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Figure 1: Visual analysis of a time-varying multi-parameter cloud ensemble. (a) Iso-surfaces of liquid water content (L, green), ice (I, blue),
and graupel (G, red). (b) Parallel coordinates plot rendered on black background of per-voxel parameter values including attribute density
histograms. (c) Voxel clusters determined via ensemble clustering using multiple k-Means clustered t-SNE projections. Voxels in the same
cluster but separated in the t-SNE embedding are connected via lines. (d) Distribution-based matching of clusters over lead time, starting
from 6 hours forecast. Colored curves show the matching error for different matching strategies and error metrics. (e) Selected cluster at 6
hours lead time (orange) and clusters matched to it at 4 and 2 hours lead time are highlighted in the parallel coordinates plot.

Abstract

The proposed approach enables a comparative visual exploration of multi-parameter distributions in time-varying 3D ensem-
ble simulations. To investigate whether dominant trends in such distributions occur, we consider the simulation elements in
each dataset—per ensemble member and time step—as elements in the multi-dimensional parameter space, and use t-SNE to
project these elements into 2D space. To find groups of elements with similar parameter values in each time step, the resulting
projections are clustered via k-Means. Since elements with similar data values can be disconnected in one single projection,
we compute an ensemble of projections using multiple t-SNE runs and use evidence accumulation to determine sets of ele-
ments that are stably clustered together. We build upon per-cluster multi-parameter distribution functions to quantify cluster
similarity, and merge clusters in different ensemble members. By applying the proposed approach to a time-varying ensemble,
the temporal development of clusters, and in particular their stability over time can be analyzed. We apply this approach to
analyze a time-varying ensemble of 3D cloud simulations. The visualizations via t-SNE, parallel coordinate plots and scatter
plot matrices show dependencies between the simulation results and the simulation parameters used to generate the ensemble,
and they provide insight into the temporal ensemble variability regarding the major trends in the multi-parameter distributions.

1. Introduction

Ensemble weather forecasting is well established in meteorology
to estimate the uncertainty that is present in numerical weather
predictions. Ensemble methods perform multiple simulations using
perturbed initial conditions or different forecast models, to predict
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possible future states of the atmosphere. Analysis of the temporal
evolution and variability of an ensemble forecast is then used to
estimate the likelihood of certain weather events.

Ensemble methods are also used to analyze the effect of simula-
tion parameters on the simulated weather events, by systematically
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perturbing these parameters and running the simulation again us-
ing the perturbed configurations. The analysis, then, requires more
than detecting similarities and differences between pairs of simula-
tion results. Beyond that, coherent predictions, localized or over the
entire domain, across many results need to be determined and put
into relation to the input parameter values that have caused these
situations. For an improved assessment of these predictions, they
need to be quantified and visualized in context to each other.

We propose a visual analysis approach to help addressing this
task, and use this approach to analyze an ensemble of time-varying
3D cloud simulations [WBJ*18]. Each simulation is carried out on
a regular voxel grid, and for each voxel a 12D parameter vector
containing quantities like water, ice, graupel, and hail content is
simulated. As we seek to compare clouds of different size, shape
and position, location-based approaches, i.e., computing statistical
measures over the values at a single voxel, are not useful. For in-
stance, if a cloud does not change with respect to its physical com-
position but simply moves in space, similarity measures invariant
under such transformations need to be used.

Parallel coordinate (PC) plots can, in principle, be used for this
purpose, by drawing one line strip for each voxel. However, it is
difficult to reveal lower-dimensional manifold structures via PC
plots, and the visualization becomes quickly cluttered when many
elements are drawn simultaneously. Clustering, on the other hand,
can determine sub-groups of elements with similar parameter val-
ues, providing a condensed data representation that facilitates a
distribution-based analysis. Clustering in high-dimensional (HD)
parameter space, however, becomes difficult due to the inherent
sparsity of the data space and the difficulty to select an appropri-
ate clustering algorithm and its parametrization.

Dimensionality reduction techniques can be used to address
these problems. For instance, t-Distributed Stochastic Neighbor
Embedding (t-SNE) [MHO8] tries to preserve locality by placing
similar elements close to each other in a low-dimensional sub-
space. Since lower-dimensional manifold structures in the original
data are preserved, especially density-based clustering algorithms
like DBSCAN [EKS*96], which focus on “reachability” rather than
distance, show very good results if the right parametrization is used.
However, since the parametrization needs to be adapted for every
projection, in our current scenario the application of DBSCAN is
not feasible.

1.1. Contribution and method overview

The proposed approach detects stable clusters of data points in a
HD parameter space. It uses this information to enable a cluster-
based analysis of the variability of ensembles of multi-parameter
simulations, and to reveal dependencies of the simulation results
on the initial simulation parameters. An overview of this approach
is given in Fig. 2. By variations of a set of input parameters 7;, an
ensemble of multi-parameter simulations is computed. Simulation
elements are interpreted as data points in the multi-dimensional pa-
rameter space, and they can be visualized using standard visualiza-
tion techniques like volume rendering and PC plots.

Then, dimensionality reduction via t-SNE projects the data
points into 2D. In this way, many of the local neighborhoods in the

data are preserved and sub-manifolds in HD space become con-
nected structures in 2D space. To avoid the shortcomings of DB-
SCAN in the current scenario, the projected points are clustered
using k-Means, and the resulting clusters are put into relation using
their variability over the ensemble.

