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Abstract

We present a preprocessing pipeline for triangle meshes that topologically sorts all triangles for a given camera and scene
animation in front-to-back or back-to-front order. This allows us to efficiently render a given animation without depth buffer,
and to include transparency. We also remove non-contributing triangles, thus improving render time, especially when applying
anti-aliasing. To this end we first record the visible triangles of a sequence of frames. For every frame we create a directed
graph storing occlusion information. After a topological sort of this graph, all triangles are sorted properly. The contribution of
this paper is the reduction of redundancy by merging the graphs of all frames. The result of our pipeline is a single sorted index
buffer, over which we slide a window that yields sorted index buffers for each single frame. Circular dependencies are broken
by placing duplicates of the affected triangles in the index buffer. Our sliding window then displays only frame specific triangles
in their proper order. We conclude by demonstrating the benefits of removing invisible triangles and disabling the hardware
visibility test.

1. Introduction

The premise of this paper is the acknowledgment that depth testing
is costly, or rather that the synchronization of fragments belong-
ing to the same pixel is and always will be a bottleneck in ras-
terization pipelines. We concede that contemporary graphics cards
render this problem negligible. However when considering low-
cost, low-power mobile GPUs such contemplations become worth-
while yet again. Hence we coin the notion of automotive visual-
ization, by which we describe the rendering of geometry, namely
cars, on mobile platforms such as are integrated in dashboards of
premium-segmented vehicles. Car manufacturers strive to present
interactive experiences to increase the perceived value of cars or
to address young audiences familiar with interactive media. The
scenario ranges from a personalized rendering of an owners car, to
guided tours or interactive manuals that show the correct button for
the filler cap via a rendered close-up of the same. Such a scenario
offers specific challenges and well defined restriction that can be
exploited:
· Our rendering applies a fixed camera and animation path as well
as a fixed frame frequency, in short: every resulting image must be
perfectly deterministic.
· The quality of the rendering must satisfy strict demands, aliasing
is unacceptable.
· The available resources are limited and shared with other, more
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critical applications.
An immediate solution to this problem are pre-rendered videos,
however integrating movies into the rendering context requires the
storage, decoding and streaming of high-resolution content within
the rendering context. While such an option is clearly possible,
we want to explore the possibility of exploiting the knowledge
associated with predefined camera paths and optimize the visi-
bility determination of triangles. In an initial experiment, we im-
plemented a Geometry (G)-buffer video, which allows for config-
urable rendering of the final scene at peak performance. Such an
approach, albeit offering a very lean and fast rendering pipeline is
prohibitively memory expensive, assuming a minimal precision of
5 bytes per pixel for material, normal and depth (1-2-2). The key
problem of such a G-buffer video approach is compression, which
should be lossless, as variations can cause noticeable shading er-
rors, thus offering very little compression ratios. However, the core
idea of video compression, namely the reduction of redundant and
recurring content, should carry over to rendering of determinate
sequences. Hence, we propose a rendering pipeline that combines
certain ideas of pre-rendered content with the effectiveness of con-
temporary rendering pipelines. Our final contribution is a sliding
window over a sorted index buffer, thus eliminating the need for
costly visibility computation or online sorting of geometry.

2. Previous Work

The removal of hidden surfaces is a fundamental problem for ren-
dering pipelines that apply rasterization by projecting geometry
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on an image plane. Early solutions relied on sorting the primi-
tives [SSS73], however sorting is a global problem and requires
complex solutions to resolve overlaps and circular dependencies.
Using a depth- or z-buffer, introduced by Straßer [Str74] and Cat-
mull [Cat74] to resolve visibility on the pixel level, has been proven
to be the most effective solution with regard to modern rendering
architectures, as it is robust in the face of circular dependencies.
Several improvements have arisen from the development of mod-
ern graphics hardware such as early-z and hierarchical-z, the basic
principle remains unchanged.

While depth-buffer approaches will always provide the correct
solution, they largely ignore the spatial coherence inherent in the
three dimensional scene structure. With the introduction of binary
space partitioning [FKN80], triangles can be hierarchically clus-
tered. The resulting tree can then be used to quickly discard large
groups of primitives.

