

We use BTF datasets captured using the Dome I device
[MMS∗05]. Each measurement comprises a set of 22801
images of a material patch sized about 5cm× 5cm, taken
from 151 camera positions under 151 different lighting an-
gles, leading to an average angular sampling of 9.4◦± 1◦.
The spatial extent of the resulting images is 512× 512 tex-
els, of which we select regions exhibiting all desired patterns
and reflectance effects to serve as extrapolation inputs.

The image stack resulting from the measuring process is
arranged in a matrix S, where each row represents one spe-
cific combination of incoming and outgoing light directions
and color, while the columns contain unrolled ABRDFs.
Compression using truncated SVD yields a factorized rep-
resentation approximating the original matrix: S ≈ S′ =
UΣV T . The columns of U are usually referred to as the
eigen-ABRDFs of S′, while the columns of V are its eigen-
textures. ΣV T , stored as V Σ in our BTF representation,
serves as the input sample for the extrapolation step.

3.2. Constraint Acquisition

The search for a suitable ABRDF from the input BTF for
each position in the output is based on comparing constraint
vectors. The acquisition and assembly of these vectors is the
topic of this section.

3.2.1. Color Images – Scanner

Images of full-size material samples are captured using an
Epson Perfection V550 Photo flatbed scanner at a resolution
of 1200dpi and 16bits per color channel and any automatic
color correction facilities deactivated. From a scan of a color
standard (X-Rite ColorChecker), we learn that the scanner
applies a gamma exponent of roughly 1.8. We apply an off-
set, a linear factor and a gamma curve for each color channel
in order to align the scanner’s color space with the reference
target (Table 1). This establishes radiometric linearity of our
data.

After this color correction step, followed by manual align-
ment and cropping of the images, we obtain a set IScc of four
images

IScc =
{

IScc
0◦ , I

Scc
90◦ , I

Scc
180◦ , I

Scc
270◦

}
.

3.2.2. Color images – BTF

To obtain corresponding constraint images for the fully mea-
sured, compressed BTF S′, four images are extracted taken
from the topmost viewing position under lighting angles

Table 1: Values used for color correction of material scans.

(a) Reflectance values assumed for the ColorChecker grey
patches [Mye10].

Black N3.5 N5 N6.5 N8 White
3.10 9.11 19.54 37.20 60.90 94.76

(b) Correction values applied to color channels of scanned im-
ages.

R G B
offsets (o) 0.01 0.01 0.00
multipliers (m) 1.18 1.14 1.10
gammas (γ) 1.71 1.83 1.89

θi = 22◦ and φi ∈ {0◦,90◦,180◦,270◦}. This provides us
with a set IB of four RGB images

IB =
{

IB
0◦ , I

B
90◦ , I

B
180◦ , I

B
270◦

}
.

To account for the differences between the color charac-
teristics of the BTF acquisition device and those of the scan-
ner, a linear scaling between the two data sets IScc and IB is
performed. A scaling factor fc is multiplied to the intensity
values of color channel c:

IS
r (x,y,c) = fc · IScc

r (x,y,c), (1)

with

fc =
µ(IB,c)
µ(IScc ,c)

, (2)

where µ(I,c) denotes the arithmetic mean over all pixels in
all images I ∈ I. Figure 2 illustrates the effect of this his-
togram alignment step for images of material “Cloth9”.

Figure 2: Histogram alignment between scans and BTF im-
ages for “Cloth9”: Cut-outs of histograms for red color
channel of BTF image (left), scans before (middle) and af-
ter alignment (right).

3.2.3. Surface Descriptors

To supply the extrapolation algorithm with stronger hints on
a material’s structure, the input constraints contain a descrip-
tor for local surface curvature. To approximate “full” pho-
tometric stereo, difference images were chosen to serve as
texture invariant curvature descriptors for nearly flat objects.
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After reducing each image of an RGB image set I =
{I0◦ , I90◦ , I180◦ , I270◦} to its luminance channel in CIELAB

color space, Ĩ =
{

Ĩ0◦ , Ĩ90◦ , Ĩ180◦ , Ĩ270◦
}

, difference images
are computed:

ñ =
[
ñ1, ñ2

]
=
[
Ĩ0◦ − Ĩ180◦ , Ĩ270◦ − Ĩ90◦

]
. (3)

To compensate for a possibly non-uniform distribution of
luminance values between images obtained by the scanner
and the BTF acquisition device, ñ is scaled to n = [n1,n2]
with

ni =
ñi−µ(ñi)

σ(ñi)
, i = 1,2, (4)

where the scalar value µ(ñi) is subtracted from all entries of
ñi, and µ,σ are arithmetic mean and standard deviation.

