
Vision, Modeling, and Visualization (2021)
B. Andres, M. Campen, and M. Sedlmair (Eds.)

Real-Time Gaussian-Product Subdivision on the GPU

Alexander Komar and Reinhold Preiner

Institute of Computer Graphics and Knowledge Visualization, Graz University of Technology, Austria

(a) Input covariance mesh (b) Pipeline (c) Rasterized non-linear limit surface (d) Real-time response

Figure 1: Example covariance mesh model (a), where Gaussian covariances attached to the control mesh vertices are visualized as blue
ellipsoids. This mesh defines a non-linear Gaussian-Product subdivision surface (c), rendered as tessellated parametric patches in real-time
by our method (shading indicates patch tessellation and parametrization). Our work presents a GPU pipeline (b) that is the first to render
such probabilistic subdivision surfaces in real-time, enabling instant visual feedback on dynamic covariance mesh updates, for instance, in
an interactive modeling scenario for designing and moving sharp features (d).

Abstract
We propose a real-time technique for rendering Gaussian-Product subdivision surfaces. This is achieved by our real-time
subdivision pipeline, able to accept the base of Gaussian-Product subdivision, that is, a covariance mesh, which extends regular
base meshes by storing additional 3x3 covariance matrices per vertex. Our technique evaluates the non-linear limit subdivision
surface by computing B-spline patches embedded in a 9-dimensional dual space, where the subdivision scheme becomes linear.
We construct and evaluate these B-spline patches using real-time tessellation capabilities of current GPUs. We analyzed the
performance of our technique on all supported subdivision levels, and provide an analysis of its visual quality and geometric
accuracy.

1. Introduction

Subdivision surfaces are a widely used technique to create smooth
surfaces from very coarse control geometry, enabling a wide range
of applications in geometric modeling, computer games, and of-
fline rendering in movie productions. The base concept is straight-
forward but powerful. A coarse control mesh gets refined by di-
viding each face into smaller faces until a limit surface is reached.
Among the various different subdivision schemes developed since

the late 1970s, one of the earliest but still most popular ones is the
method of Catmull and Clark [CC78], which is primarily applica-
ble to quadrilateral control meshes and thus often used for high-
performance and offline rendering in movie production. Here, each
quad face gets subdivided into 4 smaller quad faces, thereby intro-
ducing 5 new vertices in the refinement step. This scheme allows
for simple and versatile geometry definitions, allows designers to
model shapes based on intuitive quadrilateral control meshes, and
enables a straightforward procedural generation for their smooth

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/vmv.20211368 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/vmv.20211368

A. Komar and R. Preiner / Real-Time Gaussian-Product Subdivision on the GPU

limit surfaces, which exhibit the often desired C2 continuity every-
where, except at extraordinary vertices where they are C1 continu-
ous.

One of the major drawbacks of this approach is its lack of native
support for the specification and generation of sharp features. To
this end, several extensions to the Catmull-Clark scheme were pro-
posed, the most widely used one depending on an explicit tagging
of control mesh edges as sharp or semi-sharp creases [DKT98].
Another approach widely used in practical modeling is the explicit
insertion of additional (narrow) edge loops, which allows sharper
features to be natively generated by standard subdivision schemes,
but also increases the granularity of the control mesh around the in-
tended features and thus leads to larger and more complex control
meshes. In both these techniques the introduction of geometric fea-
tures, in one or the other way, requires a manual encoding in – and
thus a particular awareness of – the control mesh topology, rather
than the geometric vertex configuration alone.

Recently, an alternative approach was proposed that allows to
model features by encoding enriched surface properties directly at
the vertices of a control mesh [PBW19]. Here, vertex data is ex-
tended by including an anisotropic Gaussian distribution of possi-
ble surface locations around each vertex, as illustrated by the blue
ellipsoids in Figure 1 (a). Using this extra information, sharp or
semi-sharp features can be constructed without increasing the gran-
ularity of the base mesh, using a non-linear, probabilistic subdivi-
sion based on Gaussian products. An example is given by the sharp-
ened horn seen in Figure 1 (d). This Gaussian-Product Subdivision
(GPS) scheme offers new possibilities in interactive surface design
by focusing on a vertex-based specification of the surrounding sur-
face rather than a topology-based encoding.