The dependency relation between triangles itself can be formu-
lated using graphs, as is shown in this paper. The original consid-
erations by Williams [Wil92] describe the problem of occlusion
and inter-triangles relations. Other proposals use various kinds of
space partitioning techniques, such as feudal priority lists [CW96]
or clustering approaches such as voronoi diagrams [FS06]. Com-
pared to these general purpose implementation, we consider the
merging of graphs of consecutive, temporally coherent viewing an-
gles as our area of interest.

The complements to primitive ordering are fragment sorting al-
gorithms. The simplest idea introduced by Everitt [Eve01] uses the
z-buffer to identify the closest layer of fragments. By rendering
the same configuration multiple times and peeling off the closest
layer, we acquire sorted fragment lists for every pixel. Various op-
timizations have accelerated the technique, starting with the im-
mediate progression of peeling multiple layers per pass [LWX06]
and peaking with GPU friendly approaches that acquire all layers
in a single pass and sort them in a second, using per pixel linked
lists [BKSSk11]. We adopt the peeling idea in our preprocessing
step to acquire the dependency of visible triangles. However we
have no interest, in acquiring a complete list.

Visibility computation is a many-faceted problem and is not re-
stricted on determining the triangle order. The multitude of visi-
bility related algorithms address the problem of removing entire
clusters of virtual scenes. A major concern is the data transfer from
disk to main and graphics memory. Sajadi et al [SHDG∗09] pro-
pose a caching structure, that clusters the memory layout instead
of the actual scene data Their method allows the interactive explo-
ration of very large environmental scenes. Memory transfer is es-
pecially problematic if the rendered geometry has to be loaded via
network. The approach of Limper et. al [LJB∗13] allows the pro-
gressive upload of geometry to provide an immediate visualization
during the loading of a web page. The same problem is addressed
by Behr et. al [BJFS12]. They accelerate the visualization of web
content by separating the upload of structured scene information
and unstructured vertex data. Because the latter is dependent on the
viewing angle, it is not necessary in its entirety and can be streamed
as required. s A pipeline with very similar motivation to ours has
been proposed by Chen et al. [CSN∗12]. They also propose to sort
triangles but aim to provide viewport independence. As a conse-

quence, they not only duplicate triangle faces to account for front
and back faces, but they also decide during rendering, which trian-
gles to draw. Our method differs in so far, that we restrict camera
movement to a predefined path and use this knowledge to make ren-
dering as simplistic as possible. Instead of selecting triangles dur-
ing rendering, we provide a “sliding window” over the index buffer,
that shows a set of sorted triangles applicable for each frame. Their
algorithm also only considers statical models and breaks upon en-
tering the bounding volume of geometry. Because we sort triangles
solely based on their observed visibility, we can easily implement
deformations and forgo elaborate culling pipelines. Another con-
cept by Ernst et al. [EFG04] also removes triangles based on ob-
served visibility. They assume that certain areas are never observed,
and therefore decimate the omitted triangles using various sampling
methods to gauge visibility. However, they argue that their method
requires user interaction and proper configuration to ensure that ac-
tually visible triangles are not removed. Similar in concept is the
algorithm of Eikel et al. [EJF10]. By sampling large scenes in a
preprocessing step, they can determine the number of visible tri-
angles, thus culling the majority of a scene. Thusly reduced, the
culled scene can be rendered on low-performance rendering hard-
ware, e.g. for showcasing purposes. Another comparable approach
that also creates index buffers based on viewing angles, is the clus-
tering approach from Han and Sander [HS16]. They create distinct
ordered index buffers for various viewing directions and switch to
the appropriate one during rendering. Their technique is very simi-
lar in concept to ours but does not address the problem of reusabil-
ity of triangles across viewpoints. Instead they cluster the viewing
angles that are valid for a specific index buffer and store the trian-
gles redundantly, just as we do if change in viewing angle inverts
the triangle ordering.

Dynamic scenes introduce an additional uncertainty to the vis-
ibility problem, as occlusion relations change independently from
the viewing transformation. As a result, the caching of visibility
must be done on a frame-to-frame basis and should therefore be
fast. Garanzha [Gar09] devises a fast bounding volume hierarchy
builder, by restricting range of possible deformations and assum-
ing that triangle clusters remain connected.

