Vision, Modeling, and Visualization (2019)
H.-J. Schulz, M. Teschner, and M. Wimmer (Eds.)

A Visual Analytics Tool for Cohorts in Motion Data

Ali Sheharyaurl 2 , Alexander Ruh3, Dimitar Valkovz, Michael Mark13, Othmane Bouhalil, Lars Linsen>

ITexas A&M University at Qatar, Doha, Qatar,
2Westfilische Wilhelms-Universitit Miinster, Germany
3Feinbc:rg School of Medicine, Northwestern University, Chicago, IL, USA

Update Data Explorer ‘Summarized View Per segment Individual vs Cohort

Cohort Segments Velocity Bands
Cohort 1: V1 2 1 w2 3 4 5 6 7 |8 w8 10 11| 12 13 1415 16 VR T VL V100% ¥ 75% | ¥25%
Age range: 1 vz 1 w2 3 4 5 6 7 |8 w8 10 11| 12 13 1415 16 Overlay Cumsum
20} m
S
L] a ‘Show AHA legend v10 20
e [ e )
Rejection status at MRI P <0.039
VNA OR R 2R H
ot st v i r\ I
TR w | | P HE-HEH
Cohort 2: .
Age range: Cohort 1 Cohort 2 ) “peakit
20} m p <0.005

Control| v Patier v Male |+ Femal

Rejection status at MRI

VNA | VOR | YR | ¥R

Most recent severe rejection [ A A

VNA | VOR | VIR | ¥R

Figure 1: Comparison of radial (top) and longitudinal (bottom) velocities in all healthy volunteers (green-blue) and all patients (red-yellow).
The panel to the left is used to define the cohorts, the one on top to set the visualization parameters. Differences in longitudinal velocities
among the cohorts can be observed.

Abstract

Motion data are curves over time in a 1D, 2D, or 3D space. To analyze sets of curves, machine learning methods can be applied
to cluster them and detect outliers. However, often metadata or prior knowledge of the analyst drives the analysis by defining
cohorts. Our goal is to provide a flexible system for comparative visual analytics of cohorts in motion data. The analyst inter-
actively defines cohorts by filtering on metadata properties. We, then, apply machine learning and statistical methods to extract
the main features of each cohort. Summarizations of these features are visually encoded using, in particular, boxplots and their
extensions to functional and curve boxplots, depending on the number of selected dimensions of the space. These summariza-
tions allow for an intuitive comparative visual analysis of cohorts in a juxtaposed or superimposed representation. Our system
provides full flexibility in defining cohorts, selecting time intervals and spatial dimensions, and adjusting the aggregation level
of summarizations. Comparison of an individual sample against a cohort is also supported. We demonstrate the functionality,
effectiveness, and flexibility of our system by applying it to a range of diverse motion data sets.

1. Introduction tissues (e.g., measured by using medical imaging), to just name a
few prominent ones. Analytics tasks for motion data are common
pattern recognition tasks such as detecting clusters and outliers or
examining variability and trends. Thus, machine learning methods
can be applied for pattern recognition.

Motion data comprise information of positions that change over
time (or their temporal derivatives) within a spatial embedding,
where the spatial embedding may have up to three dimensions. Ac-
cording to this general, broad definition, motion data include a wide

range of applications ranging from trajectories in a 2D geograph- Pattern recognition approaches typically treat the motion data
ical space (e.g., tracked by using GPS sensors) or 3D gestures of samples as an (unorganized) set. However, in many applications,
humans (e.g., measured by motion capturing) to deformations of there is more knowledge available, which may be captured in the
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form of metadata for each motion data sample or which may lie
within the expertise of the analyst. This is most obvious in the con-
text of medical or electronic health record data, where much addi-
tional information about the recorded persons is known including
knowledge about the existence of a certain disease that is being ex-
amined. Thus, the analyst can form cohorts of motion data samples
based on the metadata. The analytics tasks are then primarily con-
cerned with comparing the motion data of two cohorts.

In this paper, we present a tool that allows for the analysis of
motion data cohorts. One main strength of our system is that an-
alysts can quickly and flexibly form any cohort for analysis and
switch between any settings interactively. It is common practice in
many application fields to manually define cohorts and feed them
to a statistics program, where switching settings is rather cumber-
some. Our system, instead, allows for quick tests of all kinds of
settings within one framework. Another main strength is the visual
representation of cohorts in the form of summarizations at differ-
ent levels of aggregation, which allows for an intuitive comparison
between cohorts at appropriate and adjustable levels of detail. Ma-
chine learning methods are embedded where useful and results are
conveyed using visual representations within the analytical work-
flow, see Section 4.

For the design of our tool, we performed a requirement analy-
sis with experts from different fields with different types of motion
data, see Section 3. To demonstrate the functionality of our tool and
its effectiveness, we apply it to those data sets, see Section 5. One
driving application behind this work was the analysis of heart mo-
tion data. 3D motion data are captured using a magnetic resonance
imaging method, from which the myocardium of the left ventri-
cle is extracted, subdivided into spatial regions or segments, and
tracked over time. The analysis goal is to detect spatio-temporal
heart motion patterns from patients and healthy volunteers. Our
system allows for analyzing cohorts formed by metadata such as
disease records, age, and gender. Another driving application was
the analysis of motions of virtual environment users. A warning
system for collision of users with real-world objects when being
immersed in a virtual environment was tested under different con-
ditions. Respective conditions can be flexibly selected and com-
bined to form cohorts, the motion of which are then compared with
respect to the users’ reaction to the warning system. Our system’s
capabilities and limitations are discussed in Section 7.

2. Background and Related Work

Motion data can formally be described as a set of curves m;(¢) :
R +— R parametrized over time ¢, where the range R can have up to
three dimensions and represents the space, in which the curves are
embedded. Typically, each curve is known at discrete time points
to,...,tn such that a curve is given by a sequence of time-space
pairs ((f9,m;(tp)), ..., (tn,m;(¢1))), where the time points may or
may not be synchronized among all curves. Instead of positions,
one may also consider their first and second derivative in the form
of velocities and acceleration.

Time-oriented data exist in many types. An exhaustive overview
is provided by Aigner et al. [AMST11]. The existing visualization
approaches are classified with respect to the data representation

(frame of reference, variables), time representation (arrangement,
primitives), and visualization approach (mapping, dimensionality).
Motion data classifies as spatial in terms of the frame of reference
and univariate in terms of variables (when neglecting metadata).
Time arrangement may be linear or cyclic and time primitives are
usually instant. The dimensionality of the visualization approach
may be 2D or 3D depending on the range R of the motion data. A
static mapping shall be preferred to not unnecessarily burden the
cognitive load for the user. Aigner et al. also discuss clustering as
an unsupervised machine learning method embedded into the vi-
sual analytics workflow, where clustering was based on time series
similarity only.