To utilize these potentials in practical real-time applications,
such as real-time animation or interactive modeling with real-time
feedback, a basic prerequisite is the ability to generate and render
the limit subdivision surface defined by the current control mesh
on the fly. For classic subdivision schemes, this task was mainly
enabled by recent advances in the performance and capabilities of
consumer-grade GPUs, but also benefited from earlier insights into
analytic properties of the limit surfaces to be generated.

In this paper, we present a novel GPU rendering pipeline that
allows to generate these probabilistic subdivision surfaces on the
fly. We realized the non-linear subdivision by a parametric evalu-
ation of individual limit surface patches, utilizing the tessellation
capabilities of modern GPUs [BFK∗16]. The major challenge for
this evaluation on Gaussian control meshes is the fact that the in-
volved basis functions do not only incorporate 3D positions, but
additional covariance matrices, resulting in 9-dimensional B-spline
patches to be evaluated on the fly. To perform this task efficiently on
the GPU, we exploit a formal relationship between this non-linear
probabilistic subdivision scheme and standard linear subdivision,
which provide a parametric definition of its limit surface [Sta98b].
This results in a novel efficient pipeline enabling real-time render-
ing and high-quality shading of probabilistic subdivision surfaces.

We provide a thorough description of an implementation in
OpenGL, and analyze the rendering performance of our pipeline
as well as its geometric accuracy and surface quality at a variety

of test models. Based on this approach, we envision novel applica-
tions in rendering and modeling based on this versatile subdivision
scheme.

2. Background and Related Work

Our technique directly relates to formal foundations of subdivision
surfaces, probabilistic Gaussian-Product subdivision, and GPU-
based real-time rendering approaches.

2.1. Subdivision Surfaces

Subdivision surfaces were first introduced by Catmull and Clark
[CC78] and Doo and Sabin [DS78], independently in 1978. The
Catmull-Clark algorithm is a generalization of bi-cubic B-splines
to arbitrary quadrilateral patches. Generalizations of parametric
patches to other domains were also developed at the same time
[DS78] and later on [Loo87, Kob00]. Extensions to the Catmull-
Clark algorithm were later proposed to describe sharp or semi-
sharp features [DKT98] or to prescribe local surface normals
[BLZ00]. The former was used in several animated full-feature
films due to its flexibility and extensive freedom in design. Sev-
eral advanced approximating and interpolating, as well as linear
and non-linear subdivision schemes have been introduced later on,
whose detailed discussions lie beyond the scope of this paper. For
a further reference on the vast zoo of subdivision techniques, we
refer the reader to the survey of Cashman [Cas12].

2.2. Gaussian-Product Subdivision

Gaussian-Product Subdivision (GPS) [PBW19] represents an al-
ternative, probabilistic subdivision approach that can be directly at-
tached to a point-based reconstruction process based on Gaussian
mixture distributions [PBW19]. The method builds on an extended
mesh model, a covariance mesh, in which each vertex addition-
ally stores an anisotropic 3× 3 covariance matrix Σ that describes
the probabilistic alignment of the surface around its mean vertex
µ. This information offers more freedom in design, e.g. to model
sharp features along the intersection of two Gaussian distributions.

Including the covariance data in the subdivision process leads
to a probabilistic subdivision scheme based on non-linear combi-
nations: two Gaussian distributions Θi and Θ j are combined into
a Gaussian Θi j by a weighted product of their probability densities:

f (x|Θi j) = ω f (x|Θi)
αi f (x|Θ j)

α j (1)

where αi and α j are the combination weights of the Gaussian
distributions, f (x|Θ) is the probability density function (pdf) of a
multivariate Gaussian, and ω is some normalization constant. Using
this product in a subdivision refinement, the new Gaussian Θi j will
be inserted close to the ridge of the combined probability landscape
given by the two Gaussian factors.

