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Figure 1: Sample results obtained with our pipeline. Left to right: Resulting rendering of the Stanford Dragon after acquiring an office-space
environment, capture of the mobile device from the user’s point of view showing the Stanford Bunny, frame as seen directly on the device.

Abstract

Augmented Reality is a topic of foremost interest nowadays. Its main goal is to seamlessly blend virtual content in real-world
scenes. Due to the lack of computational power in mobile devices, rendering a virtual object with high-quality, coherent ap-
pearance and in real-time, remains an area of active research. In this work, we present a novel pipeline that allows for coupled
environment acquisition and virtual object rendering on a mobile device equipped with a depth sensor. While keeping human
interaction to a minimum, our system can scan a real scene and project it onto a two-dimensional environment map containing
RGB+Depth data. Furthermore, we define a set of criteria that allows for an adaptive update of the environment map to account
for dynamic changes in the scene. Then, under the assumption of diffuse surfaces and distant illumination, our method exploits
an analytic expression for the irradiance in terms of spherical harmonic coefficients, which leads to a very efficient rendering
algorithm. We show that all the processes in our pipeline can be executed while maintaining an average frame rate of 31Hz on

a mobile device.
CCS Concepts

o Human-centered computing — Mixed / augmented reality; Mobile devices;  Computing methodologies — Mixed /

augmented reality;

1. Introduction

The popularity of Augmented Reality (AR) applications is increas-
ing everyday. The two biggest players in the mobile device arena
have each released AR-oriented development kits for their respec-
tive platforms: ARKit (Apple) and ARCore (Google). In order to
create convincing experiences, AR applications require the addition
of virtual content that seamlessly blends with the real world, usu-
ally involving computationally-heavy rendering techniques. Some
of these techniques are already able to be run in real-time in stan-
dard computers as shown by Purcell et al. [PBMHO02].

Every year faster and more efficient mobile devices are being re-
leased. However, even the fastest of these devices is far from
matching the capabilities of a standard computer. These comput-
ing limitations motivate the need for new research efforts with
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the goal of creating realistic and interactive experiences capable
of being deployed on today’s mobile devices at interactive frame
rates [KBG*15].

In the present work, we propose a novel pipeline that allows for
a coupled environment acquisition and virtual rendering in real-
time on a mobile device. The system uses as input a collection
of Low Dynamic Range (LDR) + Depth frames, commonly re-
ferred to as RGB-D images. When these images are combined with
the pose of the device at the time of capture, they can be used to
record the appearance of an environment, to which, virtual content
is to be added. The description of the environment is stored as a
two-dimensional image containing the environment’s radiance plus
depth for each pixel, which we refer to as the Environment Map
(EM). Every time a new frame is acquired, the EM is updated and
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the virtual object is immediately rendered using the newest EM. By
parallelising all the operations in our pipeline using the Graphics
Processing Unit (GPU) of the mobile device, we achieve real-time
frame rates (> 25H?z).

Our main contributions are: (1) an AR system capable of achiev-
ing real-time frame rates while simultaneously acquiring an envi-
ronment and updating a virtual object’s interactions with it, (2) an
image-based adaptive environment acquisition pipeline, (3) an ef-
ficient operator to relocate an EM and allow for a virtual object’s
translation.

2. Related Work

In general, most AR pipelines need to address four main topics: Si-
multaneous Localisation and Mapping (SLAM), colour correction,
environment capture and rendering techniques. In the presented
work, we assume a relatively accurate pose is available and thus,
no background on SLAM techniques will be discussed. For a good
overview of some of these algorithms, we refer the reader to Ca-
dena et al. [CCC*16].