The main motivation for this work is that motion data in many
applications can be augmented with metadata, which may be ex-
plicitly stored as global variables for each motion data sample (i.e.,
curve) or may be implicitly given by the knowledge of the analyst.
Such global connotations of the motion data samples are used by
the analysts to form cohorts of samples with some interesting prop-
erties. Hence, the data at hand can be described as labeled data,
where each cohort is represented by one label. However, such a
static labeling does not allow for a flexible analysis.

All facets of visual analytics of movement are discussed in the
book by Andrienko et al. [AAB*13]. Their definition of movement
data is close to our motion data definition, but they mainly consid-
ered trajectories in a geospatial context, which is one instance of
what we want to consider. They discuss visual analytics based on
space, time, and movers, but the analysis of cohorts built on meta-
data was beyond the scope of their book.

Andrienko et al. [AAB*13] also discuss summarizations of tra-
jectories. This topic relates to edge bundling in graphs [HvW09].
Edge bundling effectively reduces visual clutter in line-based draw-
ings, when exact positions of edges may be slightly altered. In case
this is not desired, one should rather use summarizations by draw-
ing bands. Such bands rely on statistical properties. For example,
the idea of boxplots can be generalized to functional data leading
to functional boxplots [SG11] or even to curves moving freely in
a 2D or 3D space and being parametrized over time leading to
curve boxplots IMWK14]. These computations are based on band
depth. Thus, one can compute the median and bands that include
a given percentage of all curves, e.g., the equivalent to the orig-
inal boxplots’ interquartile range. Curve boxplots have been suc-
cessfully applied to convey uncertainty in trajectories of tornadoes
captured by simulation ensembles. Ferstl et al. [FKRW17] propose
to use clustering of such trajectories in case they diverge and split
into groups. Each cluster is then represented by an own band. Our
tool adopts these concepts by displaying bands that relate to func-
tional boxplots, in case of plotting motion over a time axis, and
to curve boxplots, in case of plotting curves within spatial dimen-
sions parametrized over time. We also couple the visual output to
clustering results, among others.

Closest to our system are visual analytics approaches for elec-
tronic health/medical record data. Some approaches only ad-
dress cross-sectional (i.e., non-temporal) data [AOH* 14, SG15],
while others consider longitudinal studies [WLM™ 14, DVGG*17,
BSM*15], i.e., functional data over time, which is a special case
of motion data (for a 1D range R). The listed approaches for lon-
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gitudinal studies do not allow for interactive flexible definition of
cohorts from metadata and their comparative analysis with summa-
rizations at different levels of aggregation, which is our main focus.
Flexible cohort definition is supported by Zhang et al. [ZGP12],
but they represented the temporal aspect of the longitudinal stud-
ies only as discrete events over time in a Sankey diagram, which is
quite different from the motion data we are dealing with. Rogers et
al. [RSN™19] developed a visual analytics tool that allows dynamic
definition of patient cohorts using demographic information and
other parameters to analyze the patient-reported changes (outcome
scores) in physical functions following various spinal procedures.
They aggregated the scores to visualize the interquartile range with
a line representing the median. This approach is closest to our work,
but we are dealing with the more general case of motion data with
multiple dimensions and diverse applications.

3. Requirement Analysis

‘We performed a requirement analysis for our system by conducting
interviews with potential users having different backgrounds (med-
ical imaging/radiology experts vs. human-computer interaction ex-
perts) addressing motion data of rather different types (motion ex-
tracted from dynamical medical imaging vs. tracked motion of hu-
mans). Seven experts from medical imaging and one expert from
human-computer interaction participated in identifying the system
requirements.

User motions in immersive virtual environments (IVE). For test-
ing a new set-up or system for users operating in immersive virtual
environments, human-computer interaction experts conduct con-
trolled experiments, where the motion (e.g., walking behavior) of
users under different test conditions is captured. During the inter-
views, main analytical tasks were identified as follows:

(V1) Analyze all motions of a particular user under all test con-
ditions. Such an analysis allows for detecting users as outliers or
strange behavior patterns. Such outliers may be due to users incor-
rectly executing the experiment. Individual users may exhibit gen-
erally a strange behavior or only under a group of test conditions.
(V2) Analyze motion of a single user against all others for a spe-
cific condition. Such an analysis will reveal experiments as outliers
in particular conditions. Such outliers may be due to some mea-
suring errors and, consequently, are subject to removal for further
analysis steps.

(V3) Compare motion of all users under different conditions. Here,
cohorts are formed by filtering experiments according to one or
multiple experimental settings. In the latter case, one should be able
to flexibly combine settings of any parameters. Such analyses allow
for the investigation which (combination of) parameters influenced
the motion behavior (most severely).

(V4) Compare motion of different user groups. Users may be
grouped into different cohorts according to meta-data such as gen-
der, age, level of expertise, visual deficiencies, etc., or combina-
tions thereof. Analyses tasks are then to investigate whether there
are any significant differences among those groups for each of the
experimental conditions.

Motion from medical imaging. Dynamic medical imaging meth-
ods capture motion implicitly by differences in images over time.
Segmentation and tracking algorithms need to be applied to detect
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a tissue or organ of interest and track over time. The goal is to com-
pare the motion patterns of patients and healthy people. Individual
tasks can be described as:

(M1) Analyze motion variability within a cohort. Such an analy-
sis is essential, e.g., to understand how much variation is normal
within a cohort of healthy people. Similarly, the degree of variation
among patients is of relevance.

(M2) Compare motion of individual persons to cohort. Such an
analysis is core when trying to investigate, if the motion pattern
of an individual person matches that of a cohort of healthy people
or that of a cohort of patients with pathology.

(M3) Detect spatio-temporal location of motion anomaly. For pa-
tients with pathology it is of interest to detect where in the scanned
tissue motion anomalies occur and when those anomalies occur
within the scanned time interval.

(M4) Analyze severeness of anomalies. The goal is to quantify how
much the motion pattern of a patient with pathology deviates from
a cohort of healthy people.

(M5) Detect common motion patterns for pathological cases. If
possible, one would try to detect common deviations in the motion
pattern for patients against healthy people, i.e., one would compare
the two cohorts against each other.