Dimensionality reduction techniques like t-SNE, however, some-
times need to split a connected subgroup to compute the 2D embed-
ding. Where these splits occur depends on the specific parametriza-
tion of the used technique. For instance, t-SNE is often used with
random initial locations of projected objects as its seed configura-
tion which are considered by gradient descent optimization. There-
fore, when t-SNE is run with different input parameterizations, con-
nected subgroups can be split in many different ways.

On the other hand, similar points should be placed close to each
other most of the time over all projections, regardless of the spe-
cific initial parametrization. Thus, we compute many projections
using different parameterizations and merge the clusterings which
are obtained via k-Means into one final clustering. To visualize sta-
ble subgroups, the projection representing best the final clustering
is picked, and cluster membership information per data point is en-
coded via colors. Additionally, some of the points are connected
via lines to indicate where clusters were cut in the selected projec-
tion but can be assumed connected over all projections. To further
analyze the distribution of parameter values in a cluster, they are
displayed via PC plots, augmented by per-parameter distributions
and overlayed representatives for selected clusters. Per-cluster dis-
tributions are then represented via cumulative distribution functions
(CDF), and the differences in their integrals are used as similarity
measure. This enables to match different clusters and find simi-
larities across time steps and ensemble members. The similarity
between ensemble members is put in context with the initial simu-
lation parameters via scatter plot matrices.

In particular, the following contributions are made:

e A method to determine stable clusters in multi-parameter data
sets, using t-SNE and k-Means-based ensemble clustering.

e A distribution-based similarity metric for clusters of multi-
parameter data points.

e The application of cluster-based analysis of multi-parameter dis-
tributions to a time-varying multi-parameter 3D cloud ensemble,
hinting on the effect of simulation parameters on weather fore-
cast variability.

On a technical side, we provide a highly efficient GPU implementa-
tion of PC plots with embedded line and density histograms capable
of plotting millions of multi-parameter data elements per second,
including instant color variations to highlight selected clusters. In
the 2D t-SNE view, multiple interaction possibilities are available
to select and display single clusters, similar data elements, etc., over
different projections, time steps, and ensemble members.

2. Related work

In our scenario, each ensemble member is comprised of a set of
simulation elements with multiple parameter values. These HD
data points are projected into 2D using t-SNE [MHOS]. Some re-
cent surveys [KH13; LMW#*16] give thorough overviews of visu-
alization techniques for multi-parameter data. In combination with
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Figure 2: Proposed workflow for analyzing an ensemble of 3D multi-parameter simulations, each simulation parameterized by input param-
eters ;. (@) Upon using standard visualization techniques like volume rendering and PC plots, (b) k-Means clusterings on multiple t-SNE
projections are combined to obtain a stable clustering of data points in a single 3D data set. The best embedding is determined for visual-
ization. (c¢) For all ensemble members and time steps, clusters are matched based on their CDFs. A scatter plot matrix indicates relations
between input parameters and multi-parameter distributions. (d) Visualization of the (temporal) variability of simulations using clustered

t-SNE, cluster bar charts, PC plots, histograms, and line charts.

dimensionality reduction, clustering is often used to identify groups
of points lying close together in the low-dimensional space or form-
ing coherent structures in this space. Wenskovitch et al. [WCR*18]
discuss the combination of dimensionality reduction and clustering
techniques and provide recommendations for their concurrent use.

Since our technique analyzes an ensemble of 2D point sets (af-
ter multi-parameter simulation elements have been projected into
2D), it is related to ensemble visualization techniques. Most works
in ensemble visualization address ensembles of physical fields, or
features derived from such fields, with the focus on the extraction
and visual encoding of their variability. To the best of our knowl-
edge, visual analysis techniques for ensembles of 2D points are not
existing, yet a number of techniques have addressed aspects related
to ensembles that are also relevant in our work. Parametric statisti-
cal distributions and distribution shape descriptors for scalar-valued
ensembles were presented by Love et al. [LPKOS5]. Different vari-
ants of confidence regions were introduced to represent the ma-
jor geometric trends in ensembles of iso-contours and streamlines
[WMKI13; MWKI14; FBW16; FKRW16]. Demir et al. [DJW16]
proposed a closest-point representation to convey the central ten-
dency of an ensemble of multi-dimensional shapes. In a number
of works, scalar- and vector-valued ensemble fields were modeled
via mixtures of probability density functions to compactly clas-
sify complex distributions and their evolution over time [LLBP12;
JDKW15; DS15; WLW#*17]. Demir et al. [DDW 14] visualize dis-
tributions of linearized 3D data points with bar-charts. Hummel et
al. [HOGJ13] analyze the spread of particle trajectories in an en-
semble of vector fields to reveal the transport variability. Poethkow
and Hege [PH13] and Athawale et al. [ASE15] use location-wise
estimators of non-parametric distributions from ensemble members
to estimate the spread of surface and vector field features. Recently,
Hazarika et al. [HBS17; HDSC19] presented a copula-based frame-
work for large multivariate datasets, where they partition the do-
main and compute statistical quantities over those parts.