Colour correction Most consumer products implement some
variant of automatic exposure and white-balance. While this helps
the casual creative user by removing the need to understand the ef-
fects of the parameters involved, it adds another level of uncertainty
since the inner works are usually not publicly disclosed. Some
methods to alleviate and even exploit this issue have been proposed.
Kim and Pollefeys [KP04] presented a technique to estimate the
radiometric response function of a camera from a collection of im-
ages of the same scene under different exposures. This work was
further extended by the same authors allowing for camera displace-
ments while also correcting vignetting artefacts [KP0O8]. Zhang et
al. [ZCC16] proposed a global approach to estimate the camera
response and create a High Dynamic Range (HDR) representa-
tion of an environment. In order to have instantaneous estimations,
Rohmer et al. [RIG17] presented a method that progressively cal-
culates a correction matrix that effectively transforms new frames
into the colour space defined by a reference frame. In this work,
we employ a technique similar to the one described by Rohmer et
al., making use, however, of a different sampling strategy since the
environment information in our system is stored as an EM.

Environment Capture In order to seamlessly render virtual
content into a scene, knowledge about the environment is needed.
Many methods have been proposed to capture lighting conditions in
a scene. Debevec [Deb98] proposed the use of a perfectly reflective
sphere to capture an environment. This method was later used by
Heymann et al. [HSMFO05] to augment a video stream with a virtual
object capable of reacting to changes in the scene lighting in real-
time. Another technique is the use of one or several cameras with
fish-eye lenses to reconstruct the lighting conditions as proposed by
Havran et al. [HSK*05]. Kén et al. [KUK15] proposed a method
that creates HDR EMs from a collection of pictures taken from a
mobile device. Some other methods rely on 3D sensors to capture
the effects of the illumination in a scene, this data is later stored as
a mesh or an EM [MBC13,RJG17,ZCC16]. Wu et al. [WWZ16]
proposed a method that uses an RGB-D system to estimate an ob-
ject’s appearance together with the environment illumination. More
recently, Meta et al. [MFZ*17] used a similar system, to determine

the reflectance of surfaces, requiring some minor human interac-
tion to solve inherent ambiguities.

In contrast with most of the aforementioned methods, we target the
use of only resources available on mobile devices and no human
input to acquire the EM. By expressing our EMs as RGB-D im-
ages, we find a middle ground between RGB EMs and 3D meshes,
allowing some level of interactivity when moving the virtual object
within the scene, all while keeping real-time performances.

Rendering There are two main types of rendering techniques in
AR as pointed out by Kronander et al. [KBG™15]: differential ren-
dering and rendering based on EMs.

Differential rendering was first introduced by Fournier et
al. [FGR92] and involves the rendering of the scene twice: once
only with the local model of the scene and another one adding the
virtual object into the scene. Debevec [Deb98] used this technique
to augment scenes previously captured with a light probe.
Rendering based on EMs can be achieved by performing a Monte
Carlo integration on each vertex to be rendered [CPC84]. How-
ever, if the scene illumination is of a high-frequency nature, a
large amount of samples will be needed for an accurate representa-
tion [PJH16]. Alternatively, lights could be detected in the EM and
a virtual light could be placed in that position to later be used to cre-
ate a corresponding shadow map. Meilland et al. [MBC13] use this
last technique to project shadows on mirror-like virtual objects. An-
other method commonly employed is representing an environment
through the calculation of Precomputed Radiance Transfer func-
tions [RHO1, SKS02, HSMFO05]. These functions essentially com-
press an EM using orthogonal basis functions. One type of such
basis functions is the set defined by the Spherical Harmonics (SH)
basis. Sloan et al. [SKS02] demonstrated the advantages of using
SH functions when used in the rendering process.

Due to the current hardware limitations on mobile devices, al-
ternatives have been proposed to offload some of the processing
tasks to a workstation, transmitting to the mobile device only crit-
ical data to render the virtual objects [RBDG14]. Other methods
rely on a two-stage process: environment acquisition and render-
ing [MBC13,ZCC16,RJG17]. In this work we propose a method
that captures an environment while rendering virtual content into
the scene at the same time and in real-time, all this using solely the
mobile device itself.

3. Overview

The proposed pipeline is currently implemented on a Tango-
enabled device (Lenovo Phab 2 Pro). It can, however, be applied to
any system with SLAM capabilities that captures RGB-D images.
The Lenovo Phab 2 Pro delivers five point clouds per second con-
taining a maximum of 38,528 points each, together with a FullHD
LDR colour image. The point cloud and the colour image are pro-
vided with metadata containing attributes, such as their correspond-
ing poses and distortions. By combining all this information, it is
possible to generate an RGB-D frame (224 x 172 pixels) which is
the basic input for our system.