Applying Eq. 3 and Eq. 4 to the image sets IB and IS fi-
nally yields the surface descriptors nB and nS for the sample
BTF and the scans.

3.2.4. Constraint Vector Assembly

To form the constraint vectors guiding the extrapolation
step, color images and surface descriptors are concatenated.
In order to balance the influence of these components,
weighting factors are applied:

CX
0 (x,y) =

[
ws ·nX (x,y, :),wc · IX (x,y)

]
, (5)

where X ∈ {B,S}, IX (x,y) is the concatenation of IX
0◦(x,y, :)

to IX
270◦(x,y, :), and I(x,y, :) denotes enrolling of all chan-

nels of I for position (x,y). Figure 3 illustrates part of the
information combined in the constraint vectors for material
sample “Cloth9”.

Intuitively, incorporating neighborhood information into
the search criteria seems to be beneficial for texture synthe-
sis. The extended constraint vector with radius R for position
(x,y) is thus defined as the concatenation of the constraint
vectors CX

0 (x,y) for the respective local neighborhood of size
(2R+ 1)× (2R+ 1). To match the positions in the rows of
a BTF’s eigentextures V Σ or Ṽ Σ, the CX

R (x,y) are unrolled
into vectors CX

R (i).

(a) I0◦ . (b) I0◦ − I180◦ . (c) I90◦ − I270◦ .

Figure 3: Extrapolation constraints for “Cloth9”: scan I0◦

and the resulting surface descriptors, cropped to 512× 512
pixels each.

3.3. Extrapolation

The extrapolation step aims at creating a compressed repre-
sentation S̃ =UΣṼ T of the full material sample’s BTF based
on the input BTF S′ =UΣV T . Under the assumption that all
relevant reflectance effects are modeled in the original set U
of ABRDFs, only a new set Ṽ Σ of eigentextures needs to be
synthesized. The task is now to find, for each row j in the
output matrix Ṽ Σ, a suitable row i in the input matrix V Σ.

We evaluate two approaches to this problem: applying
texture optimization which searches for a global optimum
of local neighborhood similarities [SdBHK14], and a sim-
ple pixel-based method [SMdB∗15] which works as follows:
For each row j in Ṽ Σ, an index i into the rows of V Σ is
searched which minimizes the distance between the respec-
tive extended constraint vectors:

i( j) = argmin
i′

∥∥CB(i′)−CS( j)
∥∥. (6)

After the search process, the resulting eigentexture set is
constructed by copying, for each j, the contents of row i( j)
of V Σ into the j-th row of Ṽ Σ.

4. Experiments and Results

In this section, we first evaluate Steinhausen’s methods
[SdBHK14, SMdB∗15] by reconstructing ground truth data.
This is followed by examples of the visual quality achievable
using cross-device constraints.

4.1. Ground-truth Reconstruction

The evaluation of our MATLAB implementation of the
pixel-based synthesis scheme was performed on a desk-
top computer built around an Intel Core i7-2600K CPU at
3.4 GHz with 16 GB of RAM. Due to limitations in hard-
ware accessibility, running times for texture optimization
[KEBK05] were measured using a CUDA-enabled C++ im-
plementation running on an Intel Xeon E5645 at 2.4 GHz
with 144 GB of RAM, supported by an NVidia GeForce
GTX 570 graphics accelerator. When comparing the latter
timing values to previously reported ones [SdBHK14], they
appear similar to those achievable with the Core i7-2600K.

