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Abstract
Understanding how software entities in a repository evolve over time is challenging, as an entity has many aspects that undergo
such changes. We cast this problem in a multidimensional visualization context: First, we capture change by extracting quality
metrics from all software entities in all revisions in a software repository, yielding a multidimensional time-dependent dataset.
Next, we propose Metric Evolution Maps (MEMs), a new visual approach to create dynamic maps that show the similarity of
entities in a revision and changes across revisions. We enrich MEMs with visual cues to show which metrics and metric values
are key to formation of similar-entity patterns. Additionally, we show how entities change between revisions, and due to which
metrics. We illustrate our approach by exploring changes in two real-world software repositories.

1. Introduction
A key issue in software engineering is to understand how a project
is organized during its lifetime. For this, two approaches can be
taken. First, one can analyze changes of the explicit project struc-
ture, captured by its physical or logical hierarchy and dependencies
[BD08,TA08,HvW08]. Alternatively, one can mine the repository to
find its implicit structure, i.e., aspects which create groups of highly-
related entities. Such aspects can be inferred from the perspective
of software quality metrics [LM06], source code (clones) [RCK08],
co-change [Ant05], and lexical term frequencies [KELN10]. Detect-
ing implicit structure can uncover previously unknown patterns and
changes that, in turn, lead to more insights on the software evolution.

A challenge of analyzing implicit structure and its change is that
code analysis delivers tens of such metrics, each capturing a different
facet of the software [Sci16]. Understanding how entities in a soft-
ware system relate to each other and how such relations change in
time implies understanding how tens of measurements on hundreds
of items change over hundreds of time steps. Using just a few metrics
(over all entities) can easily miss important underlying aspects relat-
ing the entities [VT06]. Conversely, considering all metrics over a
few entities offers only a coarse-grained view [LWC07]. To explore
the full data space, we essentially have to understand the evolution of
a multidimensional dataset D of n metrics, measured on m entities,
over T time moments, for large values of n, m, and T . To do this, we
need ways to capture and depict metric-implied patterns formed by
groups of entities, and ways to track pattern changes over time.

We approach this problem by proposing Metric Evolution Maps
(MEMs), a new approach for the visual exploration of multidimen-
sional time-dependent data. We extract software quality metrics,
mined on all entities, e.g. classes, of all revisions of a repository
to find groups of highly-similar entities, by using multidimensional

projection (MP) techniques. We explain such groups in terms of
their shared metrics and metric-value properties. Finally, we explain
change patterns at entity and group level in terms of the underlying
metric changes. Overall, we aim to answer two types of questions:

Q1: How do entities group in a given revision? Which are the main
groups? Which metrics determine these groups?

Q2: How do groups change in time? How do entities migrate be-
tween groups, and due to which metric changes?

We address the above by two contributions. To support Q1, we en-
hance static MPs with automatically labeled heat-map-like plots. To
support Q2, we enhance a recent time-dependent MP with bundled
trajectories and interaction.

The rest of this paper is organized as follows. Section 2 overviews
related work on visualizing high-dimensional data with a focus on
software understanding. Section 3 describes our approach. Section 4
shows how MEMs can be used to discover several aspects, and their
changes, in two real-world software repositories. Section 5 discusses
our results. Section 6 concludes the paper.

2. Related Work

Many techniques have been proposed to visualize similarity and
changes of software entities such as code lines [VTvW05], syn-
tactic blocks [TA08], hierarchies [BD08, HvW08], and code clones
[Han13]. Such techniques typically consider just a few attributes to
model change and hence fall out of our scope. At the other end,
static analysis and repository mining extract tens of metrics such
as code size, complexity, cohesion, coupling, number and type of
bugs, and identity of developers [LM06, MD08, VT06]. Depicting
patterns of similar and/or related entities and their changes is hard,
due to the high dimensionality of the data. Several techniques try
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to attack this, as follows. Space-filling techniques such as table
lenses [RVET14], evolution lines [VTvW05], and evolution matri-
ces [Lan01] use a 2D Cartesian layout populated with sparkline-like
encodings [Tuf06] to show the change of metrics vs entities vs time.
Variations include 3D Cartesian layouts and UML layouts using bar
charts [LWC07, GJR99]. No such approach can, however, show a
data space having hundreds of entities, tens of metrics, and hundreds
of change moments. Also, finding groups of similar entities, or find-
ing how entities change in time with respect to each other and with
respect to the underlying metrics, is hard.