Alternatively, clustering has been used to group ensemble
members regarding similar data characteristic [BM10; OLK*14;
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FBW16]. While these techniques compare ensemble members to
each other, our approach aims at finding groups of elements in
each member which remain "close" to each other in all mem-
bers, and then match different clusterings to each other. Strehl and
Ghosh [SGO02] apply different clustering techniques to one single
ensemble, and combine the results into a single clustering. Differ-
ent clustering ensemble techniques, i.e., techniques that combine
multiple clusterings of one data set into a single clustering, are dis-
cussed by Vega-Pons et al. [VR11]. From multiple k-Means clus-
terings, Fred and Jain [FJO5] generate a co-association matrix, con-
taining the fraction of times two points were placed into the same
cluster. Applying clustering on this matrix leads to the final result.
Kumpf et al. [KTB*18] use multiple k-Means clusterings on en-
semble data, where they vary the clustering domain to generate a
clustering ensemble. Ferstl et al. [FKRW17] cluster different time
steps of the same ensemble in a hierarchical way to convey the
change of clusters over time. For the clustering of genomic data,
Lex et al. [LSP*10] introduce extended PC plots to compare differ-
ent clusterings and analyze the quality of cluster assignments.

Related to our approach are also techniques which aim to find
projections that best represent the structures in HD data, by using
quality measures for projections [FT74; HA85]. Even though the
goal of these techniques is different to ours, as we do not attempt
to find the best projection for a given dataset, proposed measures
indicate the (dis-)similarity between projections and might be used
for robustness analysis as well. Examples include vector distance
measures for HD feature descriptors [BVLBS11] and feature vec-
tors derived from point-wise distance matrices [JHB*17], as well as
measures using matrix norms to quantify the dissimilarity of mul-
tivariate projections invariant to affine transformations [LT16].

3. Data

We apply our cluster-based approach to analyze the multi-
parameter distributions in a numerical simulation of a growing
thunderstorm cloud [WBJ*18]. The data set comprises an ensem-
ble of 100 simulation runs of a single convective cloud in the 3D
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atmosphere, simulated over a time span of 6 hours in time steps of
15 minutes. 4 members have been excluded due to corrupted val-
ues resulting in a total of 96 members. At each 3D position, 12
parameters—such as water content, ice-water content, number of
water particles, number of ice particles—are given. The numeri-
cal simulation depends on 6 input parameters such as wind-sheer,
which influence the outcome of the simulation.

Due to computational reasons, only every 4" value in the two
spatial coordinates x and y, and every 3" value in the vertical is
used, resulting in roughly 10000 data points per time step. Values
of each attribute are normalized to the range of [0, 1] excluding the
ones with norm smaller 0.1 in order to shift the focus of the anal-
ysis away from almost empty voxels. No restrictive assumptions
about the structure of clusters are made. Further, since quantities
within clouds transition smoothly between states, as water slowly
starts to freeze with decreasing temperature, elongated structures
are expected at the least.

4. Dimensionality reduction and k-Means clustering

For dimensionality reduction, the method t-SNE (Fig. 4a) is used.
Note that while variants such as Hierarchical Stochastic Neighbor
Embedding [PHL*16] can be used as well, deterministic dimen-
sionality reduction techniques like principal component analysis
(PCA) are not suitable in the current scenario. Points can be mis-
placed due to variation in others than the principal components sub-
space used for projecting. Re-running PCA would not change that.
Multi-dimensional scaling [KW78], on the other hand, seeks at pre-
serving distances over the whole domain, thus making it difficult to
maintain local structures in the generated 2D embeddings.

In a single projection, the distances between data points can be
significantly distorted depending on the parametrization of the used
projection technique. The reason is that dimensionality reduction
techniques need to cut manifold structures in the HD space to em-
bed them into 2D. For instance, when projecting a sphere there is
no 2D embedding that can avoid placing non-neighboring points
close together or flattening the sphere so that neighboring points
become distant to each other. This problem can be addressed by
running t-SNE many times with different parameters or random ini-
tialization, so that cuts are introduced at different locations and the
neighborhood relations are maintained in most projections. Each
projection can be clustered individually, and the clustering results
can be further analyzed to extract sets of data points that are coher-
ently assigned to the same cluster. In addition, however, the indi-
vidual clusterings need to create consistent results for different en-
semble members and time steps, to allow for a later comparison of
these results. It is clear that this cannot be achieved by tweaking the
parameters of each individual clustering. Due to this requirement,
density-based clustering approaches (e.g., DBSCAN [EKS*96])
are not suitable in the current application. The clustering results
of these algorithms are rather sensitive to variations in the distances
between projected data points, which, as described before, can hap-
pen to a certain extent in different t-SNE projections. It is worth
noting that the same problem occurs when clustering is applied to
the original HD data point, as shown in Fig.3a.

The clustering algorithm k-Means, on the other hand, always

@) T, (b)°

Figure 3: (a) High-dimensional DBSCAN clustering with parame-
ters € = 0.04 and N = 30 color coded on t-SNE projected points.
The blue cluster and noise in black dominate the clustering. (b)
Matched clusters of k-Means clustered t-SNE projections. Each col-
umn represents one clustering, the height of the bar encodes the
number of points contained in a cluster.

generates a predefined number of clusters. Though, the clusters
are convex and can hence put two independent elongated structures
into the same cluster or cut them at an arbitrary location. However,
in different projections these cuts are introduced at different loca-
tions; furthermore, if these structures are not adjacent in the original
data, a different t-SNE projection is likely to place them far apart
from each other in the computed 2D embedding. Therefore, only
points that are neighbored in the HD space should be in the same
cluster in most of the projections, thus overcoming the convexity
requirement of k-Means clusters.

