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Abstract

This paper presents a method to analyze and visualize the local blood flow through human skin tissue within the face and neck.
The method is based on the local signal characteristics and extracts and analyses the local propagation of blood flow from video
recordings. In a first step, the global pulse rate is identified in RGB images using normalized green color channel intensities. We
then calculate for an image sequence, a local remote photoplethysmography (rPPG) signal that is presented by a chrominance-
based signal. This local rPPG signal is analyzed and then used to extract the local blood flow propagation from signal-to-noise
ratio (SNR) and pulse transit time (PTT) maps. These maps are used to visualize the propagation of the blood flow (PTT) and
reveal the signal quality of each spatial position (SNR). We further proved a novel pulse rate based skin segmentation method,
that is based on the global pulse rate and the statistical properties of the SNR map. This skin segmentation method allows a
direct application in liveliness detection, e.g., for presentation attack detection (PAD). Based on the described local blood flow
analysis, we propose a PAD system, that specializes in identifying a partial face and neck coverage in the video. The system
is tested using datasets showing a person with different facial coverings, such as a mask or a thick layer of makeup. All tested

masks can be detected and identified as presentation attacks.

1. Introduction

The human face is an important source of information about a
human being, such as its condition, e.g., measured by the pulse
rate, and is therefore used in a variety of different other appli-
cations. Particularly relevant fields of application for these tech-
niques are medical or security technology. An optical measuring
technique called photoplethysmography (PPG) is commonly used
to measure the human pulse rate. The principle of PPG is based
on human blood circulation and the fact that blood absorbs more
light than surrounding tissue, so variations in blood volume affect
light transmission or reflectance accordingly [TMSY14]. A PPG
sensor placed directly on the skin optically detects these changes
in blood volume [TMSY14]. Wearing this sensor can cause pa-
tients (especially infants and children) to feel uncomfortable and
nervous, which can have a negative effect on the measurement.
To overcome this, remote photoplethysmography (rPPG) allowing
contactless measurements of the pulse rate with a regular camera
has been developed [ZTWM18]. This technology has become more
attractive in recent years and is also based on human blood cir-
culation [ZTE*18]. In addition to the measurement of vital signs,
rPPG is also used in security applications to detect presentation at-
tacks [SL16,HM19,LKZ*17,NSV17].

The heart generates a blood volume pulse (BVP) with each beat,
which is the source of the blood circulation. The resulting blood
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flow through the circulatory system leads to a continuous change
in skin color. This effect can be observed more strongly when a
person is physically active, e.g., after climbing stairs. The heart
rate rises and the face color is getting redder. However, this con-
stant color change is mostly imperceptible for the human eye. With
rPPG techniques, this color variation is detected from a video, and
the pulse rate can be determined. Wu et al. [WRS*12] presented a
method to magnify these imperceptible color changes to visualize
these for the human eye in video recordings. This method is noted
as Eulerian Video Magnification (EVM).

The majority of rPPG-related literature applies the method to ex-
tract vital signs globally [ZTWM18]. In [RWAH17,PMP10, TL15,
DJ13] the pulse rate is estimated by extracting and analyzing the
subtle color changes in the skin area. In addition to a pulse rate
or other vital signs, videos provide even more characteristics. The
local extraction of these characteristics allows a more robust and
differentiated recognition of the investigated properties. Our work
directs at the local (i.e., spatial) analysis of the pulse rate and blood
flow through human skin tissue from videos with the aim to visual-
ize the blood flow.

In this paper, we contribute a new approach to the analysis and
visualization of local blood flow based on a chrominance-based
rPPG signal. In addition, we present a novel method for segmen-
tation of living skin tissue in the face and neck. This segmentation
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relies on the pulse rate of the recorded subject and the signal-to-
noise ratio (SNR) of the local rPPG signal.

Based on this analysis and segmentation, we propose a new pre-
sentation attack detection (PAD) system, which makes it possible to
debunk presentation attacks with a lifeless mask or high-resolution
image. The proposed system makes it possible to detect persons
wearing partial masks or thick makeup.

The paper is organized as follows: the next section presents prior
work on heart rate measurement using rPPG, spatial rPPG analysis,
and on face PAD. Then, the proposed local blood flow analysis and
visualization approach, is described in detail in Section 2, together
with the performed data acquisition. We discuss experiments and
results in Section 3. Lastly, a conclusion is drawn, and proposals
for future research are made in the last section.