Most depth sorting algorithms apply a global ordering of trian-
gles or provide elaborate space partition structures to accelerate
the visibility decision during rendering. An absolute restriction of
transformation freedom is yet to be exploited.

3. Rendering of Triangle Dependency Graph Sequences

In standard rasterization, the closest fragment is identified via depth
testing. By applying early-z culling, new fragments, farther from
the image plane, are ignored and not shaded. Rendering is therefore
most efficient if the triangles are ordered, either because depth test-
ing can be disabled (when rendering back to front using painters al-
gorithm, which is appropriate if the fragment evaluation is simple)
or because early-z can cull most fragments (when rendering front
to back, which is appropriate if the fragment evaluation is expen-
sive). Certain render modes, such as alpha blending or alpha based
anti-aliasing, require disabling standard depth testing and rely on
ordered geometry.

The occlusion relationship of triangles can be stored in a graph
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or rather a forest of directed trees. Since most triangles do not over-
lap, they are independent of each other. Also, most triangles are
invisible, either because of sampling properties, or because they
are occluded.

Triangle dependencies are view specific. Each frame in an ani-
mation sequence has its own dependency graph. The most trivial
solution to our fixed camera pipeline is to store and traverse indi-
vidual graphs. Yet, we can expect that during an animation the de-
pendency graphs of successive frames would be similar. It is very
likely that the union of two graphs can be used to reconstruct/render
the two belonging frames. A union of two graphs introduces the
possibility of circular dependencies, but because most triangles are
independent of each other, we should be able to merge the major-
ity of them and retain the conflicting parts. Instead of two largely
redundant graphs, we store three: One large graph containing the
similar elements and two minor ones, containing view-specific de-
pendencies.

Merging graphs for an entire camera sequence, with regard to
traversal order and occlusion dependencies, is the capstone of our
contribution and explained in Section 4.2. To simplify, we initially
ignore triangle dependencies entirely. Thus we explain in detail
how to sample (Figure 1), store (Figure 2), and render (Figures 8,
9) visible triangles. Occlusion dependencies are incorporated over
the course of the explanations (Figure 7). Once the basic concepts
have been introduced, we elucidate how to merge graphs and re-
move circles (Figure 12).

3.1. Recording Triangle Graphs

Recording the visible triangles involves two steps (see Figure 1):

We start by accumulating the set of triangles that are visible at
least once during the entire camera/animation path. Invisible trian-
gles are never entered into the individual graphs, thus speeding up
the later merging process by relaxing constraints and reducing the
chance for circular dependencies.

Using depth peeling, we strip layers from front to back, and we
also accumulate the opacity/alpha for every pixel. Once the alpha-
value of a pixel (p) is saturated, we ignore every triangle that lies
behind p. Note that the opacity of transparent materials can be set to
0, to capture all triangles. The actual opacity value can be adapted
during rendering. Having acquired the visibility information, we
create the actual graph. The graph nodes are the triangle IDs, with
every node maintaining a list of occluding triangles, as well as its
occluders.
During depth peeling we add the visible triangles to the graph. The
ordering of triangles is implicit in the sequence of depth layers.
Note that this approach not only ignores occluded triangles, as per
design, but also those that are never sampled during rasterization.
The resulting surfaces are only true for the specific camera posi-
tion from which they are recorded. Even a slight shift will yield a
perforated surface. This proves problematic when applying multi-
sample anti-aliasing, but is easily solved by repeating the process
for every sample position and adding the additional triangles to the
graph. This problem of sampling a “water tight” surface presents a
fundamental obstacle when merging graphs of different views. We

solve this by creating a set of ignored triangles, namely those that
are never covered by a fragment.
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Figure 1: Dependency Graphs are created with a two step approach. First,
we acquire triangle visibility. Only triangles that are visible enter the graph.
However, triangles that are temporarily occluded must also be considered,
as our graph traversal of the upper triangular matrix relates graphs to one
another. Then, we capture all visible triangles and create a connected de-
pendency graph.