The second type of methods uses a map metaphor to place enti-
ties to reflect their metric-induced similarity. Self-Organizing Maps
(SOM) visualize multidimensional data in terms of a 2D grid where
cells map entities placed based on their multidimensional similarity
[Mac05, RPP02]. However, the user must define the number of cells
in the SOM to give the desired granularity level, which may not be
known beforehand. Other methods use multidimensional projections
(MPs): For a set of entities E = {ei} ⊂Rn having n real-valued met-
rics each, an MP creates a set of typically 2D points P = {qi} ⊂ R2

so that the pairwise distances ‖qi− q j‖ are as close as possible to
‖ei− e j‖. The resulting 2D scatterplot-like image P can be used to
find groups of similar entities as well as outliers in E. Modern MP
techniques score highly in distance preservation for a static dataset
E, e.g., ISOMAP [TdSL00], LAMP [JPC∗11], LSP [PNML08], and
t-SNE [vdMH08]. Compared to other high-dimensional visualiza-
tion techniques such as table lenses, evolution lines, evolution ma-
trices, parallel coordinates [ID90], and scatterplot matrices [Har75],
MPs are much more scalable in number of entities m and dimensions
n, and support better finding groups of related entities. Yet, MPs are
susceptible to two problems:

Group explanation: MPs do not show by default which dimen-
sions are responsible for group formation. Recently, Da Silva et
al. addressed this by color-coding points pi ∈ P to show the di-
mension(s) best explaining the neighborhood around pi [dSRM∗15].
However, the delineation and labeling of groups is done manually,
and dimension-values are not used in the explanation.

Evolution: Most MPs do not handle collections of time-varying en-
tities Et , each defined for a given time step t. We know only two
exceptions, as follows. Kuhn et al. [KELN10] use multidimensional
scaling (MDS) [STSS05] to show the evolution of lexical similar-
ity of source-code entities, computed based on term (identifier) fre-
quencies processed by Latent Semantic Indexing (LSI) to factor out
synonymy and polysemy. To make the projections Pt consistent over
time, they propose two variants – offline MDS, i.e., projecting the
union of revisions

⋃
1≤t≤T Et ; and online MDS, i.e., constructing

Pt+1 by projecting Et+1 using Pt as an initialization of MDS. Both
above variants have issues: Offline MDS creates high projection
errors for a large number of time steps T , as it tries to preserve
distances between points in any two revisions Et1 and Et2. Online
MDS is strongly biased and can easily converge in a local mini-
mum. Both above issues also apply to the well-known t-SNE MP
technique [vdMH08] by Rauber et al. [RFT16]. The recent dynamic
t-SNE (dt-SNE) technique in [RFT16] is, to our knowledge, the only
MP for time-dependent datasets that offers verified guarantees in
terms of spatial and temporal coherence. Trade-off between preser-
vation of distances in the same projection vs preservation of dis-
tances across projections which are close in time is controlled by a
user parameter. However, dt-SNE has not yet been used for software
evolution exploration, nor for any other real-world dataset. Also, dt-

SNE shows change patterns by animation, which makes tracing such
patterns hard for more than a few time frames Pt .

In the following, we show how we extend the explanatory ap-
proach in [dSRM∗15] and combine it with dt-SNE [RFT16] to create
our explanatory maps for metric evolution.

3. Construction of Metric Evolution Maps

We construct MEMs in three steps: metric extraction, revision visu-
alization, and evolution visualization, as described next.