Due to the aforementioned issues, we use t-SNE, with default
perplexity of 30, and k-Means, with k = 16 clusters, in our analy-
sis. The perplexity parameter controls the size of the local neigh-
borhood that should be preserved. In all of our experiments, the re-
sulting projections looked reasonable, showing frequent yet spuri-
ous variations that support our envisioned consistency analysis. The
number of clusters for k-Means has to be set in relation to the num-
ber of projections used. The higher the number of different t-SNE
projections, the more clusters can be used to obtain more detailed
results. The same parameters are used for all ensemble members
and time steps in order to preserve comparability.

4.1. Combination of clusterings

The ensemble of clusterings that is generated by clustering multiple
t-SNE projections separately is aggregated to obtain a final cluster-
ing. Points that are stably clustered together are extracted by using
the so-called co-association matrix C [FJ05]. Each entry, C;; counts
how often point p; and p; are in the same cluster, finally normalized
by dividing through the number of clusterings. For every point, the
clique of points with high mutual similarity is searched in C. The
similarity threshold is set to o0 = 0.9, meaning that every pair of
points in the same clique is clustered together in at least 90% of
the single k-Means clusterings. For clique construction, we use al-
gorithm 1 as proposed in Kumpf et al. [KRRW19]. In a final step,
illustrated in Fig. 5, points are merged based on their cliques in a
greedy-like manner using region growing. Starting with the point
with the largest clique, recursively, all points therein and in their
cliques are merged. Once no more points can be added, a cluster
is formed and recursive merging is continued with the remaining
points, starting again with the one with the largest clique.

(© 2019 The Author(s)
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(b)

Figure 4: (a) 2D t-SNE projection of voxels. Connected structures motivate the use of clustering. (b-c) Final clustering resulting from the
combination of 100 k-Means clustered t-SNE projections. Lines connect distant points in clusters, points of the same cluster have the same
color, with noise in black. The projections with shortest line sums were chosen for the 2D embedding. Time steps (b) 2:00h (c) 4:00h are
shown. (d) Each column represents a clustering of one time step starting with the latest, where height encodes the cluster size.

input: iy, C, 0 output: L
i=iy; I=A{0,....,n}; L={};
while (|L| < |I]) do
L=LU{i}; 1=1\{i};
I={jellC;>a}; i=argmax;c/C;j;
end
Algorithm 1: Generation of point clique for p;, (similar
to [KRRW19]) using the co-association matrix C using a pair-
wise similarity threshold o. Resulting cliques contain points with
mutual similarity greater than o.

The merging algorithm depends on the order in which points are
traversed. However, using random initial points has lead to simi-
lar results in all our experiments. To better understand the merg-
ing process, k-Means clusters can be matched as in [KRRW19]
over all projections using the Kuhn-Munkres algorithm [Kuh55]
(Fig. 3b). Single clusters can be selected and their position is dis-
played over different t-SNE projections. Fixing the projection and
showing clusters from other projections is available as well, reveal-
ing neighboring points in other projections which were placed apart
in the current one. Furthermore, one can search for points which
were always assigned to a selected cluster or highlight points which
were almost always together in the same cluster, which greatly
helps understanding the effect of the merging threshold o. These
interactions help understanding the quality and variance of the clus-
tering ensemble and can be performed before comparing datasets.
Later, it can be used to see the evolution of single clusters or under-
stand why certain structures fall into different clusters.

The final obtained clusters represent points which lie in the same
structure in the t-SNE plot and are therefore expected to form struc-
tures in HD parameter space. An example is given in Fig. 1c. Note
that the number of clusters can now exceed 16. Points are colored
according to their cluster ID, using black for noise. Additionally,
lines between points, and in the color of these points, are drawn if
the points are far apart. Short lines can be filtered out interactively.

Lines connecting adjacent points but located far away from each
other in the current projection are generated as a byproduct during
the merging step. Whenever points are merged, lines from the par-
ent to all children are saved and used later in the final clustering.
This facilitates the identification of clusters which were torn apart
in the currently selected projection and attenuates the problem of
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finding a sufficiently large number of distinguishable cluster colors,
i.e., clusters that are far apart from each other and not connected are
different regardless their assigned color.

To visualize the cluster information, one projection has to be se-
lected as a representative 2D embedding of the data points. We use
a projection instead of other cluster visualizations, since these pro-
jections preserve the spatial relationships between points and clus-
ters. Following the intuition that points in clusters should be located
close to each other, we select the projection with the minimal sum
of filtered line-lengths between the data-points. The final clustering
result is then investigated further using PC plots, i.e., to compare
different time steps and ensemble members.