Fig. 2 outlines the different processes involved in the pipeline. The
colour camera delivers its data using the Y’UV420sp (NV21) for-
mat, which is decoded to obtain RGB data. The data obtained by
the depth sensor is later merged with the RGB image to create a
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Figure 2: Overview of the different steps in our AR pipeline.

usable RGB-D image. This process is described in Section 4.
Once an RGB-D frame is obtained, the corresponding pixels in the
EM are found. When information from previous frames is available
on the EM, these samples are paired to calculate a colour correction
matrix that converts the colour space of the current frame to that of
areference frame, defined by the first frame captured. Section 5 de-
scribes the steps needed to obtain this colour correction matrix.
The correction matrix is applied to the colour appearance of each
RGB-D frame. After the correction, these pixels are projected to
the EM, from which a new set of SH coefficients is calculated. Al-
ternatively, it is possible to disable the EM update, e.g., if the EM
has already been acquired. In this case the calculation of the correc-
tion matrix is the last step before rendering the virtual object. All
these processes are discussed in Section 6.

The final step is the rendering of the virtual object into the scene
using the newly-calculated SH coefficients. The specifics of how
this is achieved are presented in Section 7.

4. Depth Maps

The depth sensor on Tango devices operates using the Time-of-
Flight (ToF) principle. This sensor works reasonably well on most
surfaces. However, there are some materials that are problematic
and lead to unreliable measurements, e.g., shiny, translucent or
light-emitting surfaces. Tango-enabled devices deliver depth data
as a series of 3D points, each with a level of confidence between
0.0 and 1.0. Higher values indicate more reliable measurements.
Tango defines so-called frames of reference for the colour camera,
the depth sensor and the real-world (global frame of reference).
These frames of reference can be thought of as coordinate systems
whose origins match those of the entities they belong to. This helps
to interpret the position and orientation reported by the device for
a given point cloud or colour image.

4.1. Generating the RGB-D Image

The colour camera and depth sensor exhibit some level of distor-
tion, which is modelled using Brown’s 3- and 5-Polynomial radial
distortion models [Tsa87]. The distortion coefficients and intrinsics
matrices for both sensors are provided by Tango. With this data, it
is possible to project points in the real-world to and from the dif-
ferent sensor planes: colour camera and depth sensor.

The first step towards creating an RGB-D image is finding the loca-
tion of the corresponding pixel in the colour image. Since the point
cloud uses the depth sensor’s frame of reference, it is necessary to
apply the transformation between the colour camera and the depth
sensor frames of reference. Once the point is in the correct frame of
reference, we can apply the distortion coefficients and the intrinsic
parameters of the colour camera to find the corresponding pixel in
the colour image. Up to this point we are able to pair the points
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in the point cloud with their corresponding colour. To find the pixel
location for each point on the RGB-D frame, we then use the distor-
tion coefficients and intrinsic parameters of the depth sensor. Since
the RGB-D image shares the same frame of reference as the depth
sensor, there is no need to apply a transformation to the points.

Fig. 3 on the extreme right, illustrates the resulting RGB-D im-
age when acquiring a scene with computer screens present. In this
particular case, only points with a confidence value > 0.7 are con-
sidered reliable, the rest are not visualised (checkered pattern).