3.1. Metric Extraction

We considered eight popular tools for extracting code quality met-
rics: CCCC [Tim16], also used to analyze repositories in [VT06];
SourceMeter [Fro16]; CppCheck [Cpp16]; iPlasma [MMMW05];
SonarQube [Son16]; Analizo [TCM∗10]; Analytix [Goo16a]; and
Understand [Sci16]. We compared the tools on 12 open-source
projects written in C++ and Java, and having between 26 and 635
classes and between 2 and 500 KLOC. Requirements included full
automatic batch-mode usage since we need to automatically pro-
cess entire repositories; handling code that does not build, since
many repositories miss libraries or build rules; generating a large
number of metrics, since this is the purpose of using MPs; speed,
since real-world repositories contain hundreds of revisions each hav-
ing thousands of files; and good documentation. The first four tools
were quickly discarded as they did not comply with most of the re-
quirements. SonarQube proved to have a complicated manual set-up.
Analizo proved much slower than Analytix and Understand. Ana-
lytix, the second-best found tool, delivers about a third of the metrics
of Understand, and is also slower. Overall, Understand matched all
our requirements well. Using Understand, we built a Git repository
metric extractor that lets users select the files, start revision rS, end
revision rE , and the number of revision samples in [rs,re] to analyze.
Metrics are saved in CSV tables, one per analyzed revision.

3.2. Revision Visualization

For a revision rt ∈ [rs,re], our analysis delivers a set Et = {ei}, where
ei are classes, files, or packages in rt . We next consider classes, for
exposition simplicity. Each class ei has n = 43 metrics. For a com-
plete description, see [Sci16]. For each rt , we show Et by projecting
it to 2D using dt-SNE [RFT16], which preserves distances in both
space, i.e., between entities ei in the same Et , and time i.e, between
entities ei in consecutive time-frames (Sec. 2). This way, the result-
ing projections Pt = dtSNE(Et) can be used to reason about groups
of related classes and how these change in time.

Displaying a projection Pt as a scatterplot, height plot [KELN10],
or heat map [TMR02], shows related entity (class) groups, but
not what they mean and why they appear, i.e., which metrics and
metric-values make these similar. To address this, we extend the
projection-explanation technique in [dSRM∗15], explained next.

Attribute ranking: In [dSRM∗15], for each projected point qi ∈ P,
the n dimensions of ei are ranked in terms of how important they are
in making qi similar to its neighbors in P. Consider the 2D neighbor-
hood ν

P
i = {q ∈ P|‖q−qi‖ ≤ ρ} ⊂ P of q, and the corresponding

nD neighborhood νi = {e ∈ E|p ∈ ν
P
i }. Here, ρ is set to about 10%

of the distance between the two farthest points in the projection. A
ranking µi = (µ1

i , . . .µ
n
i ) ∈ Rn

+ is computed for all n dimensions of
ei, as follows. Let GV = (var(e1), . . . ,var(en)) be the variance of all
n dimensions over E. The rank µ j

i , of dimension j to the similarity
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ei to all its neighbors in νi is the ratio of the local variance LV j
i of

dimension j over νi and global variance GV j, i.e.

µ j
i =

LV j
i /GV j

∑
n
j=1(LV j

i /GV j)
. (1)

Low µ j
i values give metrics j which vary less over a neighborhood,

i.e., explain better the local cohesion of classes, than metrics with
high µ j

i values. For full details, we refer to [dSRM∗15].

Basic visual encoding: For each qi ∈ P, we compute a vector
{( j,µ j

i )}1≤ j≤n with the IDs and ranks of all its n metrics, sorted
increasingly on ranks. Next, we color map the IDs of the C = 9
metrics having top-ranks for most points in P via a categorical col-
ormap built with ColorBrewer [BH16]. Metrics which are top-rank
for many points get thus distinct colors. Metrics which are top-
rank for few points are shown by the reserved color dark blue. The
highest-rank metric for a point qi, i.e. m = argmin1≤ j≤n µ j

i , how-
ever, may not fully explain why qi is similar to its neighbors in P. To
show this, [dSRM∗15] compute a confidence cm

i defined as

cm
i =

∑q j∈νP
c∧arg maxk µk

j=m µm
j

∑q j∈νP
c

maxk µk
j

, (2)