System requirements: When comparing the analysis requirements
for the two scenarios, we observe a large overlap. Almost all re-
quirements occur in similar form in both lists. When abstracting
from the application scenario and assuming that a cohort can also
exist of a single motion sample, we can formulate the following
analysis tasks:

(T1) Detect spatio-temporal motion patterns and outliers (V1,M3).
(T2) Analyze motion variability within cohort (M1).

(T3) Compare single motion sample to cohort (V2,M2).

(T4) Compare multiple cohorts to detect/quantify motion differ-
ences (V3,V4,M4,M5).

4. Visual Analytics System

The analytical workflow within our system is based on an iterative
scheme of two alternating steps. The first step is that of defining co-
horts. Any knowledge about the data samples can be used to define
cohorts. Commonly, one is interested in comparing two cohorts,
which includes the special case of comparing a single data sam-
ple against a cohort. This comparison is performed in the second
step when the defined cohorts are being analyzed. For the analysis,
statistical methods, machine-learning approaches, and visual sum-
marization methods are combined. Based on the analysis outcome,
the cohorts can be altered in the next iteration, or completely new
cohorts can be selected. Thus, many tests between cohorts can be
quickly defined and analyzed in an interactive setting.

4.1. Defining Cohorts

Cobhorts are groups of data samples that share a common charac-
teristic. Cohort definition is often based on some hypotheses. Thus,
the cohorts are defined with respect to differences in some proper-
ties with the expectation that the data samples belonging to differ-
ent cohorts show differences in the observed data. A typical work-
flow is to group data samples manually and load the manually de-
fined cohorts to some analysis tool. Thus, the overhead of creating



154 A. Sheharyar et al. / A Visual Analytics Tool for Cohorts in Motion Data

cohorts is rather high. Our approach is to allow the user to inter-
actively define and refine cohorts and test hypotheses immediately
for selected data attributes.

Often a hypothesis is tested, i.e., the analyst defines a control and
a test cohort that differ in one tested variable. However, it is also
common to test many variables and adjust thresholds. This flexible
adjustment of cohorts is what our system supports. To support the
analyst in forming cohorts in a more exploratory fashion, we pro-
vide summary statistics in the form of histograms and bar charts of
the metadata to give an overview of the entire data set or of already
selected cohorts. A spreadsheet explorer allows for seeing all data
samples assigned to a cohort including all their metadata. A manual
assignment of individual data samples to cohorts is also supported
by our system.

In terms of user interaction, all cohort definitions and adjust-
ments are made via a graphical user interface, see left panel in Fig-
ure 1. Here, we use different widgets depending on the type of the
metadata variable. Numerical values are mapped to a two-ended
slider widget, which allows for the selection of any interval within
the given range. Categorical (and ordinal) values are mapped to a
checkbox widget, where each category of the categorical variable is
mapped to an own checkbox. Using checkboxes (rather than radio
buttons) allows for grouping data samples from different categories
into one cohort (e.g., merging patients with different symptoms for
comparison against a healthy cohort).

4.2. Visual Summarizations

Having defined the cohorts, the goal is to compare the observed
motion data for the cohorts. For the comparison of cohorts, data of
all data samples belonging to a cohort need to be aggregated and
respective summarizations of the data need to be generated. To an-
swer the comparative analysis tasks coined in Section 3, our system
is required to allow for respective interactive queries, to perform re-
spective data transformations, and to provide respective visual en-
codings. The interactive queries define the data aggregation level
as well as what needs to be aggregated and how. The data trans-
formations should extract the necessary information from the data.
The visual encodings shall convey the extracted information in an
effective and intuitive way.

Interactive queries define, which facets of the motion data shall
be analyzed. To fulfill Task (T1), we need to define which time
intervals shall be analyzed, which spatial dimensions shall be ana-
lyzed, and/or which curve characteristics shall be considered. Our
graphical user interface allows for such queries. As time is a nu-
merical variable, we follow the design decisions from above and
use a two-ended slider to select time intervals. Motion data may
have up to three spatial dimensions. We use a checkbox widget
for each of the dimensions to select which dimensions shall be in-
cluded in the current analysis. While it is often of interest to observe
changes over time, sometimes specific features of the curves shall
be extracted and compared. Such features are based on aggregation
over time, where the aggregation function can be chosen. Currently,
our system supports computations of mean, median, minimum, and
maximum over all time steps. Other characteristics could be easily
incorporated, if desired. Finally, motion data may be acquired in

different spatial regions and it may be of interest to compare spa-
tial regions. While the granularity of the spatial regions is due to
the data acquisition step, during the analysis one may define larger
regions by spatial aggregation, which is supported by our graphical
user interface by providing checkbox widgets. In summary, inter-
active queries are set, which, in combination with the cohort defini-
tion, lead to aggregation over data samples, time, and space as well
as to selection of time intervals, spatial regions, and the motion’s
spatial dimensions.

Data transformations can be used to extract information from the
raw motion data. To support Tasks (T1,T3,T4), we apply machine-
learning methods. Unsupervised learning methods can compute
clusters of motion data samples and detect outliers. To apply such
methods, we have to define a similarity measure between sam-
ples. Assuming that the motion data samples are synchronized,
i.e., they have the same starting point and the same temporal sam-
pling, we can use a Euclidean distance metric to compute motion
data similarities. Otherwise, a time-warping approach should be ap-
plied [Miil07]. Given the pairwise distances of the motion data sam-
ples, we can apply unsupervised learning. A hierarchical clustering
approach is most suitable in this context, since it only requires dis-
tance values as input and is not assuming spatial sample distribu-
tions such as for spatial kernels or spatial binning. We decided to
use the hierarchical clustering with average linkage, because aver-
age linkage is supposed to represent a natural compromise between
the single and complete linkage measures and provide a more accu-
rate evaluation of the distance between clusters [YR15]. The hier-
archical clustering results in a binary tree, which is pruned using a
dynamic branch cutting approach that identifies the clusters based
on the tree shape instead of cutting at a fixed height [LZHO07]. Af-
ter pruning, the cluster tree splits into a forest, where each tree of
the forest represents a cluster or an outlier. More precisely, if a tree
consists of multiple data samples, it represents a cluster, if it only
contains a single data sample, it represents an outlier. The hierar-
chical clustering outcome documents how homogeneous a cohort
is within itself (e.g., to detect “false positives”). Next, we want to
relate the cohort to data samples of the other cohort to examine how
similar data samples of the other cohort are to the given cohort (e.g.,
to detect “false negatives”). Thus, we tentatively add each sample
of the other cohort to this cohort and re-compute the hierarchical
clustering. The outcome of this step tells us whether the sample
of the other cohort would be an outlier within the given cohort or
whether it would fit one of the clusters of the given cohort.