If we were to create a triangle graph for a single frame, our
pipeline would be completed. The rendering of such a reduced
model is, expectably, very fast (see Table 1). Next, we introduce
the idea of merging triangle graphs from many frames.

3.2. Merging Triangle Graphs across Frames

Our algorithm creates one graph per frame. The final camera se-
quence is easily visualized as a list of graphs (Figure 2, left). How-
ever, such a graph sequence is highly redundant, and in particular
graphs of similar images from adjacent camera positions are nearly
congruent. Here we introduce our concept of arranging the depen-
dency graphs in an upper triangular matrix (see Figure 2, right).
Each node (i, j) of that matrix contains a graph of triangles visible
from frame i up to frame j. We start our reduction algorithm by
placing the original, redundant graphs on the diagonal. Our algo-
rithm then removes redundancies by “shifting” triangles (Figure 4)
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A

0 1 2 3frame index:

0 [0 → 1] [0 → 2] [0 → 3][0 → 0]0

B1

C2

D3

1 [1 → 1] [1 → 2] [1 → 3]

[2 → 3][2 → 2]

[3 → 3]

2

visibility of triangles
from start→ end index:3

B

Figure 2: The original graphs lie on the diagonal of an upper triangular ma-
trix. By merging graphs, triangles are “shifted” towards the top right. By
shifting, we indicate that the triangle is visible over more frames, as indi-
cated by the start and end index. The original graphs are stretched over the
triangular matrix (here graph “B”). The sliding window for frame+1 /graph
“B” contains all graphs with start index ≤ 1 ≤ end index.

from the diagonal towards the upper right corner of the matrix. The
more remote a triangle is from the diagonal, the longer it is visible
during the sequence. Triangles in the top-right are consequently al-
ways visible. The reconstruction of the original frame requires the
traversal of every graph to the right and overhead of the diagonal
element (Figure 2, dashed box on the right).

Removing triangles from the diagonal requires merging the pairs
of adjacent graphs (see Figure 3, Intersection). We refer to these
dyads as sources (S) and discriminate between the left (L) and the
bottom or below (B) graph. The result of this merging operation of
two graphs is termed intersection (I). The merging is explained in
detail in the next section. After merging, the duplicate triangles are
accepted in the intersection graph and must be removed from the di-
agonal (see Figure 3, Subtraction). Without triangle dependencies,
our merging yields intersections as true. However, to merge graphs
with regard to occlusion and traversal order, we relax and elaborate
our notion of intersection. To this effect, we will later merge the
graphs into a union and will truncate until satisfied. The truncated
union then ultimately yields our “intersection”.

A

B

E: A ∩ B

L I

B

I. Intersection

A

B

E: A ∩ B

A’: A \ E

B’: B \ E

L I

B

II. Substraction

Figure 3: Two-step merging of graphs: I. finding of the intersection (I) of
two graphs left and below (L, B); II. Removing the intersection graph from
the original graphs.

The merging operation between two frames is applied repeat-
edly, for every diagonal, until all graphs are processed (see Fig-
ure 4). Merging pairs of graphs is “embarrassingly parallel”, how-
ever, note that almost every source graph adjoins two intersections.
Removing both intersections from the source graphs must be seri-
alized.

If our rendering pipeline were to ignore triangle dependency, our

A

B

C

D

E: A ∩ B

F: B ∩ C

G: C ∩ D

A’: A \ E

B’: B \ (E∪F)

C’: C \ (F∪G)

D’: D \ G

H: E ∩ F

J: F ∩ G

E’: E \ H

F’: F \ (H∪J)

G’: G \ J

K: H ∩ J

H’: H \ K

J’: J \ K

Figure 4: Graph merging for a 4-frame sequence: Elements of each diagonal
can be intersected in parallel. Removing the intersection elements from the
source graphs can be done in parallel as well, while dual dependencies (e.g.
B\E∪F) must be processed sequentially. Merging is simplest if triangles
have no order relation, in which case the result is in an actual intersection.
By implementing triangle dependencies and graph-relations the merging
becomes more complex.

algorithm would be finished. We can effectively remove any invisi-
ble triangle of any given frame sequence, thus speeding up render-
ing compared to the original scene. Next, we show the particular-
ities of occlusion dependencies (Figure 7) and how rendering the
upper triangular matrix controls the merging operation (Figure 12).