where ν
P
c is a 2D neighborhood centered at qi, defined like ν

P but
with a smaller radius ρc < ρ. This acts as a smoothing filter with
kernel radius ρc that gives high confidence to homogeneous (same
top-rank) regions and low confidence to mixed regions having
points with different top-ranks. The final scatterplot P is constructed
by mapping top-ranks and confidences for all qi ∈ P to hues and
brightnesses, respectively, of 2D Gaussian texture-splats centered
at qi. This technique, introduced by [MCMT14], creates a compact
plot where different-color areas indicate clusters of points related by
different dimensions. Figure 1a shows this for a synthetic dataset of
3000 points randomly sampled from three faces of a cube, and next
perturbed by uniform spatial random noise of amplitude equal to 5%
of the dataset’s extent, projected with PCA. The projection consists
of three ‘zones’ – the cube’s faces – each being well explained
by a single dimension, as expected. Points close to cube edges are
darker, as their explanation by a single dimension is less confident,
as expected. A global ranking legend (Fig. 1c) shows how colors
map to dimensions, and the number of points in each colored area.
Bars are sorted decreasingly on this value to show the importance of
each dimension in explaining the entire projection. We see that the
point count is divided in three roughly equal parts, which is correct,
since each cube face has roughly the same sample count.

Improved encoding: Even for the simple cube dataset, we see a
distracting reticular pattern between the plot points (Fig. 1a, in-
sets). The pattern follows the edges of the Voronoi cells of the 2D
scatterplot P, and conveys no information, being just the effect of
the nearest-neighbor interpolation used by the splatting technique
in [dSRM∗15]. We improve this by using Shepard interpolation for
both hue and brightness: For each pixel x in the image, we find all
projected points qi in a neighborhood νr(x) of radius r = 5 pixels
centered at x. Let φ : R2 → R+ be a smooth decaying function, set
to φ(x) = exp(−x2/r2). We interpolate the ranks µ j

i of all qi for all
dimensions j at pixel x by

µ(x) j =
∑qi∈νr(x) φ(‖qi−x‖)µ j

i

∑qi∈νr(x) φ(‖qi−x‖) , (3)

d
im

e
n
si

o
n
s 

so
rt

e
d

o
n
 i
m

p
o
rt

a
n

ce

brush
tool

a)

b)

c)

d)

ra
d

iu
s
ρ c

radiusρ

Figure 1: Visual explanation of synthetic cube dataset. (a) Original
interpolation from [dSRM∗15]. (b) Our improved interpolation.

and set the color of x by finding the dimension that maximizes µ(x) j

for all j. The brightness of x is computed analogously, by using
the interpolation in Eqn. 3 for the confidences c j

i . Figure 1 shows
the result. As we can see in the insets, all Voronoi artifacts are
removed, and we can see a clear and smooth border separating the
different-hue regions. Implementing Eqn. 3 using NVidia’s CUDA
makes our artifact-free approach as fast as the original splat-based
idea in [dSRM∗15], i.e., real-time for thousands of points.

Point inspection: Brushing the points allows to interactively inspect
the ranks µ j

i for a given point qi via a second bar chart (Fig. 1d).
Here, dimensions are sorted top-down in the same order as in the
global ranking legend (Fig. 1c), so one sees how important are di-
mensions locally as opposed to globally. The top-rank dimension x
(purple) of the point brushed in Fig. 1 has variance 0, which is cor-
rect, as the point is on the cube face orthogonal to the x axis.

Overall, we produce a projection where points are implicitly
grouped, by color-coding, on the dimension best explaining their
local similarity. Reading the explanation of a group involves
searching its color in the color legend, which can be tedious for
datasets having tens of dimensions or time-dependent datasets.
Hence, answering Q1 is not completely supported. We address
this by computing explicit same-explanation clusters, in four steps:
cluster identification, labeling, and dimension-value explanation, as
explained next.