4.2. Matching and comparing clusterings

A relation between final clusters of different ensemble members is
established by comparing the distributions of their parameter val-
ues. For each parameter, a CDF is constructed [HDSC19]. To com-
pare two clusters, for each parameter the area between their CDFs
is computed (see Fig. 6) and summed up. Since this similarity mea-
sure depends only on the distribution of the parameter values, it
can be used to compare clusters with vastly different size. Since
this could become as extreme as matching two points to the biggest
clusters, we penalize differences of a factor 10 and higher by adding
a linear factor of
penaltyclhclj = max (O7 (w — 10) .0.01) ,

min(|cli],|cl;])

to the cluster distance. Here, |c/;| denotes the size of cluster i. This
similarity measure can be used to determine the similarity between
two data sets, i.e., two ensemble members or different time steps of
the same member, and to compare two clusters.

Exemplary summary clustering with threshold @ = 5/7

clique(p,) = g = {Po, P2}
clique(p,) = ¢y, = {P1,P2,P3}

v
N o
v I c1c) =y, = o) =
- om
v I

clustery = cy, + Cp, + Cp, = (o, P1, P, Pa}
= Cp, F Cp, + Cpy + Cpg

clique(ps) = ¢y, = {P3,P1,P2} cluster, = ¢, = {pa}

clique(py) = ¢y, = {ps}

Figure 5: Clustering to combine the clustering ensemble. Color de-
notes the cluster ID for each point p; for 7 clusterings. Note that
clique(p>) does not contain py as sim(pg,p1) < 5/7. For this ex-
ample only, the clique threshold was set to . =5/7.
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Figure 6: (a) Construction of a Cumulative Distribution Function
(CDF) based on 6 sample points. (b) Comparison of the parameter
distribution of 2 clusters (red and blue) by constructing a CDF. The
area between the lines defines the distance between the clusters.

Clusters are then matched using either the Kuhn-Munkres-
algorithm [KuhS55], resulting in a one-to-one matching between
min(|cl;|,|cl;]) clusters, or alternatively, in a one-to-many match-
ing, where each cluster of one clustering is matched to the best
fitting cluster of the other clustering. For single clusters, the results
match most of the time as can be seen by the green and yellow line
in Fig. 1d. However, mismatches can lead to significantly higher
differences, which is why we favor the one-to-many matching.

Summing over the [n(|cl;|)-weighted differences between clus-
ters and normalizing them by the summed weights serves as a sec-
ond distance measure for data sets (Fig. 1d,red). When multiple
clusterings are matched to one reference (Sec. 4.4), the sizes of the
clusters in the reference clustering are used. Cluster sizes are not
important to us. However, since the number of clusters should not
affect the measure significantly, less weight is given to smaller clus-
ters to prevent them from dominating the measure. Alternatively,
only the x largest matched clusters can be used to compute the dis-
tance measure. In our experiments, both strategies are used, where
in the latter clusters with less than 25 points are not matched.

4.3. Parallel Coordinates

Based on the matching errors, the sizes of clusters over time (see
Fig. 4d), and by using PC plots, data sets can be compared to each
other and similarities in parameter distributions can be investigated.

PC plots offer a direct visualization of HD data points. Our im-
plementation uses the Vulkan graphics API, to enable the efficient
visualization of huge numbers of multi-parameter data points. On
our target architecture, an NVIDIA GTX 1070, up to 5 million 12D
data points can be drawn per second. Basic functionality like blend-
ing and the reordering of axes can be used to get a first impression
of the data. Histograms per displayed cluster on the coordinate axes
ease the comparison of value distributions. Optionally, lines can be
smoothed to better show densities. Mean and median lines can be
drawn instead of whole clusters to avoid visual clutter.

4.4. Selection of reference

The presented analysis requires a reference dataset as starting point,
to which others are compared to. Commonly, the simulation gener-
ated with best guessed initial parameters is used for that purpose,
which is unfortunately not know for this dataset. Instead, the sim-
ulation generated with the median of all initial parameter config-
urations is investigated first. All initial parameter configurations
are displayed in a scatter-plot-matrix (Fig. 8) were their distribu-
tions can be seen. The matching distances to the selected reference
are displayed in color indicating which parameter changes lead to
larger distances between the data sets. To gain an understanding

Figure 7: Reducing the merging threshold o to 0.8 creates connec-
tions between the clusters which leads to a merge.

for the data set, different members can be selected as reference to
further investigate dependencies with initial parameters.

5. Use case

In the following, we describe the application of our approach to
analyze the multi-parameter cloud ensemble described in Sec. 3. At
the beginning, multiple time steps of a single ensemble member are
visualized using iso-surfaces in single parameter fields (Fig. 1a).
Despite the inherent occlusion effects, the overall structure of the
clouds can already been observed: While wet quantities like liquid
water (green, L) or rain (yellow, R) dominate in the lower altitudes,
frozen quantities like ice (blue, I), graupel (red, G) and hail (brown,
H) dominate in the upper atmosphere levels.