4. Triangle Dependencies

The order of triangles can be described using graphs. If trian-
gles share no dependencies, that is they not occluding each other,
such a graph is disconnected. A disconnected graph can consist of
connected sub-graphs and disconnected nodes that share no con-
nection. Circular dependencies are illegal, and the triangles are
therefore preprocessed and self-intersections must be removed. Ex-
perience shows that removing self-intersections is integral to the
method as virtually no mesh is without flaw. However, we will not
delve into this particular problem any further as it is well under-
stood, although hard to implement.

4.1. Ignored Triangles - Visibility Sampling

Before explicating on the merging of dependencies, we refine our
recording of visible triangles. Initially, we strove to collect every
triangle visible from the camera, either by computing an analytical
solution involving partial coverage, or by sampling the mesh. Both
approaches prove ineffective, the former due to numerical limita-
tions, the latter from its inherent bias of insufficient samples. Thus
we cannot create a water-tight surface of closest geometry, which
severely impedes the effectiveness of our proposed merging algo-
rithm (see Figure 5).
We extend our algorithm and introduce an ignore list, thus turning
the described handicap into a feature. Because knowledge of the
entire sampling pattern is evident, ignoring triangles that miss the
raster actually reduces the rendering load. A comparison between
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1 2 3 4 1 2 3 4 1 2 4

1 2 4 1 2 3 4

1 2 3 4

3 1 2 4

3

Figure 5: Missing triangles prevent the removal of redundancies. Here, tri-
angle 3 is missing in the second graph on the diagonal.

1 2 3 4 1 2 4 1 2 4

2 4

3

3
1

1

1

3

42
3

2 3 4

Figure 6: Merged/intersected elements are removed from the ignore lists
( 3). The merging/intersection operation is applied for ignored triangles
as well ( 1).

Figures 5 and 6 shows that all four triangles are merged in the top
right corner. A subsequent reduction step in Figure 6 removes every
triangle from the lower diagonals.

4.2. Merging Triangle Dependencies

Up to this point, inter-triangle dependencies have been largely ig-
nored, namely total and partial occlusions. Yet, by merging two
graphs we also combine inter-triangle relations, thus adding com-
plexity to the merging problem. Two immediate problems when
combining are the creation of circular dependencies and abridging
transitive dependencies (see Figure 7: III,IV). While circles are
an obvious problem, shortcuts are problematic due to the traver-
sal requirements: the final rendering requires a breadth-first traver-
sal, ambiguous cases as in graph III would allow triangle 3 to
be rendered before triangle 1. As such, the intersection operation
must implement restrictions that prohibit merging if dependencies
of either source graph are violated. Yet, any relation that does not
transgress the ordering of the source graphs is allowed.

1 32 1 32

1 32I

1 2

31III

3 1 2 3
!

1 32 1 32

1 32II

1 2

31 2IV

Figure 7: Merging of dependencies. Shortcuts must be avoided, because of
breadth-first graph traversal. Circular dependencies are illegal.

Additional restrictions occur when rendering multiple graphs,
where the ordering of L, I and B becomes relevant (Figure 12).

5. Rendering & Multi-Graph-Merging Strategies

The objective of our preprocessing stage is to accelerate the ren-
dering without increasing the complexity of the rendering pipeline.

That is, a just in-time traversal of graphs is impossible. Instead
we create a single index buffer by serializing all graphs of our tri-
angular matrix and concatenating the individual results line after
line. The traversal of directed graphs follows a breadth-first direc-
tive (Figure 8, serialization of graphi, j). Note that the ordering of
triangles affects the traversal of the graph as well.

Serialize Graphi,j

Serialized Bufferi,j

Find All

root leaf
Triangles

append

F→B F→B

Remove All

root leaf
Triangles

Row Element j

Final Index Buffer

append

Row i

Serialize Triangular MatrixTraversal determined
by Order of Triangles:

Back-to-Front: B→F

find & append
leaf Triangles

Front-to-Back: F→B

find & append
root Triangles

Figure 8: Individual graphs are serialized via breadth traversal. Serializing
triangular matrices complies with a line-wise concatenation of graphs. The
origin of traversal, whether the root or the leaves, depends on the rendering
order of triangles: front to back or vice versa.