1.1. Heart Rate Measurement

The extraction of human vital signs from video recordings of the
face is an emerging topic that has grown rapidly in recent years and
has produced a variety of publications.

Poh et al. [PMP10] present a non-contact, automated, and motion
tolerant heart rate measurement from video images based on blind
source separation (i.e., independent component analysis (ICA)).
Rapczynski et al. [RWAH17] calculate the rPPG signal from the
green channel of the subjects skin pixels. In [TL15], different color
spaces are compared to find the best-suited space for human pulse
calculation. It is shown that the hue component in the HSV color
space delivers the most accurate pulse rate measurement. De Haan
and Jeanne [DJ13] present an algorithm to calculate a chrominance-
based rPPG signal. This algorithm works robustly regardless of the
subjects skin tone and the color of the illumination with colored
light sources (i.e., for nonwhite illumination).

1.2. Spatial rPPG Analyses

The two-dimensional properties of the rPPG signal are analyzed
in [Yan15] and [ZTE*18] and presented using different types of
visualization maps as amplitude, velocity, or SNR map. In [Yan15],
a method for estimating blood flow velocities from videos of human
faces is presented. The velocity is calculated from the relative phase
shift of the frequency component corresponding to the heart rate
in the frequency domain. It is assumed that the difference between
neighboring phase values directly corresponds to the velocity at this
point. Applying the 2D Sobel operator to the calculated phase shifts
results in the desired velocity map.

Zaunseder et al. [ZTE* 18] introduced a contactless method for
estimating perfusion speed from videos. The spatially separated
rPPG signals are bandpass filtered based on the heart rate measured
with an electrocardiogram (ECG). After defining a region of inter-
est (ROI) on the subject’s forehead, a point PO inside this ROI is
selected. The distance to a chosen point P/ is calculated by us-
ing the Euclidean distance. The time delay between these specific
positions can be extracted from the filtered rPPG signals of these
positions. Then, an estimate of the pulse wave perfusion speed can
be calculated with the calculated distance and time delay. Since the
calculation is performed on the pixel values, the result is neither a
physical speed nor can it be transferred to other data.

1.3. Presentation Attack Detection

The use of a facial recognition system for authentication has be-
come widespread. Biometric authentication systems based on fa-
cial recognition are already used in border security systems and to
unlock smartphones. Although widely used and highly accurate,
facial recognition algorithms suffer from vulnerability to simple
spoofing attacks. An attack on face recognition based security sys-
tems are stated as biometric presentation attack. Such an attack is
the attempt to bypass a biometric security system by impersonating
a target victim holding the desired authorization [MSC16]. Dur-
ing such presentation attacks, the security system may not be able
to distinguish between the biological trait of the authorized person
and the presented object.

This work is focused on the support of facial recognition security
systems. These systems are especially endangered because the face
of a person is not private. In our society, it is nearly impossible to
keep the face private and avoid recordings of it. Potential attackers
could use a digital camera or social network content to grab the
face of an authorized person. This data can be used to print a high-
quality image (photo attacks) or to create a realistic 3D mask of the
authorized person (mask attacks) with which the facial recognition
security system is then attacked [GMF14].

It is challenging to detect mask attacks because they imitate en-
tire 3D structures and facial colors. A promising approach is to
measure signals of a living body which are attributes to the nervous
system (e.g., pulse rate) [GMF14]. By applying rPPG methods to
a face, it is possible to detect whether the whole face is covered or
not. In [LKZ* 17], a robust anti-spoofing method is proposed that is
based on the fact that a pulse signal exists in a real living face but
not in any mask or printed material. Xi et al. define for their method
the lower half of the face, including cheeks, nose, mouth, and chin
as an ROI. After applying time filtering and FFT, a six-dimensional
feature vector is constructed as input for a support vector machine
to determine whether a presentation attack occurs.

Heusch et al. [HM19] propose new features containing long term
spectral statistics of pulse signals obtained through rPPG. In a wide
variety of experiments, they successfully apply their approach to
face presentation attack detection.

For PAD application, the pulse rate is mostly extracted from the
whole face [SL16, HM19], or specific regions [LKZ*17,NSV17].
These methods are not able to determine whether partial areas of
the face are covered because they calculate the rPPG signal over
all pixels of their defined ROL. In these cases, partial face coverage
would reduce signal quality, but there would still be a measurable
rPPG signal. Thus, the recording of a person with partial masking
would not be detected as a presentation attack.