4.2. Filling Holes in the RGB-D Image

As can be seen from Fig. 3, the surfaces of the computer screens
and the keyboard are not accurately acquired. The same situation
occurs with windows and most light-emitting surfaces. Rohmer et
al. [RIG17] proposed a method that allows the user to manually
trigger the addition of such surfaces into their environment repre-
sentation. In order to reduce the need for human interaction and im-
prove the efficiency of our pipeline, we estimate the missing depth
values from reliable pixels in the neighbourhood. For this, we look
for the closest reliable pixels along the eight cardinal and intercar-
dinal directions on the RGB-D frame. The final estimated depth
value d is the weighted mean of the reliable values found:

25:1 Wndn

d=
22:1 Wn

M
where wy, = % The distance to the closest reliable pixel holding
depth dy, is represented by x,. The width of the RGB-D image is de-
noted by w. When a direction leads to no reliable pixel, wy takes the
value of zero. If none of the directions returned a reliable pixel, the
pixel will remain unknown. The last two images in Fig. 3 show a
comparison of the depth maps before and after this operation. Even
though some of the estimated depth information might not be very
accurate, it is usually sufficient to create a plausible EM from it.
The colours stored in the RGB-D image are linearised us-
ing the transformation defined by the sSRGB colour space stan-
dard [IEC99], which was verified using an X-Rite ColorChecker.
This transformation provides a slightly better linear fit compared to
using a Y= 2.2 as suggested by Zhang et al. [ZCC16].

5. Colour Correction

In order to properly insert virtual content that blends realistically
into a scene, a colour correction needs to be performed on the ap-
pearance of the virtual object such that it matches the most up-to-
date exposure and white-balance on the live-feed image.

5.1. Colour Correction Matrix

The problem of finding a colour correction transformation can be
formulated as a non-linear optimisation problem as proposed by
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Figure 3: Sample scenario showcasing missing data due to unreliable points in the depth map (Confidence value < 0.7), and how depth is
estimated. Left to right: Image from the colour camera, colourised depth map, depth maps before and after holes have been filled.

Zhang et al. [ZCC16], where they look for three per-channel and
independent factors used to model the effects derived from changes
in exposure and white-balance. However, this optimisation is per-
formed globally once an entire scene has been acquired. Rohmer et
al. [RIG17] proposed instead, an approach that calculates a colour
correction matrix to transform each new frame to a reference colour
space. This reference can be defined, for instance, as the colour
space used in the first captured frame. We apply a similar approach
adapting only the sampling strategy to fit the characteristics of our
RGB-D EM, as is described below. It is worth mentioning that
both of these approaches suffer from a scale ambiguity, which is,
to some degree, alleviated by using the first frame as a reference.

5.2. Collecting the Paired Samples

In order for the colour correction process to deliver acceptable re-
sults, we need to make sure the paired sample points describe the
same surface in the scene. We label all pixels in the RGB-D image
as reliable or unreliable and use only reliable points when calcu-
lating the correction matrix. This labelling operation is performed
before filling the holes in the RGB-D image. We first reject under-
and over-exposed pixels, which we define as pixels with all their
RGB values below 0.05 or above 0.95 respectively (in a normalised
range from 0.0 to 1.0). Points that are close to depth discontinu-
ities are also discarded. We do this by performing a xz-test on the
8-connected pixels around each known point as proposed by Mit-
sunaga and Nayar [MN99] to find flat surfaces. In our case, we use
only depth information to perform this test.

We find the matching pixel in the EM by transforming a point from
the depth sensor’s frame of reference to the EM’s coordinate sys-
tem, defined by its origin in the global frame of reference. Finally,
we use an equirectangular projection to find the corresponding
pixel on the EM. Once the paired sample data is collected, points
for which we do not have reference data are discarded. Addition-
ally, points with large depth differences are also discarded. Since
the accuracy of the depth sensor ranges between 0.1cm and 4cm
depending on the measurement, we define this threshold as Icm as
a middle ground. This trusted set of paired samples is then used to
calculate the colour correction matrix.

After computing the colour correction matrix we calculate its cor-
responding Mean Squared Error (MSE) from the pairs of trusted
samples. If the MSE is above a certain threshold, we revert to using
the previously accepted correction matrix for correcting the colour
image but the samples are not projected to the EM. Following ex-
perimentation, we set the threshold for the MSE as 5 x 1072, Fig. 4
provides a comparison between two EMs created from the same

Figure 4: Comparison of the same scene with colour correction
disabled (left) and enabled (right).

input with the colour correction disabled and enabled. Notice the
difference in luminance and colour drift particularly on the wall
directly under the light and around the computer screens.