Cluster identification: We segment a projection P using a con-
nected components approach, where a point is connected to its near-
est neighbor having the same explanation and a confidence above
50%. This yields a set of compact same-explanation clusters Ck

which, intuitively, contain same-hue points and meet at the dark,
low-confidence, areas. This is fast to execute, simple to implement,
and needs no user parameter setting, unlike e.g. hierarchical cluster-
ing used for similar tasks [NB12]. Note we do not produce a par-
tition of P: very low-confident points in P are not included in any
cluster. This is desirable, as we want next to reason only about the
most confident point groups.
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We next show the clusters by outlining them. First, we compute
the convex hull H(Ck) of all points in a cluster, and sample it
uniformly in arc-length space, yielding a closed 2D polyline L(Ck).
Next, we shrink L iteratively by moving its points with a small step
along its inward normals. Shrinking iterations alternate with Lapla-
cian smoothing iterations, like in mean curvature flow [CV01],
so that the contour’s curvature stays low, in order to get a robust
normal estimation. After each shrink-smooth pass, 10 in total, we
resample L to preserve uniform point density. Contour points are
not moved if they get closer than an offset value α to a point in Ck

or if L would self-intersect. Figure 2 shows two cluster outlines
for two α values: Small values create a tighter, but more tortuous,
outline; larger values create smoother, but looser, outlines. Outline
construction is fully automatic; handles convex, concave, compact,
and variable-density clusters; guarantees outlines that surround
all points, have a given smoothness, and are intersection-free; and
has a single user parameter (α) which is simple to set. Arguably
the best known related technique is alpha shapes [EKS83] which
also produces contours surrounding all given points, but does not
guarantee contour smoothness or user-prescribed offsets. Other
techniques, such as isolines [KELN10]), do not guarantee connected
single-piece outlines.

a) b)

α
α

Figure 2: Cluster outlines for two α values.

Group labeling: We use the outlines L(Ck) to explain the clusters
Ck by labels showing their top-ranked dimensions. For each Ck,
we compute the major eigenvector of the covariance matrix of
the points in Ck, orient the top-rank dimension label for Ck along
this direction, center the label in the centroid of Ck, and scale
it so as to fit in L(Ck). This makes labels ‘stretch’ most while
staying confined in the cluster outlines, thus providing maximal
readability. We have also tested other label-placement methods,
such as used in tag clouds [PTT∗12]. While these use only two
reading orientations (horizontal and vertical), they cannot scale
labels maximally, thus decrease readability. Figure 3 shows our
cluster-based explanation for a dataset of 6773 projects attributed
by 12 quality metrics, coming from [MSM∗10]. We used here
the same projection method (LAMP [JPC∗11]) as in the original
technique [dSRM∗15]. Our explanation explicitly shows that the
data consists of five clusters that capture nearly all points; a few
outliers do not fall in any cluster (black points, Fig. 3b bottom).
These are also points for which the top-ranked dimension has a
very low confidence. Labels are well-centered in their clusters,
oriented to take maximum advantage of the cluster shape, and
placed fully automatically. The labels in Fig. 3 are manually placed.
We can directly read the top-ranked dimensions on the projection
itself rather than having to search colors in the color legend. This
is helpful since we use both hue and luminance to encode data,
which can lead to visual confusions, e.g., a light brown region
being mistaken for a dark orange one. Finally, labeling can handle

a) method in [dSRM*15] b) our method

c) metric value bar

d) value distribution for lines of code metric

Figure 3: MEM projection explanation for dataset from [MSM∗10].

any number of dimension names, while color coding is limited by
the size of categorical color maps, typically under 10 entries [BH16].

Metric-value bars: So far, we partition the projection P into clus-
ters explained by metric names. This can create several same-hue
clusters, see e.g. the two purple clusters in Fig. 3b. These are point
groups being similar mainly in the lines of code metric, but hav-
ing different metric values. To clarify this, we show metric values
following the model of Oliveira et al [OCT∗13]: A 1D bar is di-
vided into maximally four parts, colored using an ordinal colormap
(Fig. 3c). Each part maps an equal-sized interval between the mini-
mum and maximum value, for a given cluster, of its top-rank metric.
The length of a part shows the number of data values in that range.
Three labels atop the bar show the minimum, average, and maximum
values of the metric in a cluster – the bar is thus a compact four-bin
histogram of the metric values in a cluster. Metric-value bars are
shown when brushing a cluster label, so they do not clutter the visu-
alization. Figure 3d shows how we use such bars to explain the two
purple clusters (lines of code metric) in Fig. 3b: The minimum value
for lines of code in the brushed right purple cluster is 0.3, attained
only for few data points (short dark brown bar segment). About half
of the points have values from 25% up to 50% of the maximum lines
of code, as shown by the dark orange bar segment. Other points have
values from 50% to 75% of the maximum, see the light orange bar
segment, which is roughly 30% of the cluster size. The remaining
points have values from 75% to 100% of the maximum, see the beige
bar segment. Brushing the left purple cluster in Fig. 3 shows much
lower metric values. Hence, the right purple cluster in Fig. 3b con-
tains projects that are similar because they are large (many lines of
code), and the left purple cluster contains projects that are similar
because they are small (few lines of code).