2. Proposed Framework
2.1. Global Pulse Rate Estimation

We present a framework that makes it possible to analyze and visu-
alize the blood flow through the human face and neck using RGB
video recordings. The output of our framework is two maps, an
SNR map, and a pulse transit time (PTT) map. The SNR map illus-
trates the signal quality of the corresponding part within the face
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and neck. The PTT map visualizes which spatial position the BVP
reaches at which point in time. With the PTT map, a blood flow path
can be identified. We assume that the recorded subject is facing the
camera throughout the whole recording. The framework is always
applied to image sequences with a length of 10s. In order to com-
pensate for the movement of the subject, the images of the record-
ing are spatially aligned. We adjust the rotation and translation be-
tween successive images via the normalized cross-correlation. Thus
the subject is registered image by image.

To analyze and visualize the human blood flow, we are applying
the framework shown in Figure 1. As in [WRS™12], we filter each
image with a low-pass (e.g., with a Gaussian or average filter) and
downscale it afterward. This filter and downscale step is repeated
until the desired image size and/or signal quality is reached (for our
data, two to three times). The spatial filtering increases the SNR and
reduces the computational cost through downscaling of the images.

After spatial filtering, the pulse rate of the recorded subject is cal-
culated. In [KKLP15], it is shown that the forehead and both cheeks
are good candidates for a computationally efficient ROI. Therefore,
we calculate the global pulse rate f, from the forehead region us-
ing the normalized green color channel intensities [RWAH17]. The
green channel contains the strongest PPG signal, based on the fact
that hemoglobin absorbs green light better than red and penetrates
deeper into the skin than blue [VSNOS].

We determine a rectangular region on the forehead based on the
eye position, whereby the coordinates of the eyes are detected using
Haar feature-based cascade classifiers as proposed by Viola and
Jones [VJO1]. Figure 2 illustrates the determination of the forehead
region. We calculate the distance X between the center of both eyes
from the return values of the cascade classifier. As x-coordinates
for the left and right border of the ROI, we use the x-coordinates
of the corresponding eye centers. The y-coordinate of the center of
the ROI is set (X/2) above the y-coordinate of the right eye. The
total height of the ROl is (X /2).

On the basis of [RWAH17], the rPPG signal of the forehead re-
gion is calculated. For each frame, the mean of all normalized green
value G, is calculated by:

| N

Gn = i 1)

Nz':l ri+gi+b,~’

where r;, b; and g; are the intensity values for each pixel i of the
red, blue and green color channel of the frame, and N is the total
amount of pixels within the forehead region.

To focus on the physiologically possible pulse rate range, the
signal G(¢) is bandpass filtered. The applied filter is a zero-phase-
filter with fifth-order Butterworth bandpass coefficients and a pass-
band range between 0.5 Hz and 3.3 Hz (corresponding to 30 beats
per minute (BPM) and 200 BPM) [RWAH17]. G,pp(t) represents
the bandpass filtered signal. Figure 2 shows the waveforms in the
time domain of the calculated rPPG signal G,pp (1) and the ref-
erence ECG (3), measured simultaneously with the video record-
ing. To extract the pulse rate from these waveforms, we apply an
FFT and calculate the magnitude (see Figure 2 plot (2) and (4)).
The frequency component with the highest magnitude represents
the global pulse rate f,. In the example shown in Figure 2, the fre-
quency components with the highest magnitude for the calculated
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Gypp (2) and the measured ECG (4) are identical. In general, the
method of [RWAH17] leads to precise and satisfactory results for
all recordings of our dataset (see Section 2.5).

The local blood flow analysis and visualization are based on a
reliable and robust local rPPG signal. We apply the chrominance-
based method [DJ13] to each spatial position to receive a local
rPPG signal.