The six input data sets originate from a BTF database
of fully measured BTFs [WGK14] with a spatial extent of
512×512 texels each, compressed to keep k = 100 eigenval-
ues. From these BTFs (Cloth9, Cloth10, Leather4, Leather6,
Wallpaper1, Wood4), regions with a size of 128×128 texels
constitute the BTF sample for the algorithm. This extraction
was performed before compression, such that no information
from the region to be reconstructed could bias the extrapola-
tion input. For material sample “Cloth9”, we exceptionally
chose an area of 256× 256 texels to capture the full range
of color variations. As a substitute for scanned images, four
textures of size 512× 512 pixels were taken from the full
BTF, just as described in Sec. 3.2.2.
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Texture optimization was operated in a multi-scale fash-
ion on three consecutive combinations of downsampling
scales (4, 2, 1) with neighborhood radius R = 8. For all
experiments involving pixel-wise synthesis, one pass on
the full-scale data was performed. Four trials, with differ-
ent neighborhood radii R ∈ {0,1,2} and combinations of
weights for color (wc) and structure (ws) constraints were
applied.

For visual comparison of the reconstruction quality, see
Figures 4 to 8 with renderings of reference BTFs and recon-
structions for five material samples. Table 2 provides rela-
tive errors with respect to the decompressed reference BTFs
in percent, together with timing values. To shed light on the
qualitative variation even inside one semantic class of mate-
rials, values for another leather not depicted in the figures
(“Leather6”) are included. The error e between reference
BTF matrix S′ and reconstruction S̃rec was computed by

e = 100 · ‖S
′−S̃rec‖F

‖S′‖F
.

Although the relative error is lowest for texture optimiza-
tion except for “Wood4”, the visual quality of the results is
clearly inferior to that using the pixel-wise synthesis scheme.
For leather, e.g. the global structure is recognizable, but the
overall impression is blurred. For “Cloth9”, severe color arti-
facts are introduced where the input contains an out-of-focus
spot. Additionally, the running times are significantly larger
(by a factor of 1.4 to 2) than for all tested variants of the
pixel-wise method [SMdB∗15]. Please note that although
the computations did not take place on the same computer,
at least approximate comparability is preserved due to the
above-mentioned argument. One strategy to avoid the blur
would be the addition of further optimization steps incorpo-
rating statistical synthesis [PS00, SdBHK14], but at the cost
of a noticeable additional growth of time consumption.

Of the four parameter settings for the pixel-wise extrap-
olation, using color images as only constraints outperforms
the others with regard to result quality as well as speed-wise.
For “Wood4”, a finished wood example with rather uniform
surface, it seems reasonable that mostly color determines the
overall appearance. But even for materials where one would
expect a primacy of surface structure over color like for the
leathers or the wallpaper, the benefit of the surface descrip-
tors is less noticeable than expected. One possible explana-
tion for this effect might be the fact that the shading infor-
mation condensed into the surface descriptor is also encoded
in the color images, hampering a separation of each com-
ponents’ effect. A rather a problematic case for modeling
and reconstruction is “Cloth10” due to its chaotic fiber struc-
ture and bright highlights. Even this sample is reproduced at
least recognizable, although its overall “fluffyness”, as well
as some contrast especially in the darker areas, is lost in all
reconstructions.

4.2. BTFs for Extended Material Samples

The input constraints for the results presented in this sub-
section were achieved using the scanner-based workflow de-
scribed in Sec. 3.2.1. To match the image resolution of the
BTF’s textures, the 1200 dpi scans were downsampled to
300 dpi. On the BTF-side, again regions of size 128×128 or
256×256 (“Cloth9”) texels were extracted from a full mea-
surement. Fig. 1 displays examples of the achievable BTF
quality. For identical BTF inputs, one can see an advance
in detail compared to the ground truth reconstructions. The
quality of these results justifies the assumption that cross-
device constraints are helpful in obtaining BTF data sets.
All result BTFs were generated with R = 0,ws = 0,wc = 1,
causing running times of about 300 seconds for wallpaper
and wood, both sized 256× 256 texels. The cloth example
took about 3000 seconds. The increase in processing time
is because part of the feature vector construction (surface
descriptor generation) for this experiment took place before
image downsampling to achieve a higher amount of detail.