Visual encodings shall convey the data aggregation and data trans-
formation results in an effective and intuitive way. We have to de-
velop a visual encoding for each aggregation level. The simplest
design choice is for the visualization of features aggregated over
time: This is a single numerical value for each motion data sample.
These numerical values need to be summarized for the entire co-
hort. Well-established methods exist: Statistical methods are used
to compute the median, inter-quartile range, minimum-maximum
span, and outliers of each cohort. These statistical values are com-
monly visually encoded using a boxplot representation. Boxplots
support Task (T2) in conjunction with Task (T4). Figure 1 shows
examples to the lower right. In addition to the visual representation
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of the boxplot, we automatically compute p-values for statistical
significance and display them with the boxplots.

Next, we want to consider the visual encoding of motion data
over a single spatial dimension. When aggregating over the cohort,
a summarization of curve plots over the time axis needs to be sup-
ported. Plotting all curves of the cohort does not scale well with the
size of the cohort and would eventually lead to substantial visual
clutter. A bundling strategy [HvW09] would reduce visual clutter,
but would alter the curves, which is not acceptable in this context.
Plotting only the mean or the median would to some extent ad-
dress Task (T1), but it would clearly neither fulfill Task (T2) on
conveying the variability (or uncertainty) nor Task (T4) on quan-
tifying differences. Hence, we decided to render functional box-
plots [SG11], which is a generalization of the common boxplot. It
is computed using band depth and renders the median curve as well
as nested bands representing envelopes of chosen percentages of all
curves. For a comparative visualization of two cohorts, the boxplots
of the two cohorts may be shown in a juxtaposed or superimposed
fashion [GAW™11]. Switching between the two concepts is easily
possible. Moreover, we can choose which of the nested bands are
shown. By default we use bands containing 25%, 75%, and 100%
of the curves and no outlier visualization. Juxtaposed views allow
for the rendering of more bands, while superimposed views get
harder to interpret with increasing number of bands, cf. Figures 11
and 12.

When not restricting motion to 1D, but allowing for curves
parametrized over time in a 2D space, functional plots are no
longer applicable. However, we can apply the concept of curve box-
plots [MWKI14]. They assume synchronized time curves, which
allows for a computation of band depths analogously to func-
tional boxplots. The curves may exhibit any shape and may even
be self-intersecting. Like functional boxplots, curve boxplots can
be rendered juxtaposed or superimposed with adjustable selection
of bands, see Figures 2 and 3. Curve plots also generalize to 3D
curves, but the renderings impose occlusion and perception prob-
lems. Thus, we decided to not render 3D curve boxplots, but instead
show different combinations of 2D boxplots in case of 3D curves,
see Figure 2.

The outcome of an unsupervised learning step can be visually
conveyed at multiple levels. To examine how homogeneous a co-
hort is (cf. Task (T2)), the unsupervised learning result is conveyed
in the form of band plots. Each cluster is rendered in the form of
an own functional/curve boxplot (using a different color for each
boxplot). Outliers are shown as individual curves. Figure 6 shows
an unsupervised learning result using functional boxplots. In case
one wants to have an overview of several clustering results (e.g.,
for multiple spatial regions), we provide a more aggregated view
by displaying the clustering result in a cluster heatmap. Each row
represents one clustering result, where outliers are shown in red
color and clusters by other colors. We decided to use a heat map,
as it uses a space-efficient (space-filling) tabular structure and color
coding is an intuitive and effective (pre-attentive) mapping. Thus,
it scales sufficiently well to larger numbers of motion data samples
(columns) and clustering results (rows). The accompanying video
shows an example.

When testing how individual data samples of another cohort fit
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the given cohort (cf. Task (T3)), we make the same (consistent) de-
sign choices. If we are examining one individual data sample of the
other cohort (for one spatial region), we use the functional/curve
boxplots, where the individual data sample is always shown as a
curve. If this curve matches one of the clusters, it is shown in the
respective color of that cluster. If it does not match any cluster, it is
classified as an outlier and rendered using a red color. If multiple
(or all) data samples of the other cohort are tested against the given
cohort, an embedding of all those curves into the band visualization
would lead to visual clutter. Instead, we apply, again, a heatmap en-
coding: We are interested in observing which data samples of the
other cohort is an outlier for the given cohort and may perform the
outlyingness test for one, two, or three motion dimensions. Figure 5
shows a respective cohort heatmap: The columns represent the mo-
tion data samples and the rows represent the spatial regions. The
outlyingness is tested for all three motion directions. For each mo-
tion data sample, each spatial region, and each motion direction we
count how often the data sample was on outlier. This count (0, 1,
2, or 3) is visually encoded by a 4-step color map, where darker
colors represent higher counts. Hence, one can quickly obtain an
overview of which data samples of the other cohort do not match
the given cohort. Moreover, one can observe quickly for which spa-
tial regions differences occur. To further ease the readability of the
heatmap, we perform a sorting of rows and columns. We indepen-
dently take all rows and all columns, and feed both individually to
a hierarchical clustering algorithm. The clustering trees for rows
and columns are depicted to the left and the top of the heatmap.
Rows and columns are reordered according to the clustering out-
come. Thus, data samples with similar outlyingness patterns over
spatial regions are now shown in neighboring columns and spatial
regions with similar outlyingness patterns over data samples are
now shown in neighboring rows.