Input video

Image alignment
& spatial filtering

' m = pixels in X-direction

n = pixels in Y-direction

| ch = color channels

k =number of sample (signal length)
Example format: [mxnxchxk]

i
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Apply eye : Definition of Determine global
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Transform to
local rPPG Signal
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[mxnxk] phase angles | [mxn] PTT Map SNR Map
Figure 1: Overall description of the framework to analyze and
visualize the blood flow.
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Figure 2: The blue area represents the result of the used eye de-
tector, and the green area is the derived forehead ROI. During the
105 recording the subject has a pulse rate of fpr = 0.9768 Hz, cor-
responding to 58.61 BPM
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Figure 3: This figure shows the separate steps of the SNR-threshold-mask generation. After spatial filtering (here average filter and double
downsampling by a factor of two) the raw SNR map is calculated (A). From the resulting SNR values, we calculate a histogram and determine
the local minimum (SNR;ocaipmin) (B). All values below SNR,cqipin are discarded, and from the remaining histogram, the mean and standard
deviation is calculated to determine SNRy, (C). The application of SNRy, leads to the SNR-threshold-mask, where all pixels above this value

correspond to the visible skin tissue of the subject (D).

2.2. SNR Map

We further use an SNR analysis to quantify the spatial signal qual-
ity. The SNR represents the strength of the signal of interest com-
pared to the unwanted noise present in the signal. We use the SNR
definition by de Haan and Jeanne [DJ13]. We calculate the SNR
map from a video recording with a length of 10s. During these
10, the subject’s heart rate varies, which is referred to as heart
rate variability (HRV) [SG17]. As in [ZTE* 18], we consider the
HRYV by defining intervals of 22 BPM around the fundamental fre-
quency (fpr) and the second harmonic as the signal. The remain-
ing frequency components are classified as noise. As described
in [dHvL14], the third and higher harmonics are not considered as
a signal, because these frequency components are usually minimal,
and the influence on the SNR is negligible. The SNR is calculated
from the energy ratio around the pulse frequency fpr plus the sec-
ond harmonic 2 fp, and the remaining energy of the spectrum. Thus
the SNR is defined by:

Y2 (Un(0X (k)

SNR = 101
ogy Z{ifl (1= Un (k)X (k))?

; @3

where X (k) is the magnitude of the signal of interest x(¢), f; and
f> define the range in which the SNR is calculated (e.g., 0.5 Hz
to 4.0Hz), k is the bin number of the frequency component, and
Uy (k) is the binary mask. The SNR measures the energy ratio of the
spectral segments inside (signal) and outside (noise) of the binary
mask Uy, (k) which is described by:

L, if|fpr—Af-k| < (2BPM)
Un(k) =<1, if|2fpr—Af-k| < (2BPM), 3)
0, otherwise

where Af is the spectral frequency resolution. This resolution is
calculated using:

Af Js

=37 (4)
Nyfi

where Ny, is the number of FFT points (i.e., number of samples),
and fy is the sampling frequency of the input signal x(¢). The de-
scribed SNR calculation is applied to each local rPPG signal and
leads to a raw SNR map.

Our goal is to analyze only local positions that have an accept-
able SNR. A corresponding segmentation is achieved by applying
thresholding to the raw SNR map. Therefore, we calculate a binary
mask (referred to as SNR-threshold-mask) containing only spatial
positions that provide a reliable rPPG signal. The required SNR
threshold SNR;;, is calculated based on the statistical values of the
raw SNR map. The determination of SNR,;, is shown and analyzed
in Section 2.3.

This analysis indicates that a sufficient segmentation of visible
skin tissue is achieved with SNR;;, and the resulting SNR-threshold-
mask. All spatial positions above SNR;;, represent the ROI, and the
remaining positions are ignored for further processing. The first
row of Figure 6 shows an SNR-threshold-mask for an image se-
quence and the resulting SNR map after applying this mask to the
raw SNR map.

2.3. ROI Determination

In Section 2, we describe how to calculate an SNR map. These
maps show the rPPG signal quality of the subject based on its cur-
rent BVP. In the following, we describe how to calculate an SNR-
threshold-mask, which then forms the ROI. This mask determines
positions, where the subject’s rPPG signal has reliable quality, and
the mask can be used for segmentation purposes. By applying a cer-
tain threshold SNR,, to the raw SNR maps, we are able to segment
the visible skin of a subject facing the camera.