5. Discussion

We have evaluated the applicability of two texture synthesis-
based extrapolation schemes to achieve BTFs for large-scale
material samples. Our results indicate that a fast and simple
approach significantly outweighs more sophisticated ones.
The findings in this paper also encourage to combine sparse
data sets acquired in a cross-device fashion to obtain BTFs
for sample sizes not achievable with current acquisition de-
vices. Further reduction of acquisition effort might be possi-
ble by a combination with methods to reconstruct angularly
sparse data sets, as provided by den Brok et al. [dBSHK14].

More elaborate methods to divide shading from albedo
might help in further investigating the influence of structure-
induced shading over color. Furthermore, fast and easy-to-
use image alignment methods and extensions to constraints
acquired under less controlled conditions, e.g. with a con-
sumer camera and a hand-held light source, might be worth
studying, see e.g. work by Wu et al. [WLDW11] who aim
at improving geometry by combining multi-view stereo and
photometric stereo.

Finally, some of the error values reported in Tab. 2 poorly
reflect the visual impression, see e.g. the values for texture
optimization compared to the pixel-wise synthesis scheme
with R = 0,ws = 0,wc = 1. On the other hand, the avail-
able alternatives bear other disadvantages. As an exam-
ple, the mean ABRDF RMSE used in other publications
[RRK09, SdBHK14] does not allow a comparison between
the reconstruction accuracy of different materials. Thus, fur-
ther research in finding quality measures reflecting the per-
ceived similarity of material representations would be of ma-
jor importance.
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Table 2: Error values and timings for reconstruction of ground-truth material BTFs.

Leather4 Leather6 Wallpaper1
Method Rel. error Time (sec.) Rel. error Time (sec.) Rel. error Time (sec.)

R = 0,ws = 0,wc = 1 51.547% 11.11 41.565% 13.59 33.273% 15.70
R = 0,ws = 1,wc = 0 63.865% 30.73 48.380% 27.34 40.364% 29.86
R = 1,ws = 1,wc = 10 63.035% 2193.89 50.059% 2253.04 36.465% 2196.28
R = 2,ws = 1,wc = 10 61.917% 2264.74 48.443% 2299.53 34.887% 2269.43
Texture Optimization 46.547% 3120.00 35.838% 3180.00 29.159% 3120.00

Cloth9 Cloth10 Wood4
Method Rel. error Time (sec.) Rel. error Time (sec.) Rel. error Time (sec.)

R = 0,ws = 0,wc = 1 35.400% 21.49 36.574% 17.26 12.438% 24.50
R = 0,ws = 1,wc = 0 77.045% 38.12 42.175% 27.34 17.636% 28.62
R = 1,ws = 1,wc = 10 55.875% 2326.81 44.723% 2203.31 16.979% 2203.10
R = 2,ws = 1,wc = 10 48.973% 2521.43 43.742% 2269.75 16.684% 2246.71
Texture Optimization 26.758% 5100.00 31.530% 3240.00 14.336% 3180.00

(a) Reference. (b) R = 0,ws = 0,wc = 1. (c) R = 0,ws = 1,wc = 0.

(d) Texture Optimization. (e) R = 1,ws = 1,wc = 10. (f) R = 2,ws = 1,wc = 10.

Figure 4: Renderings of Leather4.

(a) Reference. (b) R = 0,ws = 0,wc = 1. (c) R = 0,ws = 1,wc = 0.

(d) Texture Optimization. (e) R = 1,ws = 1,wc = 10. (f) R = 2,ws = 1,wc = 10.

Figure 5: Renderings of Wallpaper1.
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(a) Reference. (b) R = 0,ws = 0,wc = 1. (c) R = 0,ws = 1,wc = 0.

(d) Texture Optimization. (e) R = 1,ws = 1,wc = 10. (f) R = 2,ws = 1,wc = 10.

Figure 6: Renderings of Cloth9.

(a) Reference. (b) R = 0,ws = 0,wc = 1. (c) R = 0,ws = 1,wc = 0.

(d) Texture Optimization. (e) R = 1,ws = 1,wc = 10. (f) R = 2,ws = 1,wc = 10.

Figure 7: Renderings of Cloth10.

(a) Reference. (b) R = 0,ws = 0,wc = 1. (c) R = 0,ws = 1,wc = 0.

(d) Texture Optimization. (e) R = 1,ws = 1,wc = 10. (f) R = 2,ws = 1,wc = 10.

Figure 8: Renderings of Wood4.
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