6. Environment Capture

The EM is an RGB-D image that maps the radiance in an envi-
ronment coming from all directions onto a defined centre, which
we refer to as the EM’s origin, and is related to the position of the
virtual object. In our current implementation this EM has a size of
2000x 1000 pixels. Smaller sizes can cause problems when com-
puting the colour correction matrix because surface points with po-
tentially different colours might be mapped onto the same pixel.
The chosen size is a compromise between accuracy and speed.
The creation of the EM is a relatively straight-forward step, we only
need to define a set of rules on how and when its content is updated.
At this point the colours of the current RGB-D image are adjusted
by applying the correction matrix. The corresponding pixel loca-
tion in the EM of a given point on the RGB-D image is obtained by
projecting it onto the EM.

6.1. EM Update

The EM is updated keeping data from the closest objects to the
EM’s origin. In order to allow for changes in the scene, there is
one case that needs special attention: when an object is removed.
This kind of update is only triggered when the device’s location
is between the previously-observed surface and the EM’s origin.
Fig. 5 illustrates this situation. The grey surface containing point
x belongs to an old EM, i.e., an object that was removed. The red
surface containing point X, represents a new observation. Notice
that both points, x; and x,, would be mapped to the same pixel
since the normalised vector X, from the EM’s origin (orange point)
to each point, is the same.

Let us analyse the case in which x; is observed from two loca-
tions d; and d; (sensor’s frustums are shown as green triangles).
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d;

Figure 5: EM acquisition from two different device locations d
and dy. Only data from dy can be used to remove point x1.

Only the observation from d; can be used to remove X; because
this point cannot be seen from d;, and thus, it is not possible to
confirm it must be removed based on the data obtained from this
vantage point. We need to make sure the sensor’s frustum contains
the surfaces that are to be removed. This is implemented by mea-
suring the distance from the device’s position to the closest point
on X (blue line). If the distance is smaller than a predefined thresh-
old, we allow an update on that pixel. Following experimentation,
this threshold is set as 3cm. Additionally, pixels belonging to a sur-
face’s backface are detected and ignored. This check is performed
by measuring the projected distance of the vector from the EM’s
origin to the device position on X. If the distance is larger than the
depth from the previous or current observation for that pixel, it be-
longs to a backface.

We also allow a swift override of all the checks by defining a trusted
volume, delimited by a sphere centred on the EM’s origin. If the de-
vice is inside, i.e., close to the optimal location to create the EM,
the previous data is immediately replaced. In our implementation
this sphere has a radius of 10cm.

When updating a pixel in the EM, the previous colour data is im-
mediately replaced. The depth data, on the other hand, is updated
using the mean value of the previous and current depths. The rea-
son for using the mean value, is reducing the impact of inaccurate
depth estimations, e.g., derived from the hole-filling operation. All
these rules have the combined effect of allowing small changes in
the scene as demonstrated in the supplementary video.

6.2. EM Translation

Gardner et al. [GSY*17] proposed a warping operator that simu-
lates EM translations. This operator works under the assumption
that all surfaces on the EM are far away, which is usually not the
case, especially if local effects of objects nearby are expected to be
simulated. When objects are present close to the EM’s origin, dis-
placements are excessively exaggerated.

Since depth information is stored in the EM, it is possible to re-
cover the three-dimensional position of the pixels in the EM within
the global frame of reference. Once the global position of the points
is recovered, the points are projected using the new and translated
EM’s origin and their corresponding depths recalculated. Fig. 6 il-
lustrates the effect of displacing the EM shown in Fig. 4 by 30cm
in both directions along the x-axis.

The new EM can overwrite the values on the initial EM or be kept
as a temporary EM instead. The first option allows the addition
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Figure 6: EM displacements along the x-axis.

of RGB-D data from the new EM’s origin, while the second one
enables continuous motions without losing information. This last
option will map new RGB-D data using the initial EM’s origin.