We aim to determine a threshold that guarantees that all spatial
positions above SNR;, are skin pixel. Based on the statistical values
of the raw SNR map and its histogram (e.g., with 100 bins) the
threshold SNRy, is defined. Figure 3 shows the steps to calculate
the SNR-threshold-mask.
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After spatial filtering, we calculate the SNR for each spatial posi-
tion and map these values onto their corresponding position (A). As
shown in Figure 3 (B), the SNR values are then plotted in the form
of a histogram. This histogram has a local minimum (SNR;,cqiin)
between two local maximums. The left maximum can be assigned
to the background and the right maximum to visible skin tissue,
which generally has a higher SNR. We split histogram (B) at the lo-
cal minimum and focus on the SNR values larger than SNR;,cqinsin-
Plot (C) shows the remaining histogram. We calculate the statistical
values of this histogram and set the threshold to:

SNR;, = /J(SNRsig) - G(SNRsig): )

where SNRy;, represents the SNR values of the green-colored his-
togram, the operator ¢ corresponds to the standard deviation, and u
corresponds to the mean. All spatial positions with an SNR above
SNR;), are classified as skin, and we omit the remaining positions.
This thresholding leads to the SNR-threshold-mask shown in Fig-
ure 3 (D).

24. PTT Map

When the heart pumps blood volume into the aorta, it generates a
pulse wave [BDJ*17]. This wave indicates the propagation and di-
rection of the flowing blood volume. The PTT refers to the time dif-
ference between the pulse peaks taken at two arterial sites [iCM11].

In this work, we visualize the blood flow path through the face
via PTT maps. We calculate the time difference (i.e., PTT) between
signals of different position without any filtering via the phase an-
gles in the frequency domain. Therefore, the FFT for each spatial
rPPG signal is calculated. We then extract the phase angle @(fpr)
of the frequency component fp,. The phase difference of the spatial
rPPG signals of interest are calculated by:

AQi(fpr) = Pref (fpr) — @i(fpr). (6)
and can then be converted into a time delay by:
AQi(fpr)
At = 7
tl 27'C fpr ) ( )

where Q¢ (fpr) is the phase angle of a reference position, @;( fpr)
is the phase angle of a position of interest and fp is the global
pulse frequency. This time difference At; corresponds to the time
that the BVP needs to travel from one point to the other. After all
phase angles have been calculated, they are checked for plausibil-
ity, whereby angles that correspond to time delays of more than
Atiay = 0.3 s are excluded, as they are physiologically impossi-
ble [BDJ*17]. In order to remove these inaccurate phase angles, we
calculate the mean of all phase angles within the ROI u(@y;e) and
remove all values outside the physiological range. Furthermore, we
convert Atmqy With Equation (7) into a phase difference:

A(Pmax(fpr) = A[maxznfpr- (8)
The plausible PTT range is defined by:

90cy). if[063) > (ulgg) — 2]
O(x.y) = and [9(x,y) < (u(qsig) + 22mexy) O

2
NaN,  otherwise
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where all phase angles ¢ correspond to the frequency component
of fpr. Subsequently, we select the spatial position with the largest
phase angle as the reference point. This point corresponds to the
position where the BVP appears last in time. In almost all frontal
recordings, the position of the highest phase angle is located within
or near the subject’s mouth. To make the measurements of the indi-
vidual subjects comparable, a reference point @,y of the PTT map
is selected for all subjects within a rectangular area centered around
the middle of the mouth. The phase differences A@; between the
reference position and all other positions are calculated, and Equa-
tion (7) is applied to convert the resulting differences into the time
delays At;. Each time delay is color-coded (according to its value)
and then mapped to the corresponding spatial position. Figure 5
shows PTT maps, where the BVP reaches blue areas first and red
areas at a later point in time.

2.5. Data Acquisition

A dataset of 96 video sequences (duration 60 seconds each) of
twelve healthy subjects between the ages of 25 and 33 years was
captured. Each participant was connected to a vital sign monitor
(VitaGuard 3100, GETEMED, Germany) to measure the ECG and
PPG simultaneously to the video recording. In order to achieve
higher robustness against motion artifacts, and due to the higher
sampling frequency, we use the ECG measurements as reference
data in this work. All sequences are recorded with a 4K resolu-
tion and 60 frames per second (fps) camera (PMW-F55 CinaAlta
4K, Sony Corporation, Japan). The recorded scene was illuminated
by compact daylight (= 5600 K) LED sources. These light sources
were placed in front of the subject with an angle of 30° to both
sides, to reduce shadow on the subject’s face. During the data ac-
quisition, subjects were recorded in different positions (frontal and
lateral), and with varying heart rate (resting and increased). The
subjects increased their heart rate by performing bodyweight squats
just before the start of the recording. All participants of the data ac-
quisition provided their informed consent.