4.3. Analytical Workflow

In this section, we want to discuss the analytical workflow and
the interplay of all components discussed above. After loading the
data, the analyst defines the cohorts using the panel to the left, see
Figure 4. Initial cohort definition is usually triggered by some hy-
pothesis that the analyst has in mind. If not, the analyst can obtain
an overview of the metadata distributions using histograms or bar-
charts. After having defined the two cohorts that are to be tested
against each other, the analyst selects which part of the motion data
shall be analyzed using the visualization control panel on top. The
analyst can select which motion dimensions to be investigated. If
multiple are selected, he/she chooses whether to use multiple 1D
function boxplots or 2D curve boxplots. If multiple plots are se-
lected, they are shown in multiple rows in the visualization panel.
Within each row, the analyst decides whether the plots of the two
cohorts shall be shown juxtaposed or superimposed and may ad-
just which and how many bands are shown. The analyst may also
decide to see features aggregated over time. Those are shown as
boxplots in each row, where the colors of those boxplots match the
colors of the bands, see Figure 4. With this setting, the analyst can
quickly look at different spatial regions by selecting them individu-
ally in the visualization control panel or may select multiple spatial
regions at the same time, which triggers an aggregation of those
spatial regions used for all visualizations.
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The analyst may adjust the selected cohorts at any time. To do
so, the analyst may switch to the cluster heatmap (see accompany-
ing video) to see whether there are some outliers in the cohort or
whether the cohort can be split into multiple clusters. The analyst
may decide to alter the cohorts accordingly. Moreover, the analyst
may want to relate individual data samples of one cohort to the
other using the cohort heatmap (as in Figure 5). Starting from these
overviews, the analyst can drill down on selected data samples, se-
lected time steps, selected spatial regions, or selected motion direc-
tions, i.e., transitioning to less and less aggregated views.

4.4. Implementation

The tool has been implemented as a web application in the
programming language R using the Shiny framework. It uses
Shiny’s reactive programming framework to compartmentalize and
cache computationally expensive operations, effectively avoiding
re-computations during the interactive session. It is fully cross-
platform and can be deployed either locally or on a remote web
server. The current implementation depends on several packages,
including (i) roahd to compute the outliers and order statistics of
the multivariate functional data; (ii) gplots for plotting an enhanced
version of a heat map; (iii) dtwclust for hierarchical clustering and
comparing time series, and (iv) r-sp along with (v) r-rgdal to im-
plement the curve boxplot function. The functional and curve box
plotting functions are extension of the fbplot function from the fda
R package.

5. Application Scenarios

We apply our tool in scenarios for motion data of quite different do-
mains, i.e., the ones used for the requirement analysis in Section 3.
The accompanying videos show the usage of our tool in interactive
sessions. To demonstrate the general applicability of our tool, the
videos show a third scenario of analyzing motion capture data from
19 daily and sports activities [DKT17].

Myocardial Motion. Heart motion data are acquired using a mag-
netic resonance imaging (MRI) method known as tissue-phase
mapping (TPM) [FJS*09], which is a phase-contrast technique to
measure 3D regional myocardial velocities. Data from 22 patients
(50213 yrs, 14 male) [SRB* 18] and 18 healthy volunteers (494-14
yrs, 12 male) [LCB* 16] were obtained, i.e., we have 40 data motion
samples. All patients had gone through the heart transplant proce-
dure within one year before the MRI scan. The MR images are seg-
mented to extract the myocardium of the left ventricle (LV) for up
to one cardiac cycle [LCB*16]. The analysis of LV wall motion is
crucial in understanding the cardiac function and diagnosis of ven-
tricular diseases [YWT™* 17]. The myocardium is further subdivided
into spatial regions (referred to as segments) according to the guide-
lines from the American Heart Association (AHA) [CWD*02]. The
acquired velocities are aggregated over each segment and trans-
formed to a cylindrical coordinate system reflecting radial, circum-
ferential, and longitudinal motion. The motion data are synchro-
nized for the systolic phase. Due to incomplete heart cycles for
several data samples (and missing heart rate information), a syn-
chronization of the diastolic phase was not possible such that we
focus on the systole in this study.

For each person, metadata are provided including gender and
age, whether they are patients or healthy volunteers, and in case of
patients the number and severity of acute cellular rejection (ACR)
episodes [SWF*05]. The metadata are mapped to the respective
widgets in the cohort definition panel, where age is considered the
only numerical value. Figure 4 shows the instance of our tool for
heart motion analysis. There are two specific extensions for this ap-
plication scenario. First, the motion is given in the form of veloci-
ties not positions, i.e., vectors not points. To create motion curves
in a 2D space, 2D points m;(t;) are created by accumulating the
velocities up to each time point ;. Second, the medical experts are
used to see the spatial regions (segments) laid out according to the
AHA model. Our functional and curve boxplots are enhanced by
insets of these radial plots, where we highlight, which of the seg-
ments were selected to create the plot, see Figure 4.

Defining Cohorts: As mentioned above, the initial definition of co-
horts is triggered by some hypotheses or analysis tasks. In this sce-
nario, the obvious hypothesis is that the cohort of patients should
differ from the cohort of healthy volunteers (H1). However, patients
may have different anomalies. In particular, one may hypothesize
that cohorts of patients with different ACR rejection severity may
differ from each other (H2). If H2 were true, then it may be worth
testing individual patients against the healthy cohort, assuming that
the individual patients differ from the cohort of healthy volunteers
(H3). Moreover, there are other factors that may influence the anal-
ysis substantially. For example, one may hypothesize that cohorts
of different age differ substantially (H4). Finally, it many also be
interesting to compare regional heart motion in different segments,
e.g., within healthy people, as there may also be substantial differ-
ences (HS).

Results: To test Hypothesis H1 we formed Cohort 1 of all healthy
volunteers (green-blue) and Cohort 2 of all patients (red-yellow),
see Figure 1 (left), and compared their motion data. For example,
in Figure 1 (top), we aggregate motion data over all segments to
the left of the AHA model to analyze radial (R) and longitudinal
(L) velocities in juxtaposed functional boxplots using three nested
bands. We also extract peak velocities of each velocity direction
shown in the boxplots next to the functional boxplots. From the
boxplots we can observe a difference in the longitudinal velocities,
which is statistically significant, i.e., the hypothesis is confirmed.
In the functional boxplots, we can observe when the peak velocities
occur and how the shapes of the curves compare. Switching from
1D functional boxplots to 2D curve boxplots, the results for radial-
longitudinal (R/L) velocities and radial-twisting (R/T) are shown in
Figure 2. The lower longitudinal velocities (lower values in vertical
axis) for patients can clearly be observed in the curve boxplots. To
see the discrepancy in longitudinal velocities even better, the curve
boxplots can also be shown superimposed as in Figure 3, where
the number of rendered bands is reduced to one per cohort for less
visual complexity.

To test how homogeneous the patient cohort is, we further sub-
divide this cohort in a cohort with moderate rejection status (1R
or 2R) and no rejection status (OR), cf. Hypothesis H2. Figure 4
shows respective functional boxplots. We again encounter differ-
ences in the longitudinal velocities (p < 0.005 for peak velocities).