7. Rendering

As shown by Kajiya [Kaj86], the incoming radiance received on
a surface can be calculated by integrating the received light from
all the directions in a hemisphere above the surface. For perfectly
Lambertian surfaces the integral is reduced to:

L(x) = % /Q Li(x, ;) (n- o;)do; @)

where L is the outgoing radiance at point X. The albedo of the sur-
face is represented by p, while L; denotes the environment’s radi-
ance from the direction ®;. The normal of the surface at point x is
represented by n.

7.1. Spherical Harmonics

Solving Equation 2 can be considerably expensive. The most com-
mon approach involves limiting the integration to a set of ran-
dom directions, i.e., Monte Carlo integration. Sloan et al. [SKS02]
demonstrated how SH offer a very efficient alternative. This tech-
nique compresses a spherical function by projecting it using the SH
basis functions, resulting in a series of coefficients. Increasing the
number of SH bands used (more coefficients), leads to a more ac-
curate approximation. Furthermore, if two spherical functions are
projected onto their SH coefficients, and the integral of their prod-
uct is desired, this can be approximated by calculating the dot prod-
uct of their coefficients due to the orthonormality of the SH basis
functions. We exploit this property by setting these spherical func-
tions as: the radiance distribution of the environment; a spherical
function encoding the per-vertex visibility due to the self-occlusion
of the virtual object and the cosine-weighted effect of incoming
light from a given direction. The coefficients of the latter function
are precomputed once per virtual object.

It is not uncommon to observe seemingly large portions missing in
the EM, as can be seen in Fig. 4 on the lower area. This does not
necessarily indicate a lack of information, but is a side-effect of the
distortions caused by the equirectangular projection and the pres-
ence of nearby surfaces. To alleviate this problem, when computing
the SH coefficients of the EM, if the sampled pixel on the EM has
no data, the colour of the closest 4-connected pixel is used. We limit
the search to the neighbouring 50 pixels in each direction, this was
found to be sufficient to address this issue. If the EM acquisition is
executed continuously, over time most of these missing pixels will
be filled in. If no known data is found, the sample is skipped when
calculating the coefficients.
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Table 1: Timings for the processes in the proposed pipeline. Steps
marked with * are performed only while the EM is recorded.

Process Elapsed time [ms]
Transfer data to GPU 10.02
YUV420 to linear RGB 1.00
Point cloud to RGB-D 2.69
Mark reliable RGB-D 0.06
Hole filling RGB-D 0.08
Collect paired samples 2.35
Compute colour correction matrix 13.97
Calculate MSE 2.69
Project sample to EM* 0.21
Calculate SH coefficients* 0.46
Render frame 20.7
Total 54.22

In order to simulate soft shadows in the scene, we create a plane un-
der the virtual object, for which we precompute the SH coefficients
at several locations encoding the visibility changes due to the vir-
tual object and Lambert’s cosine law. This object is rendered as a
dark-grey plane whose alpha value is indicated by the difference of
estimated irradiance with and without the virtual object.

7.2. Compositing

The depth sensor delivers a new point cloud every 200ms. How-
ever, the colour camera provides a new image with a much higher
frequency allowing for real-time interactions. In order to keep in-
teractive frame rates, we correct the colour appearance of the vir-
tual object with the inverse of the latest accepted correction matrix,
which is calculated every time a new point cloud is available. Ap-
plying this matrix ensures a consistent experience, even when the
automatic white-balance and exposure change.

On every rendering cycle, the colour image is shown on the back-
ground, and the virtual content is rendered using a virtual camera
that matches the perspective of the colour camera. In the current im-
plementation no depth-check is performed since it is not the main
focus of the presented work, but could be added to add further re-
alistic effects due to the occlusion of objects in the real-world.