3. Results
3.1. SNR Map Evaluation

We evaluate the SNR maps, and SNR-threshold-mask of six ran-
domly selected video sequences of different subjects to deter-
mine the effectiveness of the ROI determination defined from Sec-
tion 2.3. We further compare the results for two different low-pass
filters (Gaussian and average filters) in combination with a different
number of downsampling steps (two and three times by the factor
of two). In order to determine the skin segmentation quality of the
SNR-threshold-mask, we manually define two different reference
regions for each recording. The first region (see Figure 4 (B)) con-
tains all head and neck pixels of the subject (see Figure 4 (A)). The
second reference region contains only skin pixels (see Figure 4 (C))
without eyebrows, ears, mouth, eyes, thick beard, nostrils, and the
transition from head to neck.

For each recording, we calculate the raw SNR map, determine
the SNR;;,, and generate an SNR-threshold-mask. We then multiply
this mask with the manually selected reference regions and count
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how many are outside the outline reference region (OR) and how
many pixels are within the skin reference region (SR).

Table 1 lists the results for each recording. The percentage of
pixels wrongly segmented outside the OR is always less than 1 % of
all pixels for each recording and filter type. In the Gaussian filtered
image sequences, it is problematic to determine a local minimum
in the SNR histogram, which leads to an inaccurate calculation of
the SNR;;, and thus to a significant number of pixels, which are not
classified as skin within the SR. For all image sequences processed
by an average filter the number of correctly classified skin pixel
within the SR is never below 79 % and mostly around 90 %.

Table 1: Results for the tested image sequences and the analyzed
spatial filtering techniques. It is listed how many percent of all pix-
els are wrongly or correctly segmented as skin.

Filter - SNR;,  wrong detected  correct detected
Subject  Level in [dB] outside OR [%] inside SR [%]
Gauss-2 0.87 0.07 66.86
Avg-2 3.08 0.01 93.73
Dot Gauss-3 1.67 0.03 93.63
Avg-3 3.92 0.05 99.42
Gauss-2 0.13 0.18 37.64
Avg-2 -0.40 0.25 89.05
D02 Gauss-3 0.07 0.24 79.03
Avg-3 1.32 0.03 96.49
Gauss-2 1.28 0.07 23.16
Avg-2 -0.67 0.16 88.85
D03 Gauss-3 -1.60 0.54 86.23
Avg-3 1.05 0.10 92.92
Gauss-2 1.69 0.01 69.40
Avg-2 2.70 0.01 96.24
D04 Gauss-3 1.51 0.01 96.63
Avg-3 4.23 0.04 98.49
Gauss-2 0.03 0.12 82.78
Avg-2 3.12 0.00 96.18
D05 Gauss-3 2.41 0.00 95.35
Avg-3 3.83 0.00 98.45
Gauss-2 -2.44 0.46 39.41
Avg-2 0.97 0.03 79.82
1D06 Gauss-3 0.08 0.09 74.96
Avg-3 2.37 0.02 92.09

3.2. Blood flow visualization

We assume that the time delay between rPPG signals of different
regions corresponds to the time difference required by the peak of
the BVP to reach these regions and thus corresponds to the PTT.
Therefore, the visualization of the blood flow path is achieved with
PTT maps, which map the calculated time delays to their spatial
position. Figure 5 shows the resulting PTT maps for recordings of
IDO01, ID02, ID03, and ID04. These maps show similar results and
patterns (see Figure 5) between each subject. Partial coverings of
the skin tissue by head hair, beard, and jewelry lead to a weak SNR
and cause that spatial positions are excluded. The SNR map visu-
alizes the signal quality of each spatial position. The plots in Fig-

(A) (B) OR

(C) SR

Figure 4: This figure shows the input frame (A), the outline refer-
ence area (OR) (B), the skin reference area (SR) (C) and the multi-
plication result of SR and SNR-threshold-mask (D) for the average
filtered and twice downsampled image sequence of IDOI.

ure 5 show that the signal quality at the edges of the detected skin
is rather low. Also, the overall SNR in the neck region is smaller
than in the face.