3.3. Evolution Visualization

The techniques presented in Sec. 3.2 visualize a single revision from
a repository by a colored and annotated projection. For a set of T re-
visions Et , rs ≤ t ≤ re, we construct T corresponding projections Pt ,
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using the dynamic t-SNE (dt-SNE) technique in [RFT16]. As out-
lined in Sec. 3.2, dt-SNE preserves well both (a) distances between
points in a projection and (b) between points in projections for close
time-frames. Feature (a) enables us to reason about groups of sim-
ilar classes at a given time, i.e. supports answering Q1. Feature (b)
allows us to reason about the amount of change (of class metrics) by
looking at the amount of visual change, i.e. supports answering Q2.

To visualize change, we propose two options. First, we use a
small-multiple or animation of projections Pt , drawn all using the
same metric-ID-to-color mapping (see Fig. 5 and Sec. 4.1 for de-
tails). This works well for analyzing a short time range, but does not
scale to hundreds of revisions. For this, we use a second method:
Let πi = (qrs

i , . . . ,q
re
i ) be the 2D projections in Prs , . . . ,Pre for a class

ei. We next construct polylines from the points πi for all classes.
These can be thought of as ‘trails’ showing the evolution of classes.
For projects with hundreds of classes and revisions and large change
dynamics, drawing the raw trail-set {πi} creates a cluttered image.
Instead, we show a simplified view by bundling trails using the tech-
nique in [vdZCT16]. Any other trail or graph bundling techniques
can be used equally well. Figure 4a shows the trails for the Guice
repository evolution discussed in Sec. 4.2. Trails are colored from
green (first revision rs) to red (last revision re), similar to other bun-
dled visualizations [HvW08]. The trail pattern allows interpreting
change dynamics: Short trails show classes that stay very similar to
each other, metric-wise, while long trails suggest the opposite. The
splitting and merging of classes may show how entities have grown
to be more similar or diverse throughout the project’s history. Trails
thus give a high-level overview of the project dynamics. For detail
insights, we provide two extra views: First, we can select a group of
classes in any time-frame Pt and explain their entire evolution from
a metrics perspective (Fig. 4b). Trails that do not pass through the
selection are drawn gray to provide context; a trail that contains a
selected class ei is colored, at each point qt

i , with the color of the
top-ranked metric for revision t for the cluster containing ei at t.
Trails change colors, thus, showing how the most important metrics
explaining the similarity of a class at each moment of its evolution
changed. In Fig. 4b, for instance, we see that most of the selected
trails are orange, which shows average essential cyclomatic com-
plexity, see the top-right color legend. Separately, we can also select
a revision of interest t, and show the evolution of all classes around
this moment (Fig. 4c). For this, we show only trail fragments in the
interval [t− δ, t +δ], where δ is the user-set size of a window of in-
terest centered at t. Fragments are alpha blended with a Gaussian
profile centered at t and vanishing at the window borders, to focus
the visualization on the moment of interest, and are colored like de-
scribed earlier for Fig. 4b. Drawing these trails atop of projection Pt
shows the local dynamics of each class, i.e., where it came from, and
where it will go next, from the perspective of revision t.

4. Sample applications

We use our MEMs to analyze two open source repositories: JU-
nit [JUn16] and Google Guice [Goo16b]. For each, we select 100
revisions and extract 43 metrics/class, see Sec. 3.1. To simplify the
exposition, we show only classes present in all considered revisions.