8. Results and Discussion

In this section we present results obtained in real-world scenarios
when applying our proposed pipeline. All of them are based on
an implementation of the pipeline running on the aforementioned
Lenovo Phab 2 Pro, which features a Qualcomm Snapdragon 652
system-on-chip with an Adreno 510 GPU. The pixel values in each
of the steps of the pipeline depend only on previously computed
data, and thus, each stage was implemented as a compute shader.
Most of these shaders have no pixel interdependency and were im-
plemented in a straight-forward manner. The calculation of the cor-
rection matrix and the SH coefficients, however, involve a large
amount of sums, which are arranged as prefix sums to efficiently
exploit the GPU capabilities. The details of the shader implementa-
tion for these two steps are presented in the supplemental material.
The SH rendering was implemented as standard pair of fragment
and vertex shaders. For further demonstrations, we refer the reader
to our accompanying video.

Performance Timing In our implementation the time required
for all the processes illustrated in Fig. 2 is 54.22ms on average.

Figure 7: EM Translation comparison. Above: Ground truth. Be-
low: Using Gardner et al. operator (left) and ours (right).

L% ™.

Figure 8: Example of augmented scene when translating the EM.
Left: Original position. Right: After translation. The corresponding
EM (Colour + Depth Map) can be seen on the lower-left corners.

However, since the pipeline is only run in its entirety whenever new
depth data is available (every 200ms), the actual average elapsed
time considering all the frames that are rendered is 31.74ms, lead-
ing to an average frame rate of 31.51Hz. These values were ob-
tained by averaging the timings of over more than 1,000 rendered
frames while recording and visualising the Stanford bunny (>34,
000 vertices). The individual timings per process are shown in Ta-
ble 1 and correspond to renderings using five SH bands.

It is worth mentioning that when the recording of the EM is not
required, e.g., the scene is static and has already been captured, the
EM and its SH coefficients are not updated and thus, those pro-
cesses are not executed. However, the impact on the final elapsed
time is minimal.

The number of SH bands can be increased, allowing higher-
frequency content in the scene to be integrated. However, this dra-
matically affects the average frame rate, mainly because of the ad-
ditional computations per vertex when rendering the virtual object.
We observed that having more than five bands did not led to no-
ticeable differences in the final render. As mentioned by Sloan et
al. [SKSO02], having four or five bands is enough for typical meshes
and low-frequency environments.

The most time-consuming process in the pipeline is the estimation
of the colour correction matrix, as can be seen in Table 1. How-
ever, if manual control over the exposure and white-balance were
available, this step would not be necessary and frame rates of about
40Hz could be achieved.

EM Translation As described in Section 6, it is possible to
translate the EM once it has been captured. We compared our
method to the operator proposed by Gardner et al. [GSY*17].
A displacement of 10cm along the x-axis with both methods is
shown in Fig. 7. As can be seen, their operator overemphasises
translations due to the assumption that all surfaces are far away.
Once the EM has been translated, the effects of the new position
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Figure 9: Data loss and decreasing correlation coefficient after continuous EM translations in steps of 1cm, 2cm, Scm and 10cm.

are visible on the virtual object. Fig. 8 illustrates this situation. On
the lower-left corners of each image, the corresponding EM is vi-
sualised: colour and depth data at the top and bottom respectively.
The scene consists of three coloured panels surrounding the area
where the virtual object is located. As seen on the left side of Fig. 8,
once the EM has been acquired, the virtual object is rendered with
its shadows and the effects due to the environment’s radiance.
When the virtual object is moved closer to one of the coloured
panels, its effects on the object are visible: a yellow colour cast
appears on its right side. As mentioned in Section 6.2, the EM can
be relocated to the new position on a permanent basis, such that the
device can restart the environment acquisition to fill the missing
portions of the EM. The temporary relocation of the EM and its
immediate effects are demonstrated in the supplementary video.

If the EM is continuously translated without using temporary EMs,
data will progressively be lost and its reliability compromised.
Fig. 9 shows the effects on the available data after translating the
EM 50cm in steps of 1cm, 2cm, Scm and 10cm. The comparison
is made with ground truth, defined as an EM that is fed the same
RGB-D data but with a displaced origin matching that of the
translated EM. Even if large displacements do not seem to lead
to substantial losses of data, when analysed in terms of their
correlation coefficient with respect to ground truth, it is clear
that the effect is considerable. The cross correlation is calculated
using the techniques proposed by Gutiérrez et al. [GDRCI18],
designed for Omni-directional Images (ODIs), which use the same
projection as our EMs. The average of the correlation coefficients
per channel is here reported. As can be seen from both plots,
the amount of information lost in a large displacement is smaller
than the sum of the losses using smaller deltas to match the same
translation. The EM translation is an expensive operation since it
reprojects all pixels in the EM and takes on average 28.02ms. For
visual comparisons of the translated EMs and their corresponding
ground truth, please see the supplemental material.