Again, because the rendering is to be fast, the triangles should
be merged in a single buffer. Note that while the upper triangular
matrix is stored sequentially and in close succession (line-wise
storage), the actual reconstruction requires a scattered access of
several (coherent) buffers containing subgraphs (see Figure 9). The

A’ ∩(A B)’ ∩(A B C)’ ∩(A B C D)’

A*

B*

C*

D*

0 1 2 3

B’ ∩(B C)’ ∩(B C D)’
4 5 6

C’ ∩(C D)’
7 8

D’
9

A*

B*

C*

D*

: 0,1,2,3

: 1,2,3,

4,5,6

: 2,3,5,

6,7,8

: 3,6,8,9

Figure 9: The original graphs A-D are distributed across the upper triangular
matrix. The reconstruction of diagonal elements requires the traversal of all
elements above and to the right of the original graph.

final rendering thus involves drawing several buffers. Currently,
OpenGL 4.3 and beyond provide so-called multi-indirect drawing
capabilities, which can combine multiple draw calls into one, thus
eliminating any additional CPU overhead caused by rendering
multiple buffers. The draw-call requires an additional GPU array
beyond the vertex and index buffer, listing the offsets (see Fig-
ure 10) and triangle counts of the graphs in our triangular matrix.
We name such buffer a command buffer. Note that every frame
requires a dedicated command buffer. The sliding window is thus
implemented by submitting a distinct multi-indirect buffer per
frame, thereby trading memory for performance gains.
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Wf = 2

Hf = 3

y0

y5

y3y2

y4

y1 i2 i3

i6i5

i8i7

Of,y = 2

graph:

window width:

window height:

frame count: F = 4 frame: f = 2

row:

offset:

final index: i = Of,y+y

Of,y = f × r - r×r-1
2

r = y/Wf +1

y = 0 →Wf×Hf

Wf = F - f

Hf = f+1

Figure 10: The serialization of our sliding windows requires an offset com-
putation. The offset of every each row is determined via the upper left tri-
angular matrix.

5.1. Merging Strategies

Our explanations so far have cycled around the idea of merging two
source graphs (L,B) into an intersection (I) and then expanded the
idea hierarchically using our upper triangular matrix (Figure 4).
The order relation between the graphs L,I & B themselves, which
is dictated by the ultimate traversal and serialization for rendering,
has yet to be addressed. To combine three graphs there are six pos-
sible combinations: LIB, BIL, ILB, IBL, LBI, BLI.

The merging strategies applied to the graphs and by extension
the matrix, determine the traversal order within the sliding win-
dow. Figure 11 illustrates two merging strategies. Both imply dif-
ferent visibility persistence and traversal orders. The LIB strategy
demands that L must be drawn before I, before B. This, transfered
to the sliding window, requires line-wise window traversal. An ILB
strategy draws the corner element first and commands a diagonal
window traversal. The selection of strategies solely depends on the
scene, for example:
· LIB works best, if triangles that leave the focus are never seen
again.
· ILB is suited for graphs with similar depth relation, placing the
closest in the upper right.
· LBI will render unique dependencies first. The effectiveness also
depends on the traversal order, whether front-to-back or vice versa.
Selecting the best practice for any given scene is basically trial and
error, but is easily automated.

L I

B

L I

B

Figure 11: Two different inter-graph dependencies ( LIB left, ILB right)
that determine merging strategies and the resulting serialization order of
distributed Graphs. An inversion of dependencies requires a reversed seri-
alization sequence.

Our graph merging strategy is summarized as follows: shifting

triangles (Figure 4) is only possible if the original intra-graph de-
pendencies are not violated by the new inter-graph dependency.