4.1. JUnit 4

JUnit is a popular Java testing framework. It allows unit testing by
providing helper classes which repeatedly invoke methods from the
tested class and compare with expected results. We consider here re-
visions from March 2010 to March 2016. Data acquisition delivered

us 314 classes. Per revision, JUnit has 20.5 KLOC. Figure 5 shows
an overview of the project start using small multiples. We see that
the overall cluster layout is well kept by dt-SNE, which is expected
for a relatively small time-span of 4 revisions. This helps when com-
paring consecutive maps. Let us now compare the first with the last
(100th) revision (Figs.5e,f). While the spatial distribution of clusters
strongly changes, which is expected given the 6 year time span, we
see that the main clusters of similar classes are given by the same
metrics – see the similarity of the color legends in Figs. 5e,f in terms
of bar colors and bar order. Most classes in both revisions 1 and 100
are similar due to number of default methods (yellow) and average
cyclomatic complexity (purple). This means that, even though indi-
vidual classes do change, there is a strong underlying grouping of
classes in terms of aspects captured by the above metrics. We also
see, in all Figs. 5a-f, a stable outlier orange group, explained by the
metric average cyclomatic modified. While we did not dig deeper
into the semantics of this class-set, it is clear that these classes stay
very different from the rest of the code.

The evolution trails for this dataset show large change (Fig. 5g).
The separate bundles show classes which changed their metric val-
ues together, i.e., evolved as a ‘block’. One instance is the bottom
horizontal bundle in Fig. 5g which shows a motion to the left. To un-
derstand this better, we select one of the end clusters of this bundle
and show evolution details (Fig. 5h). The selected group (16 classes)
are related mainly by average cyclomatic complexity (yellow) in re-
vision 1, and evolved together, being finally mainly similar due to
number of default methods (purple). Brushing the views shows us
that these classes belong to packages org.junit.internal.runners and
org.junit.internal.builder. A stray trail (purple, Fig. 5h) shows a sin-
gle class diverging from the grouped change. Fig. 5i shows a second
group-analysis. The selected classes change together, as told by the
bundles, but due to several metrics, as told by the bundle colors:
First, this group was similar due to average cyclomatic codified (or-
ange), next due to average line comment (yellow), and finally due to
average strict cyclomatic complexity (purple).

4.2. Google Guice

Google Guice is a framework which provides dependency injection
for Java objects [Goo16b]. Here, we analyze how 524 classes evolve
during 100 revisions between April 2007 and March 2016. The maps
of revision 1 and 100 show that most classes share similar values of
average modified cyclomatic complexity (purple) and average cy-
clomatic complexity (yellow) (Figs. 6a,b). The trails (Fig. 6c) are,
in contrast to the JUnit repository (Sec.4.1), much shorter. This tells
that Guice has many more stable classes, which do not change much.
The color legend in Fig. 6c tells that the values of average modified
cyclomatic complexity are the most similar for most classes during
the analyzed period. The largest group in revision 1, explained by
metric average strict cyclomatic complexity (purple), splits during
the evolution. We use the animation of the projections (Sec. 3.3) to
find out that splitting occurs at revision 22. This is also visible in
the revision-centric visualization in Fig. 6d. During this process, the
splitting bulk of purple classes is joined by a distinct group of yellow
classes, explained by average cyclomatic complexity. We next focus
on what explains the change of class-groups having a high dynamics.
We select a group of such classes, i.e., part of long trails (Fig. 6e). In-
terestingly, this group arrives in the last revision (100) very close to
its original position. We want to see which were its intermediate val-
ues during its evolution. For this, we analyze a prominent region of
blue trail fragments half-way of the group’s trajectory. According to
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Figure 4: Evolution visualization. (a) Overview showing changes of all classes in all revisions. (b) Evolution of selected classes color-coded
by top-ranked metrics. (c) Evolution of all classes around a selected revision.

a) revision 1 b) revision 2 c) revision 3 d) revision 4

e) revision 1 f ) revision 100
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note the similarity of the 

top-ranked metrics in

revision 1 and 100

h) evolution trails
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outlier

class
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Figure 5: Metric Evolution Maps for four revisions of the JUnit project. See Sec. 4.1.

the color legends, blue can map the metrics count of coupled classes
or average number of lines of code, so we decided to refine the anal-
ysis. By showing the windowed trails (see Sec. 3.3), we found that
the blue fragments appear around revision 24. Brushing the metric
values, we confirmed that the most similar metric values in revision
24 are, indeed, count of coupled classes and average number of lines
of code.