The shapes of the clouds change significantly over time, and they
move over the domain, so that location-wise computation and com-
parison of data statistics is no option. Instead, we abstract from
the 3D shape and perform the analysis using the distribution of
parameter values as described. Firstly, PC plots are generated to
obtain an initial estimate of the parameter distributions (Fig. 1b).
By looping through the plots of all time steps of a selected ensem-
ble member, the distribution variability over time is conveyed. The
distributions seem to stay similar over all time steps, with the ex-
ception of strong hail (H), which is present only in later time steps.
This is expected since ice-particles need some time to grow within
the cloud. However, it is difficult to see whether the cloud fore-
casts are comprised of individual structures. To analyze this, the
data is projected using t-SNE (Fig. 4a). The projections of simu-
lation elements into 2D reveal many band structures and clusters
of elements, yet it is impossible to conclude on which structures
belong together and which are separated. After generating a stable
clustering (explained in Sec. 4 and 4.1), clearly separated clusters
appear (color coded in Fig. 1c). Connecting lines highlight where
these structures where not cut in other projections, e.g., the rose
cluster. Furthermore, small blue clusters of almost the same color
can be differentiated, none of them connected via lines.

To investigate which clusters might merge due to a different
merging threshold o, points can be picked interactively on the
boundary between clusters and the effect of varying o can be seen
(Fig. 7). When points from both sides pop-up, the clusters would
merge. In this way, the cluster ensemble step and the degree of
dissimilarity between clusters can be better understood. Further in-
teraction mechanisms, e.g., selection and tracing of clusters, are
provided as additional options to the user.

By using the proposed approach, points of specific clusters can
be directly emphasized in the PC plot (Fig. le). For every quantity,
there are two axes showing the weight and number of particles of
that quantity in the corresponding simulation element. Elements in
the orange cluster contain mostly ice (I), snow (S) and graupel (G).

(© 2019 The Author(s)
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Figure 8: Matching distances to median simulation based on whole
data set and on clusters, color coded on initial parameters, with
low-to-high in blue-to-red. The data set- and cluster-based distance
measures reveal correlations with Bg or CCN respectively.

Next, we cluster all time steps of the selected ensemble mem-
ber and match clusters to the last by using the proposed many-to-
one matching (see Sec.4.2). The matching errors (Fig. 1d) indicate
that until time step 2:00h the distributions are very similar and the
matching works well. For earlier time steps, the errors grow. Closer
inspection of the worst matched clusters reveal that precipitation
parameters are differently distributed in earlier time steps. When
looping through the colored t-SNE plots—with matched clusters,
similar structures can be observed over different time steps (Fig. 4).
Caused by the many-to-one matching, some clusters become empty
when no matching partner could be found (Fig. 4d). By focussing
on the orange cluster to which two clusters were matched at time
step 2:00h (Fig. 4b), its time evolution can be displayed using PC
plots (Fig. 1le). The median or mean lines (blue lines) as well as a
histogram bar per cluster and axis can be selected as well. It can be
observed that the distribution of the cluster stays mainly the same,
while the number of simulation elements decreases over time.

A similar analysis can be performed over all ensemble members.
The proposed metrics can be used to find similar and dissimilar
members. First results can be seen in Fig. 8, where matching dis-
tances are color coded on the initial parameters. A correlation be-
tween temperature (0g) and the distance between the whole data
sets is directly visible and highlighted in green. When using the
cluster based measure, correlation with cloud condensation nuclei
(CCN), highlighted in yellow, becomes visible. This indicates that
0y changes the overall distributions while CCN changes the struc-
tures in the parameter space. Since all initial parameters were per-
turbed simultaneously, multi-dimensional dependencies have to be
considered as well, which is left for future work.

Computation time: Performance is measured on an Intel®
Xeon CPU 6 cores @3.5GHz. Preparing each data set takes around
35s, 70s for each t-SNE projection, and 0.5s for k-Means, all per-
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formed on one core. Combining the cluster ensemble takes 240s
using all cores and cluster matching around 15s per dataset on one
core. These pre-computations can be parallelized over the datasets.

6. Discussion and conclusion

Many steps of the proposed approach are dependent on parameters,
albeit most of them are rather uncritical when kept constant over
the whole analysis. Together, the number of k-Means clusters and
projections define the granularity of the approach. More projections
allow more k-Means clusters, the ratio of 100 projections to 16
clusters resolved the structures quite well in the presented data set.
Multiple k-Means clusterings per projection could further reduce
the number of projections needed.

The most critical parameter is the matching threshold c. Its im-
pact can be seen in Fig. 7, where reducing o from 0.9 to 0.8 would
merge the structure. A smaller threshold leads to bigger clusters.
We advice to chose and fix this parameter once in the beginning
after fixing all other parameters. That way, the merging stays con-
sistent for all data sets. Further, the many-to-one matching corrects
some undesired cluster splits. Matching successive time steps in-
stead of to the last makes immediate changes visible. However,
errors would propagate over time leading to a loss of overall con-
text. Further, the approach relies on t-SNE’s ability to project ad-
jacent HD points close to each other most of the time. Sufficient
variation in t-SNE projections and k-Means clustering is needed
to extract structures of arbitrary shape. Alternatively to clustering
voxels, one could cluster directly in the parameter space using sub-
space clustering methods. Optimally, those algorithms find clus-
ters in all parameter-dimension combinations. Analyzing, compar-
ing and matching those clusters would be a challenging task.

With the proposed method we were able to gain first insights
into the parameter-value distributions of a time-dependent cloud
ensemble data set. Cluster ensemble techniques on k-Means clus-
tered t-SNE plots proved to be a valid way for extracting structures
from that data set, which could be found in other time steps as well
using a CDF based distance measure. While the clouds are growing
over time, apart from outliers and the hail quantity, their main value
distributions do not change significantly. Correlations of initial pa-
rameters with the distances to the median member were found. A
more detailed analysis based on different reference members and
revealing higher-dimensional dependencies to initial parameters is
planned for future work. Further, the application of the workflow
on other data sets could lead to interesting insights.