We compared the final rendering with a 3D printed object. A
sample case can be seen in Fig. 10. Even though hard shadows are
not possible to generate with SH, the created soft shadow gives a
plausible impression on the virtual object.

8.1. Limitations

The results presented here demonstrate that our system is capable
of interactively acquiring an environment radiance while rendering
virtual objects at the same time. All within the current limitations
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Figure 10: Comparison with a real object.

of a mobile device. There are, however, some limitations due to the
nature of the processes involved in the pipeline.

With regards to the environment capture, we are limited by the size
of the EM and consequently very large rooms cannot be properly
captured. This is due to the fact that surfaces far away from the
EM’s origin will be mapped to a small number of pixels and ob-
taining a proper colour correction matrix might not be feasible.
The colour correction algorithm assumes that all surfaces are per-
fectly Lambertian and without specularities. Acquiring an environ-
ment with shiny surfaces will face difficulties when estimating the
correction matrix, leading to either incomplete EMs, or forcing the
user to move the device around the surface until an appropriate cor-
rection matrix is obtained.

Even though our system is able to handle dynamic scenes, signifi-
cant changes in the scene could interfere in the process of finding
reliable paired samples to calculate a good correction matrix. One
strategy to alleviate this, is to capture the area that has changed
in increments, such that enough reliable samples are made avail-
able. The same strategy can also be performed in environments
with light-emitting surfaces that trigger a strong white-balance ad-
justment, e.g., computer screens.

As shown in Fig. 9, EM displacements cause a progressive loss of
information on the updated EM. This restricts the magnitude of the
motions that lead to usable SH coefficients allowing plausible en-
vironment interactions with the virtual object.

Since soft shadows are rendered using a static plane, interactions
with nearby objects in the real-world are not possible. A solu-
tion for this restriction could be the one proposed by Sloan et
al. [SKS02], where a series of SH coefficients are precomputed on
a 3D grid around the virtual object.



28 R. Monroy, M. Hudon & A. Smolic / Dynamic Environment Mapping for Augmented Reality Applications on Mobile Devices

9. Conclusion and Future Work

We have presented a novel system that allows for simultaneous en-
vironment acquisition and AR rendering which runs, on average,
in real-time and well within the limitations of a mobile device. The
proposed system takes as input RGB-D images and combines them
into a 2D EM suitable to augment a real-world scene with coher-
ently illuminated virtual objects. We demonstrated that our system
achieves real-time augmentations on mobile devices.

The RGB-D EM, together with the set of defined criteria used to
update it, permits a dynamic response when small changes occur
in the scene. Additionally, using the depth information in the EM,
it is possible to simulate the effects of the environment when the
virtual object is moved.

On the Lenovo Phab 2 Pro, our system runs on average in real-time
(31Hz) using 25 spherical harmonic coefficients, whereas recent
state-of-the-art barely achieves interactive frame rates [RJIG17]. We
demonstrated the quality of our renderings and the accuracy of the
illumination estimation with qualitative results comparing a ren-
dered model versus its real 3D printed version in real lighting con-
ditions. Specular effects are not considered at the moment, but
techniques like that presented by Kéan et al. [KUKI15] could be
used as an extension to our system. Furthermore, with the advent of
Deep Learning, we envision future research leading to systems ca-
pable of predicting plausible EMs from video streams or single im-
ages for all materials and situations. Meta et al. [MMZ" 18] demon-
strated this is possible for objects with simple materials.

Even though the proposed pipeline is currently implemented using
a Tango-enabled device, these techniques could be applied on any
system with SLAM capabilities and able to provide RGB-D data.
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