(© 2019 The Author(s)
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Figure 2: (left) Juxtaposed curve boxplots for 2D heart motion
analysis of healthy volunteer cohort vs. patient cohort (aggregated
over selected segments). (right) Boxplots of the respective peak ve-
locities per velocity dimension exhibit significant differences in lon-
gitudinal velocities (p < 0.005 for peak longitudinal velocities).
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Figure 3: Superimposed curve boxplots for 2D heart motion anal-
ysis of healthy volunteer cohort vs. patient cohort (aggregated over
selected segments). Differences in longitudinal direction (vertical
axis in right plot) can be observed.

So, there are indeed differences within the patient cohort and the
hypothesis can be confirmed.

Cohort 1 Conort2 Peak )

Figure 4: Comparison of patients with moderate (red-yellow) and
no (green-blue) rejection status exhibits difference in longitudinal
velocities. Statistically significant peak velocities are observed.

With this observation, it is worth investigating how individual
patients compare against the healthy cohort (Hypothesis H3). We
take all 2D combinations of velocity dimensions (R/L, R/T, and
L/T) and generate the respective curves for all healthy volunteers.

© 2019 The Author(s)
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Then, we tentatively add each of the patient data sets and test
whether they are outliers. The amount of outlyingness of all pa-
tients in all segments for all curve plots is summarized in the cohort
heatmap shown in Figure 5. We observe that the block of eleven pa-
tients (with IDs 22, 19, 18, 15, 14, 12, 10, 8, 5, 3, and 4) do not have
outlying velocities in any of the segments. Hence, they match the
healthy cohort well. For other patients, instead, outliers are reported
in several segments.
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Figure 5: Cohort heatmap exhibits for each segment how often pa-
tients are considered outliers with respect to a healthy cohort. Or-
der of patients and segments is based on hierarchical clustering as
indicated by the cluster trees.

We select patient with ID 16, which has been rated as outlier
in multiple segments. Figure 6 shows the clustering result when
tentatively adding this patient to the healthy cohort for the segments
that belong to the apical slice (Segments 13-16). We know from
Figure 5 that the patient has been reported an outlier for Segments
14-16. We observe in the boxplots that for Segment 13 the patient
falls into the blue cluster (patient curve is rendered blue), while
for Segments 14-16 its curve is clearly different from any of the
clusters (patient curve is rendered red).

One may wonder why so many patients did not exhibit any out-
lyingness. One factor that may play an important role is the age of
the people (Hypothesis H4) [FIS*10]. For this analysis, we wanted
to exclude any factors from a disease and used healthy volunteers
only. We split the group of healthy volunteers in two groups, the
ones younger than 50 years and the ones older. We again consider
the longitudinal velocities for the segments on the left of the AHA
model. As expected, we observe in Figure 7 that the velocities are
generally lower for older people (red-yellow), which can be seen in
both the functional boxplots and the boxplots for the peak veloc-
ities. The latter exhibit a statistically significant difference, which
confirms the hypothesis.

To test Hypothesis H5 we select the cohort of healthy people
and create functional plots where segments to the left of the AHA
model (green-blue) are compared to segments to the right of the
AHA model (red-yellow). Looking at the juxtaposed functional
boxplots in Figure 8, we observe that there is lower radial motion
(lower peak velocities) and less variability (narrower bands) of the
myocardium in the left segments at the beginning of the heart cy-
cle. The peak velocities exhibit a statistically significant difference
(p < 0.009), which confirms the hypothesis.
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Figure 6: Comparing single patient against healthy cohort in curve
boxplots: Patient with ID 16 is an outlier (red curve) for segments
14-16, but matches the blue cluster (blue curve) for Segment 13.
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Figure 7: Analyzing the role of age for healthy volunteers. Co-
horts of people younger (green-blue) and older (red-yellow) than
50 years are compared using juxtaposed functional boxplots and
boxplots of respective peak velocities. Statistically significant dif-
ferences in peak longitudinal velocities (p < 0.006) are observed.

Walking Motion in IVE. In immersive virtual environments
(IVE), users are able to experience the computer-generated imagery
by replacing their visual and auditory perception with virtual stim-
uli. While wearing the VR headset, users are blind to the world
around them. Therefore, the location of real objects in the surround-
ing is crucial for the physical safety. A stand-alone hardware de-
vice was developed containing distance sensors to detect potential
obstacles and haptic devices mounted on the VR headset to alert
the user by means of vibro-tactile stimulation [VL19]. The user’s
head position and orientation were tracked with the Lighthouse po-
sition tracking system. An experiment was conducted with the goal
to test different sensor-actuator mapping approaches and functions
in terms of reaction time, collision avoidance, and safety distance.
For the experiment, a within-design system was used, where each
participant went through all test conditions in two trials. Three test
conditions were defined as: (1) mapping method (distance control
only or speed control in addition), (2) the transfer function (step,
linear, linear-step, exponential, or exponential-step), and (3) the
distance to the virtual wall (3m, 3.5m, 4m, and 4.5m). 20 users
(18 male and 2 female, age 20 - 27) were tasked to walk along
the straight line while wearing the VR headset and to pick vir-
tual objects in the IVE without colliding with the invisible virtual

Figure 8: Comparing regional differences in heart motion for
healthy cohort using juxtaposed functional boxplots and boxplots
of peak velocities.

wall [VL19]. The motion data to be analyzed are that of the walking
behavior of the users, which is captured in the form of speed values
over distance to the virtual wall. Note that this is not a function so
that curve boxplots need to be applied.

Defining cohorts: Metadata about the subjects including gender,
age, height, and eye-correction status were provided. However, the
main tasks here were to compare different test conditions, i.e., to
investigate cohorts that are formed by choosing different (1) map-
ping methods, (2) transfer functions, and (3) distances to the virtual
wall. Hypotheses were that there would be differences for (1) and
(2), but not for (3).

Results: First, we formed cohorts and analyzed their homogeneity
to detect outliers. For example, Figure 9 shows a comparison of one
subject (red) against all other subjects of a cohort. We observe that
this subject has a rather unusual walking behavior including going
back and forth indicated by alternating positive and negative speed
values. The analyst may decide to exclude such strange cases in
further analysis steps.