Acknowledgements
This research has been done within the subproject B5 of the Tran-
sregional Collaborative Research Center SFB/TRR 165 Waves to
Weather funded by the German Research Foundation (DFG).

References

[ASE15] ATHAWALE, T., SAKHAEE, E., and ENTEZARI, A. “Isosurface
visualization of data with nonparametric models for uncertainty”. IEEE
Transactions on Visualization and Computer Graphics 22.1 (2015), 777-
786 3.

[BM10] BRUCKNER, S. and MOLLER, T. “Result-driven exploration of
simulation parameter spaces for visual effects design”. IEEE Trans-
actions on Visualization and Computer Graphics 16.6 (2010), 1468—
1476 3.



80 A. Kumpf, J. Stumpfegger, R. Westermann / Cluster-based Analysis of Multi-Parameter Distributions

[BVLBS11] BREMM, S., von LANDESBERGER, T., BERNARD, J., and
SCHRECK, T. “Assisted Descriptor Selection Based on Visual Compara-
tive Data Analysis”. Computer Graphics Forum 30.3 (2011), 891-900 3.

[DDW14] DEMIR, 1., DicK, C., and WESTERMANN, R. “Multi-Charts for
Comparative 3D Ensemble Visualization”. IEEE Transactions on Visu-
alization and Computer Graphics 20.12 (Dec. 2014) 3.

[DJW16] DEMIR, 1., JAREMA, M., and WESTERMANN, R. “Visualizing
the Central Tendency of Ensembles of Shapes”. SIGGRAPH Asia 2016
Symposium on Visualization. SA *16. ACM, 2016 3.

[DS15] DUTTA, S. and SHEN, H.-W. “Distribution driven extraction and
tracking of features for time-varying data analysis”. IEEE transactions
on visualization and computer graphics 22.1 (2015), 837-846 3.

[EKS*96] ESTER, M., KRIEGEL, H.-P., SANDER, J., XU, X., et al.
“A density-based algorithm for discovering clusters in large spatial
databases with noise.” Kdd. Vol. 96. 34. 1996, 226-231 2, 4.

[FBW16] FERSTL, F., BURGER, K., and WESTERMANN, R. “Streamline
Variability Plots for Characterizing the Uncertainty in Vector Field En-
sembles”. IEEE Transactions on Visualization and Computer Graphics
22.1 (Jan. 2016), 767-776 3.

[FJOS] FRED, A. L. N. and JAIN, A. K. “Combining multiple clusterings
using evidence accumulation”. IEEE Transactions on Pattern Analysis
and Machine Intelligence 27.6 (June 2005), 835-850 3, 4.

[FKRW16] FERSTL, F., KANZLER, M., RAUTENHAUS, M., and WEST-
ERMANN, R. “Visual Analysis of Spatial Variability and Global Corre-
lations in Ensembles of Iso-Contours”. Computer Graphics Forum 35.3
(2016), 221-230 3.

[FKRW17] FERSTL, F., KANZLER, M., RAUTENHAUS, M., and WEST-
ERMANN, R. “Time-hierarchical Clustering and Visualization of
‘Weather Forecast Ensembles”. IEEE Transactions on Visualization and
Computer Graphics 23.1 (2017), 831-840 3.

[FT74] FRIEDMAN, J. H. and TUKEY, J. W. “A Projection Pursuit Algo-
rithm for Exploratory Data Analysis”. IEEE Transactions on Computers
C-23.9 (Sept. 1974), 881-890 3.

[HA85] HUBERT, L. and ARABIE, P. “Comparing partitions”. Journal of

classification 2.1 (1985), 193-218 3.

[HBS17] HAZARIKA, S., BISWAS, A., and SHEN, H.-W. “Uncertainty
visualization using copula-based analysis in mixed distribution mod-
els”. IEEE Transactions on Visualization and Computer Graphics 24.1
(2017), 934-943 3.

[HDSC19] HAZARIKA, S., DUTTA, S., SHEN, H., and CHEN, J.
“CoDDA: A Flexible Copula-based Distribution Driven Analysis Frame-
work for Large-Scale Multivariate Data”. IEEE Transactions on Visual-
ization and Computer Graphics 25.1 (Jan. 2019), 1214-1224 3, 5.

[HOGJ13] HUMMEL, M., OBERMAIER, H., GARTH, C., and JOy, K. 1.
“Comparative visual analysis of Lagrangian transport in CFD ensem-
bles”. IEEE Transactions on Visualization and Computer Graphics 19.12
(2013), 2743-2752 3.

[JDKW15] JAREMA, M., DEMIR, I., KEHRER, J., and WESTERMANN,
R. “Comparative visual analysis of vector field ensembles”. IEEE Con-
ference on Visual Analytics Science and Technology (VAST). 2015, 81—
88 3.

[JHB*17] JACKLE, D., HUND, M., BEHRISCH, M., et al. “Pattern Trails :
Visual Analysis of Pattern Transitions in Subspaces”. IEEE Conference
on Visual Analytics Science and Technology (VAST). 2017, 1-12 3.