L ∩ B → I,

L, B, L ∩ B̂ → L′,

B ∩ L̂ → B′

Transitive Reduction

Find & Remove Violating Elements

X → Y
I

B

Y

X → Y
L

Create Union &

Remove Circles

L

L̂ (ignored in L)

B

B̂ (ignored in B)

Copy Intersection from Union

OK
X,Y ∈ I

Tag Origin

L, B, L′, B′, I

L̂, B̂

L′, B′, I

L̂ ∩ B̂ \ I → Î

∀ X, Y, Z ∈ Union :

X → Y & Y → Z ⇒ X 9 Z

∀ Y, Z ∈ Union :

Z → Y → . . . → Z ⇒ �SZ

I

L | B

Not OK:
I → L|B � Y→X

Y

X

Figure 12: Merging source graphs via a reduction of Union. The union con-
tains all triangles and dependencies. Triangles are tagged with their Origin,
the origin is used to identify violations. Shortcuts are removed via Transi-
tive reduction. Circles introduced through union are broken. Violating el-
ements are identified and removed until none remaining. Violation depends
on the chosen merging strategy, here ILB & LIB. The final Intersection
consists of all remaining elements. The elements still ignored in both, are
carried over.

The fundamental feature of our algorithm is the identification
and removal of violating elements. A violation occurs, if the or-
der of the matrix traversal contradicts the order of triangles. This
will happen, if the order of triangles between graphs is inverted,
for example by rotating the camera. Figure 12 shows a sketch of
our merging algorithm. To create an intersection between source
graphs, we create the union and remove undesirable elements un-
til the “intersection” remains. The fundamental decision rule as to
whether a triangle can remain in the union is as follows:

• If the intersection (I) precedes a source graph (S), the trian-
gle (tI) may not have any successors that are not in the inter-
section or not ignored (Ŝ).

• If the intersection (I) is rendered after a source graph (S), the
triangle (tI) may not have any predecessor that are not in the
intersection or not ignored (Ŝ).

• If a triangle (tI) possesses illegal connections, it is removed and
put back in its source graph.

The algorithm is repeated for all intersection triangles of the union
until no violations remain. Because each cleansing operation may
alter the entire union graph, the algorithm must be restarted after
each cleansing occurs; optimizations are ignored for ease of expla-
nation. Note the two steps prior to the removal loop in Figure 12,
in which we cull the aforementioned shortcuts and circles.
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5.2. Modeling & Rendering Considerations

Our rendering pipeline requires a singular set of triangles and one
command buffer per frame. This specification requires the mate-
rial/model ID to be stored on a per-triangle basis. The material it-
self can be adjusted during rendering, which also applies for light-
ing. Normals are stored in object space, allowing utmost flexibil-
ity of transformation, while an octahedral normal [MSS∗10] de-
creases the memory footprint. Transparency can be achieved via
over-blending or alpha saturate operations, because the triangles are
always sorted, separate render passes are not necessary. The scene
can be animated via rigid transformations, either in full, by mov-
ing the camera, or partially, for instance, by opening a car door.
Because our algorithm captures triangle visibility on a per-frame
basis, the actual position of triangles can be ignored, as long as
recording and rendering transformations are the same. Because ev-
ery transformation is known beforehand, everything can be stored
on the video memory, superseding any synchronization between
GPU and CPU. Should start-up time be critical, the relevant in-
formation, namely the final index buffer (see Figure 8), can be
streamed just-in time. Our pipeline is especially effective when ap-
plying multi sampling as we waste no fragments on invisible trian-
gles.

6. Results

The experiments to be presented were executed on an NVIDIA®

GeForce GTX970 GPU and an NVIDIA® GeForce GTX560 GPU.
The scene is a model of a car, featuring complex geometry such as
meshes and windows, as well as self intersecting geometry that was
resolved before recording. The driver door was rigged for an open
and close animation.

6.1. Render Timings of Sorted Triangles

The first column in Table 1 shows the timings for rendering a single
frame, regularly and after applying our method without occluded
triangles. We illustrate the results of various visibility functions ap-
plied to our sorted triangles, namely alpha blending (B→F), al-
pha saturation and depth-test (F→B). We also show the timings of
4× and 16× multi-sampling. We show that renderings are signifi-
cantly faster due to a reduced triangle count. Transparency can be
achieved using saturate or alpha blending operations (Figure 13).
We also see that disabling depth testing achieves an additional
speedup due no depth writes on the GTX970. Contrary to that we
see a deterioration when using the GTX560.