To evaluate the effect of different transfer functions on the walk-
ing behavior, curve boxplots of all five conditions are compared.
Figure 10 shows curve boxplots (100%, 75%, and 25% bands) for
the step and linear transfer functions (“distance control only" map-
ping method, 3m distance) and boxplots of average user speed. One
can observe that users walked faster towards the wall with the step
transfer function and mostly stopped before reaching it. For the lin-
ear transfer function multiple users “collided" with the wall, but on
the other hand stopped closer to the wall, i.e., they did not leave
unnecessary safety space. We also observe that speeds were gen-
erally higher for the step transfer function. Similarly we compare
the two mapping methods (distance control only vs. speed control
in addition) in Figure 11 (linear transfer function, 3m distance). We
observe that with the distance-only method (left) most of the users
stopped close to the wall (a few collided), while with the distance-
plus-speed method (mid) the subjects stopped much earlier, i.e.,
rather far from the wall, none of the users could reach the wall.
We see that the subjects walked quite fast initially and then stopped
quite abruptly, which also leads to a higher average speed shown
by the boxplot (right). The last test condition was that of the initial

© 2019 The Author(s)
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distance to the virtual wall. Figure 12 compares the experiments
for 3m vs. 4.5m (linear transfer function, distance-and-speed con-
trol method) using overlaid curve boxplots (100% bands). We ob-
serve that most of the users that started walking from 4.5m distance
stopped much farther away from the wall and that their speed was
on average lower. Hence, we conclude that all three test variables
actually led to differences in the walking behavior, which was ex-
pected for the mapping method and the transfer function, but not
for the initial wall distance. More details on the analysis within this
application scenario are given in the accompanying video.
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Figure 9: Comparing a single subject against others within a co-
hort exhibits a clearly different pattern for the subject with UserlD
15 who was stepping back and forth multiple times.
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Figure 10: Comparing the effect of step (left) and linear (middle)
transfer functions using juxtaposed curve boxplots of walking mo-
tion in the IVE and boxplots of average speed. The blue vertical
line represents the invisible virtual wall.
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Figure 11: Comparing the effect of mapping method for distance
only (left) vs. distance and speed (middle) using juxtaposed curve
boxplots of walking motion in the IVE.

6. Domain Expert Evaluation

Our tool was demonstrated to one expert from the field of medical
imaging and another from the field of human-computer interaction
(showing the respective application scenario only). Both experts
have many years of experience in their field and had earlier been
involved to perform the requirement analysis.

© 2019 The Author(s)
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Figure 12: Comparing the effect of starting distance to the wall
using overlaid curve boxplots (yellow 4.5m, blue 3m).

The medical expert confirmed that all of the analytical tasks M1-
MS5 (Section 3) can be performed using our tool. He confirmed that
“as of now we do not have a visualization system to analyze our
data. We use scripts to read in the data, then process them, and dis-
play the results in individual figures.” He liked the “user-friendly
user interface with lots of possibilities for analysis”. He rated the
usefulness of the tool as 3 on a scale from -5 (worst) to 5 (best). He
commented that “the web-based graphical user interface is an easy
way to get an overview of the data and to easily try different analy-
sis approaches. It is also convenient to select different cohorts”. The
user proposed to include the diastolic heart function in the analy-
sis as it is as important to study as systolic function. Note that the
tool allows studying both systolic and diastolic functions but due to
incomplete motion data samples, it was not possible to incorporate
the diastolic function in the analysis. The expert further wished to
have a feature to export the figures from the tool to some vector
graphics format.

The human-computer interaction expert mentioned that motion
tracking data are commonly recorded in VR-experiments, but “the
recorded data are rarely evaluated in depth”, as they are “miss-
ing an appropriate tool for this”. The user shared his experience
from a recent experiment, where he needed to check manually ev-
ery single recording, just to identify some outliers. He shared that
he struggled to identify different behavioral patterns in the record-
ings. The expert said that our “tool is indeed interesting” and he
can “easily imagine a lot of applications” in his field. He verified
that the tool supports all requirements (V1-V4) mentioned in Sec-
tion 3. He shared his desire to incorporate visualizations similar
to RadViz [DCFMFM10], where he would pick a few important
speed profiles and color the nodes/points by different variables to
see, if there is some relation among them. We plan to look into this
in future work.

7. Discussion and Conclusion

We presented an approach for comparative visual analytics of mo-
tion data. The main components were the efficient and intuitive de-
signing of cohorts based on metadata and the comparative visual-
izations based on aggregated data at multiple levels of granularity,
which applied statistical methods and machine learning methods
for aggregations. Using quite different application scenarios, we
have shown that our system is generally and flexibly applicable to
motion data analysis. Cohorts can be defined quickly to test hy-
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potheses or to adjust them interactively by restricting to some sub-
sets or changing thresholds. However, our system also allows for
exploratory analysis, where the analyst has no particular hypothesis
in mind, but tests different cohorts. Due to the interactivity of our
system, many cohort settings can be tested and adjusted quickly.
The domain experts whom we collaborated with reported that with
our tool they can perform many comparative tests that they would
typically neglect due to the large overhead. The medical experts
also reported that they commonly restrict the analysis to derived
values such as peak velocity and do not perform a proper analysis
of the motion data. One action item for future work is that in our
current implementation the mapping from metadata to interaction
widget is not yet fully automated. We plan to make our source code
publicly available afterwards.

References

[AAB*13] ANDRIENKO G., ANDRIENKO N., BAK P., KEIM D., WRO-
BEL S.: Visual Analytics of Movement. Springer Publishing Company,
Incorporated, 2013. 2

[AMST11] AIGNER W., MIKSCH S., SCHUMANN H., TOMINSKI C.:
Visualization of Time-Oriented Data, 1st ed. Springer Publishing Com-
pany, Incorporated, 2011. 2

[AOH*14] ANGELELLI P., OELTZE S., HAASZ J., TURKAY C., HOD-
NELAND E., LUNDERVOLD A., LUNDERVOLD A. J., PREIM B.,
HAUSER H.: Interactive visual analysis of heterogeneous cohort-study
data. IEEE Computer Graphics and Applications 34,5 (Sept 2014), 70—
82.2

[BSM*15] BERNARD J., SESSLER D., MAY T., SCHLOMM T., PEHRKE
D., KOHLHAMMER J.: A visual-interactive system for prostate cancer
cohort analysis. IEEE Computer Graphics and Applications 35, 3 (May
2015), 44-55. 2

[CWD*02] CERQUEIRA M. D., WEISSMAN N. J., DILSIZIAN V., JA-
COBS A. K., KAUL S., LASKEY W. K., PENNELL D. J., RUMBERGER
J. A., RYAN T., ET AL.: Standardized myocardial segmentation and
nomenclature for tomographic imaging of the heart: a statement for
healthcare professionals from the cardiac imaging committee of the
council on clinical cardiology of the american heart association. Cir-
culation 105, 4 (2002), 539-542. 6