[KH13] KEHRER, J. and HAUSER, H. “Visualization and Visual Analysis
of Multifaceted Scientific Data: A Survey”. IEEE Transactions on Visu-
alization and Computer Graphics 19.3 (Mar. 2013), 495-513 2.

[KRRW19] KUMPF, A., RAUTENHAUS, M., RIEMER, M., and WEST-
ERMANN, R. “Visual Analysis of the Temporal Evolution of Ensemble
Forecast Sensitivities”. IEEE Transactions on Visualization and Com-
puter Graphics 25.1 (2019), 98-108 4, 5.

[KTB*18] KUMPF, A., TOST, B., BAUMGART, M., et al. “Visualiz-
ing Confidence in Cluster-based Ensemble Weather Forecast Analy-
ses”. IEEE Transactions on Visualization and Computer Graphics 24.1
(2018), 109-119 3.

[Kuh55] KUHN, H. W. “The Hungarian method for the assignment prob-
lem”. Naval research logistics quarterly 2.1-2 (1955), 83-97 5, 6.

[KW78] KRUSKAL, J. B. and WISH, M. Multidimensional scaling.
Vol. 11. Sage, 1978 4.

[LLBP12] Liu, S., LEVINE, J. A., BREMER, P.-T., and PAscuccl, V.
“Gaussian mixture model based volume visualization”. IEEE Symposium
on Large Data Analysis and Visualization (LDAV). IEEE. 2012, 73-77 3.

[LMW#*16] Liu, S., MALJOVEC, D., WANG, B., et al. “Visualizing high-
dimensional data: Advances in the past decade”. IEEE Transactions on
Visualization and Computer Graphics 23.3 (2016), 1249-1268 2.

[LPKOS] LoOVE, A. L., PANG, A., and KAO, D. L. “Visualizing spa-
tial multivalue data”. IEEE Computer Graphics and Applications 25.3
(2005), 69-79 3.

[LSP*10] LEX, A., STREIT, M., PARTL, C., et al. “Comparative Analysis
of Multidimensional, Quantitative Data”. IEEE Transactions on Visual-
ization and Computer Graphics 16.6 (Nov. 2010), 1027-1035 3.

[LT16] LEHMANN, D.J. and THEISEL, H. “Optimal Sets of Projections of
High-Dimensional Data”. IEEE Transactions on Visualization and Com-
puter Graphics 22.1 (Jan. 2016), 609-618 3.

[MHO8] MAATEN, L. v. D. and HINTON, G. “Visualizing data using t-
SNE”. Journal of Machine Learning Research 9 (2008), 2579-2605 2.

[MWK14] MIRZARGAR, M., WHITAKER, R. T., and KirRBY, R. M.
“Curve boxplot: Generalization of boxplot for ensembles of curves”.
IEEE Transactions on Visualization and Computer Graphics 20.12
(2014), 2654-2663 3.

[OLK*14] OELTZE, S., LEHMANN, D. J., KUHN, A., et al. “Blood flow
clustering and applications in virtual stenting of intracranial aneurysms”.
IEEE Transactions on Visualization and Computer Graphics 20.5
(2014), 686701 3.

[PH13] POTHKOW, K. and HEGE, H.-C. “Nonparametric models for un-
certainty visualization”. Computer Graphics Forum. Vol. 32. 3pt2. Wiley
Online Library. 2013, 131-140 3.

[PHL*16] PEzZzOTTI, N., HOLLT, T., LELIEVELDT, B., et al. “Hierarchi-
cal Stochastic Neighbor Embedding”. Computer Graphics Forum 35.3
(2016), 21-30 4.

[SGO2] STREHL, A. and GHOSH, J. “Cluster ensembles—a knowledge
reuse framework for combining multiple partitions”. Journal of machine
learning research 3.Dec (2002), 583-617 3.

[VR11] VEGA-PONS, S. and RUIZ-SHULCLOPER, J. “A survey of cluster-
ing ensemble algorithms”. International Journal of Pattern Recognition
and Artificial Intelligence 25.03 (2011), 337-372 3.

[WBJ*18] WELLMANN, C., BARRETT, A., JOHNSON, J., et al. “Using
Emulators to Understand the Sensitivity of Deep Convective Clouds and
Hail to Environmental Conditions”. Journal of Advances in Modeling
Earth Systems 10.12 (2018), 3103-3122 2, 3.

[WCR*18] WENSKOVITCH, J., CRANDELL, I., RAMAKRISHNAN, N., et
al. “Towards a Systematic Combination of Dimension Reduction and
Clustering in Visual Analytics”. IEEE Transactions on Visualization and
Computer Graphics 24.1 (2018), 131-141 3.

[WLW*17] WANG, K.-C., LU, K., WEI, T.-H., et al. “Statistical visual-
ization and analysis of large data using a value-based spatial distribu-
tion”. 2017 IEEE Pacific Visualization Symposium (PacificVis). IEEE.
2017, 161-170 3.

[WMK13] WHITAKER, R. T., MIRZARGAR, M., and KIRBY, R. M.
“Contour Boxplots: A Method for Characterizing Uncertainty in Feature
Sets from Simulation Ensembles”. IEEE Transactions on Visualization
and Computer Graphics 19.12 (Dec. 2013), 2713-2722 3.

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.