6.2. Triangle Merging Effectiveness

Our rendering pipeline trades memory for performance by provid-
ing a pre-sorted index buffer. The graph in Figure 14 exemplifies
the size of the individual graphs in our upper triangular matrix.
Note that the top-right element cannot be displayed as it contains
170k triangles. Multi-viewpoint renderings introduce redundancies
due to irreconcilable order relations between frames. The efficacy
of our algorithm is directly tied to the camera placement, as oppo-
site viewing angles of the same geometry will provide little grounds
for merging, especially when considering non-convex geometry

Table 1: Comparison between the rendering of all unordered triangles (de-
fault) vs. the rendering of minimal sets (source) vs. the sliding windows of
our upper triangular matrix (merged). Values in braces indicate renderings
using Multi-Sampling. Depth and saturate define the visibility test. Render-
ing times in ms. Resolution: 1024 × 1024. The top half shows the timings
using an NVIDIA® GeForce GTX970 GPU, the bottom half shows the tim-
ings of an NVIDIA® GeForce GTX560 GPU.

frame
Default
Pipeline

(4× MSAA)

Sorted
Source
Graphs

(4× MSAA)

Sorted
Merged
Graphs

(4× MSAA)

NVIDIA® GeForce GTX970

Depth Depth Saturate/Alpha Depth Saturate/Alpha
0 4.90 (7.60) 0.10 (0.27) 0.10 (0.25) 0.27 (0.52) 0.27 (0.51)
27 5.17 (6.40) 0.30 (0.48) 0.29 (0.46) 0.49 (1.01) 0.49 (0.97)
49 5.17 (6.20) 0.34 (0.56) 0.34 (0.54) 0.46 (0.88) 0.46 (0.79)

NVIDIA® GeForce GTX560

Depth Depth Saturate/Alpha Depth Saturate/Alpha
0 15.1 (15.1) 0.62 (0.9) 0.72 (0.90) 2.11 (2.4) 2.11 (2.50)
27 7.0 (6.40) 0.82 (1.25) 1.51 (3.30) 2.11 (2.60) 2.50 (3.95)
49 6.3 (6.65) 1.0 (1.53) 1.90 (4.26) 1.60 (2.0) 2.10 (3.8)

and translucency effects, such as car interiors. Purely translational
camera movements allow for an effective merging, with all trian-
gles grouped in the top right of the triangular matrix.

7. Conclusion

We have presented a pipeline for the specific purpose of rendering
scenes with predefined camera and animation paths.
We capture the visible triangles per frame and store the dependen-
cies of each in a separate graph. These graphs are subsequently
merged, thus reducing redundancies and preventing circular de-
pendencies without violating individual triangle orders. The final
graph structure of an entire frame sequence is interpreted as an up-
per triangular matrix. The position of each element determines the
visibility of triangles during the camera animation. To reconstruct
the original graphs from the merged structure we implemented a
sliding window. This window contains all graphs with a start-index
lower than or equal to the frame index to be rendered and an ending
index greater than or equal to the same frame index. The final draw
call issues a buffer containing the offsets to the individual graphs
of the sliding window.

The goal of our implementation was to make the rendering of a
fixed camera path as fast as possible, which meant removing any
invisible triangles beforehand and rendering a sorted set of trian-
gles. The challenge of such an proposition was to merge different
view-specific graphs while allowing a “hardware friendly” traver-
sals and rendering.
Our experiments showed that the removal of invisible triangles sig-
nificantly speeds up the rendering. We also showed that disabling
the visibility test can yield additional benefits, depending on the
number of fragments.
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frame 1 frame 10 frame 20 frame 30 frame 40 frame 50

Figure 13: Camera Animation Sequence. Zooming, opening the door, translating and rotating the camera.
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Figure 14: Triangle Distribution for 50 frames. Top-right graph contains
174,583 triangles. Original approximate size of source graphs on diagonal:
≈100,000. Mesh triangle count: 5,339,724. Every mark is a graph of our
upper triangular matrix. The start and end index of a graph indicate the
frames between which triangles are visible. The top-right graph[0,49] is
always visible.
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