5. Discussion

We next discuss the main aspects of our method.

Advantages: Our method is easy to use; runs in real-time for

datasets up to 10K entities on a modern PC with a recent NVidia
card for a C++ CPU single-threaded implementation; and is generic,
i.e., can be used on any set of entities having n metrics. MEMs ex-
plain projections of the data entities in terms of groups of entities
that are most similar from the perspective of any of the underlying
metrics. Users do not have to select which these metrics are – they
are determined automatically by the visualization. The found groups
are explained both implicitly, i.e., as a colored image consisting of
several same-color zones; or explicitly, i.e., as disjoint clusters.

MEMs extend naturally to time-dependent data by using a dy-
namic projection technique (dt-SNE). This allows explaining how
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Figure 6: Guice repository. (a,b) First and last revisions. (c) Evolution trails, entire period. (d) Focus on revision 22. See Sec. 4.2.

entities are similar to each other at any time moment (revision), and
also how they change across time. The key advantage of using MPs
is the high visual scalability thereof: Datasets are essentially reduced
to scatterplots, irrespective of the number of underlying dimensions
(metrics). Change visualization can be done by animations and small
multiples (for examining short time-spans in detail) or bundled trails
(for getting simplified clutter-free overviews of long time-spans).
Using bundling in combination with time-dependent MPs is, to our
knowledge, the first technique that generates compact overviews of
large time-dependent high-dimensional datasets.

MEMs have three easy-to-set parameters: ρ acts as a scale factor
– large values create fewer color-regions but thicker fuzzy borders,
i.e. a coarse scale explanation; small values emphasize details
but also outliers; ρc acts as a filter: large values create smooth
regions but thicker borders; small values create noisier regions but
thinner borders. α controls the level-of-detail of the shown clusters:
small values give more accurate, but less smooth, outlines; large
values produce simpler envelopes but remove local details. Besides
the above, users can also select entities and/or time-frames for
details-on-demand.

Limitations: The similarity-ranking metric (Sec. 3.2) cannot han-
dle well datasets having beyond roughly 40..50 dimensions. Better
ranking metrics can be envisaged for 2D neighborhoods, e.g. based
on feature scoring and discrimination techniques [RdSF∗15]. If pre-
ferred, any such metric can be trivially added to our MEMs. Sec-
ondly, our current visual design is geared towards showing the evo-

lution of entities that exist through the entire time period. However,
the arguably main limitation of MEMs relates to their value in assist-
ing software maintenance tasks. While our work shows that MEMs
compactly summarize the evolution of large projects and help detect-
ing interesting events and outliers which we could not find by other
methods, more validation work is needed to assess their end-to-end
effectiveness. Hence, the main contribution of this paper is address-
ing the hard technical challenge of being able to show the dynamics
of large sets of entities, as captured by large sets of quality metrics
(answering questions Q1 and Q2). This must be done before we can
use such insights to solve concrete application-domain problems.

6. Conclusion

We have presented a set of techniques that allow exploring the evo-
lution of entities in software repositories from a metric-centric per-
spective. For this, we extend and combine a set of recent multidimen-
sional visualization techniques for both static and time-dependent
datasets. Our techniques visually explain groups formed in mul-
tidimensional projections, and the evolution in time of (parts of)
these groups, in terms of individual entity attributes, such as soft-
ware metrics. Our techniques include a mix of annotations and seg-
mentations of static 2D projections, bundle-based and metric-based
simplified visualizations of the evolution of entities, and interactive
mechanisms to provide level-or-detail insight on selected entities
and metrics. We demonstrate the technical applicability of the pro-
posed methods on two real-world software repositories.

Future work can address enhancing the proposed visualizations to
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show additional metrics, such as speed of change and identity of the
changed artifacts, in line with earlier repository exploration meth-
ods cvsgrab. Secondly, validating the end-to-end added-value of the
proposed exploration methods can be done by user studies involving
concrete maintenance tasks. Finally, our methods could be applied to
the most general challenge of understanding any multidimensional
time-dependent dataset.
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