The areas marked in blue in the PTT map represent certain areas
which are reached early by the BVP. Since the blood flows via the
common carotid into the head [BDJ*17], show the blue areas at the
neck of the subjects, the position of the carotid artery. The forehead
region of the head surface is supplied by the internal carotid arteries
and the rest of the face by the external carotid arteries [VATYL18].
As expected, this difference in blood supply is also visible in the
PTT maps. These maps show that the forehead is supplied earlier
with blood than the rest of the face. The BVP reaches the cheeks
and the mouth lastly.

3.3. Application in a PAD system

In this section, we present an experimental setup that demonstrates
a direct application of our local blood flow analysis and visualiza-
tion approach in a PAD system to detect persons wearing partial
masks or heavy makeup. During the data acquisition, we recorded
eight videos in which IDOI wears different partial face masks.
These recordings are used to demonstrate a presentation attack.

Figure 6 shows single frames of two PAD recordings in which
the person wears a nose and chin mask. We process each input
video, as shown in Figure 2 and calculate the SNR-threshold-mask,
SNR map, and PTT map for each recording. The results with and
without face coverage are shown in Figure 6. The individual plots
in this figure show that recordings with a mask expose large ex-
cluded areas where the SNR is below SNR;j, or the PTT is outside
the plausible PTT range.

A visual inspection of the PTT and SNR maps of Figure 6 in-
dicates that the subject is wearing a nose mask in the second row
and a chin mask in the third row. One simple way to automatically
detect these large excluded areas could be to compare the generated
maps with the results of a face detector. Therefore, we use the Viola
and Jones eye and face detector [VJO1] to obtain the face and eye
coordinates (illustrated by rectangles in Figure 6) of the subject.
Based on these coordinates we define an ROI that extends over the
y-coordinates of the face detector and the x-coordinate from the
start of the left eye to the end of the right eye (see Figure 6). After

(© 2019 The Author(s)
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this ROI definition, we check how many pixels are excluded within
this region.

For our experiments we defined that whenever more than 15 %
of the SNR-threshold-mask is excluded, we classify that a presen-
tation attack is present. Figure 6 shows in the first row that the per-
son is not wearing a mask because only 9.11 % of the pixels are
excluded, and therefore, no presentation attack is present. The sec-

PTT map [s]

-
7 o W

SNR map [dB]

D 5

Figure S: Frontal and lateral maps of four different subjects (im-
ages are average filtered and three times downsampled). The black
cross within the PTT maps indicates the position of Qrey.

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

ond and third row of this figure exemplarily shows the results of
two out of eight presentation attack videos. The two masks were
recognized because the maps exclude more than 15 % of all pixels
in the defined ROL. In this work, all eight masks could be classified
as a presentation attack according to the described procedure.

., 4 .' * - L ]
Ty vy

: i; ;,,;‘_?AL

o
xcluded face region: 9.11% |

Input ROI SNR PTT
' E

- e Y
Excluded face region: 23.05%

Figure 6: Each row shows the results for a separate image se-
quence (filtered with an average filter and three times downsam-
pled). The person wears a partial mask during the recordings in
the second (nose mask) and third (chin mask) row. The blue rect-
angles within the input images illustrates the output of an eye and
face detector. The green rectangle within the input anr ROI images
shows the calculated ROI used to automatically detect a presenta-
tion attack.

4. Conclusion

In this paper, we propose a novel approach to analyze and visualize
the local blood flow based on a chrominance-based rPPG signal.
The visualization of the local blood flow analysis clearly shows
blood flow paths known from literature (e.g., the position of the
common carotid arteries), as shown in Figure 5.

Additionally, we can segment visible skin tissue based on the
pulse rate of the subject. In our investigation, the spatial filtering
of the input images with an average filter led to the best results.
With the proposed SNR;;, calculation an accurate and reliable skin
segmentation is achieved.
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This skin segmentation and the blood flow analysis can be used
for liveliness detection against presentation attacks. We tested the
application for PAD with recordings where parts of the face are
covered. All recordings are correctly classified as a presentation
attack. This approach shows promising results and could be used in
automated border control systems at airports.

Other potential applications include physiological measurements
in medical applications, e.g., intraoperative blood flow visualiza-
tion. It is also conceivable that the presented analysis and visual-
ization can be used to differentiate between different soft tissues
during surgery similarly as in [WUA*18, WKU* 19, WRE*19].
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