[DCEMEMI10] D1 CARO L., FRIAS-MARTINEZ V., FRIAS-MARTINEZ
E.: Analyzing the role of dimension arrangement for data visualization
in radviz. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining (2010), Springer, pp. 125-132. 9

[DKT17] DHEERU D., KARRA TANISKIDOU E.: UCI machine learning
repository, 2017. URL: http://archive.ics.uci.edu/ml. 6

[DVGG*17] Diaz D., VILLEGAS J., GUERRA-GOMEzZ J. A.,
CHARPAK N., HERNANDEZ J. T.: Visual tools for the exploration of
growth data in a cohort of kangaroo infants during their first year of life.
In 2017 IEEE Workshop on Visual Analytics in Healthcare (VAHC) (Oct
2017), pp. 9-16. 2

[FIS*09] FOLL D., JUNG B., STAEHLE F., ScHILLI E., BODE C.,
HENNIG J., MARKL M.: Visualization of multidirectional regional left
ventricular dynamics by high-temporal-resolution tissue phase mapping.
Journal of Magnetic Resonance Imaging: An Official Journal of the In-
ternational Society for Magnetic Resonance in Medicine 29, 5 (2009),
1043-1052. 6

[FIS*10] FOLL D., JUNG B., ScHILLI E., STAEHLE F., GEIBEL A.,
HENNIG J., BODE C., MARKL M.: Magnetic resonance tissue phase
mapping of myocardial motion: new insight in age and gender. Circula-
tion: Cardiovascular Imaging 3, 1 (2010), 54-64. 7

[FKRW17] FERSTL F., KANZLER M., RAUTENHAUS M., WESTER-
MANN R.: Time-hierarchical clustering and visualization of weather

forecast ensembles. IEEE Transactions on Visualization and Computer
Graphics 23, 1 (Jan 2017), 831-840. 2

[GAW*11] GLEICHER M., ALBERS D., WALKER R., JUSUFI I.,
HANSEN C. D., ROBERTS J. C.: Visual comparison for information
visualization. Information Visualization 10, 4 (2011), 289-309. 5

[HvWO09] HOLTEN D., VAN WIJK J. J.: Force-directed edge bundling for
graph visualization. In Proceedings of the 11th Eurographics / IEEE -
VGTC Conference on Visualization (Chichester, UK, 2009), EuroVis’09,
The Eurographs Association & John Wiley & Sons, Ltd., pp. 983-998.
2,5

[LCB*16] LIN K., CHOWDHARY V., BENZULY K. H., YANCY C. W.,
LOMASNEY J. W., RIGOLIN V. H., ANDERSON A. S., WILCOX J.,
CARR J., MARKL M.: Reproducibility and observer variability of tissue
phase mapping for the quantification of regional myocardial velocities.
The international journal of cardiovascular imaging 32, 8 (2016), 1227—
1234. 6

[LZHO7] LANGFELDERA P., ZHANGB B., HORVATHA S.: Dynamic tree
cut: in-depth description, tests and applications. November 22 (2007),
2007. 4

[Miil07] MULLER M.: Dynamic time warping. Information retrieval for
music and motion (2007), 69-84. 4

[MWK14] MIRZARGAR M., WHITAKER R. T., KIRBY R. M.: Curve
boxplot: Generalization of boxplot for ensembles of curves. I[EEE Trans-
actions on Visualization & Computer Graphics 20, 12 (Dec. 2014),
2654-2663. 2,5

[RSN*19] ROGERS J., SPINA N., NEESE A., HESS R., BRODKE D.,
LEX A.: Composer: Visual cohort analysis of patient outcomes. Applied
clinical informatics 10, 02 (2019), 278-285. 3

[SG11] SUN Y., GENTON M. G.: Functional boxplots. Journal of Com-
putational and Graphical Statistics 20,2 (2011), 316-334. 2,5

[SG15] SAMUELS L. R., GREEVY R. A.: Visual pruner: Visually guided
cohort selection for observational studies. In 2015 IEEE Conference on
Visual Analytics Science and Technology (VAST) (Oct 2015), pp. 215-
216. 2

[SRB*18] SARNARI R., RUH A., BLAISDELL J., DOLAN R. S., LIN
K., GHAFOURIAN K., WILCcOX J. E., KHAN S. S., VOROVICH E. E.,
RIcH J. D., ANDERSON A. S., YANCY C. W., CARR J. C., MARKL
M.: Altered biventricular myocardial velocities in patients during year 1
after heart transplantation. In Proceedings of the 30th Annual Meeting of
the Society for Magnetic Resonance Angiography (SMRA) (2018). 6

[SWF*05] STEWART S., WINTERS G. L., FISHBEIN M. C., TAZELAAR
H. D., KOBASHIGAWA J., ABRAMS J., ANDERSEN C. B., ANGELINI
A., BERRY G.J., BURKE M. M., ET AL.: Revision of the 1990 working
formulation for the standardization of nomenclature in the diagnosis of
heart rejection. The Journal of heart and lung transplantation 24, 11
(2005), 1710-1720. 6

[VL19] VALKOV D., LINSEN L.: Vibro-tactile feedback for real-world
awareness in immersive virtual environments. In 2019 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR) (March 2019), pp. 340—
349. 8

[WLM*14] WANG C.,L1J., MA K., HUANG C., L1 Y.: A visual analy-
sis approach to cohort study of electronic patient records. In 2014 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM)
(Nov 2014), pp. 521-528. 2

[YR15] YmM O., RAMDEEN K. T.: Hierarchical cluster analysis: Com-
parison of three linkage measures and application to psychological data.
Tutorials in Quantitative Methods for Psychology 11, 1 (2015), 8-21. 4

[YWT*17] YANG D., Wu P., TaAN C., PoHL K. M., AXEL L.,
METAXAS D.: 3d motion modeling and reconstruction of left ventricle
wall in cardiac mri. In International Conference on Functional Imaging
and Modeling of the Heart (2017), Springer, pp. 481-492. 6

[ZGP12] ZHANG Z., GOoTZ D., PERER A.: Interactive visual patient
cohort analysis. In Proceedings of IEEE VisWeek Workshop on Visual
Analytics in Healthcare (2012), Seattle, WA USA. 3

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.


http://archive.ics.uci.edu/ml