Although the formal solution to this non-linear refinement in
standard 3D space requires rather complex algebraic computations
(multiple matrix-vector products and symmetric matrix inversions),
the authors showed that after a bijective mapping into a higher-
dimensional space, the refinement of control mesh vertices and

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

28

A. Komar and R. Preiner / Real-Time Gaussian-Product Subdivision on the GPU

Figure 2: Visualization of the steps in the GPS algorithm. From
left to right: the control mesh is transformed into a 9D space by the
use of a bijective map F. There a linear subdivision scheme can be
applied. Finally, the mesh is transformed back to standard space,
yielding the non-linear subdivision surface.

their Gaussian covariance information becomes linear. Instead of
directly evaluating Equation (1), we can therefore compute the
Gaussian-product subdivision by (i) initially transforming the con-
trol mesh into this dual space, (ii) applying a standard linear subdi-
vision there, and (iii) finally transforming the limit mesh back to 3D
space (Figure 2). Thereby, the computational effort of Gaussian-
Product Subdivision is close to the linear scheme, since the only
extra computations are the bijective transformations:

1. the initial map F : (µ,Σ)∈ R3×SY M3 7→ q = (q̂, q̄)∈ R9, with

q̂ = vech(Σ−1) q̄ = Σ
−1µ (2)

2. the back-transformation F−1 : q 7→ (µ,Σ), where

Σ = [q̂]−1 µ = [q̂]−1q̄. (3)

Here, vech(·) denotes the half vectorization of the symmetric
matrix, linearizing its upper triangular elements, and [·] its inverse
operation, restoring the original symmetric matrix.

Finally, it has been shown that the Gaussian-product limit subdi-
vision surface exhibits the same continuity properties as the corre-
sponding linear scheme that is applied in the dual space [PBW19].

2.3. Real-Time Subdivision

First advancements in real-time subdivision used specialized GPU
kernels to perform the parallel subdivision in a first pass, and then
rendered the subdivided surface to the screen in a second pass
[Bun05,SJP05,PEO09]. This, however, requires a large bandwidth
for streaming the extensive subdivided mesh data between the GPU
cores and global memory. This problem is eliminated by utilizing
the tessellation capabilities of modern GPUs. The major challenge
for this approach is the direct mapping of tessellated vertices onto
the limit subdivision surface. Such a direct evaluation indeed be-
came possible by employing formal derivations of the parametric
forms of the limit Catmull-Clark [Sta98b] and Loop subdivision
surface [Sta98a] by Jos Stam.

One of the first approaches directly evaluating limit subdivision
surface patches in the tessellation unit was introduced by Nießner
et al. [NLMD12]. They proposed an adaptive subdivision scheme
on the GPU to save computation effort on regular faces. Irregu-
lar faces around extraordinary vertices are subdivided to a cer-
tain degree using specialized GPU kernels. Between subdivision

levels, transition patches are added to avoid T-junctions in the
resulting mesh, and patches are finally rendered as bi-cubic B-
spline patches. An implementation of their approach is currently
also found in Pixar’s OpenSubdiv library [PIX21]. The method
of Nießner et al. was later also adapted and refined by Brainerd
et al. [BFK∗16], who added a quad tree storing the information on
which patch represents which part of the face. Moreover, the eval-
uation near extraordinary vertices was simplified, thus eliminating
the need for storing explicit transition patches.

In our work, we perform a real-time evaluation and rendering of
non-linear Gaussian-Product subdivision surfaces by utilizing the
GPU tessellation capabilities similar to Brainerd et al. [BFK∗16].
Our pipeline exploits the duality of this probabilistic model to lin-
ear subdivision schemes by performing the respective transforma-
tions (2) and (3) and evaluating the corresponding 9-dimensional
B-spline patches on the fly. Moreover, we compute accurate ana-
lytic surface normals of these non-linear surfaces, enabling high-
quality rendering and shading. This way, we allow for the first time
to directly render high-quality probabilistic Gaussian-Product sub-
division surfaces from covariance meshes on the fly, providing real-
time feedback for dynamic covariance transformations and interac-
tive manipulations.

In the following, we will first give an overview of our non-linear
subdivision evaluation pipeline (Section 3), and then describe the
specific details of its realization in an OpenGL pipeline (Section 4
and 5). Finally, Section 6 evaluates the performance and quality of
our results.

3. Overview

The major stages of the GPS evaluation pipeline are given in Fig-
ure 3. Based on a given input covariance mesh, an initial prepro-
cessing step (Section 4) prepares all necessary vertex buffers and
generates a subdivision plan on the CPU, comprising additional
per-face data structures used for the evaluation of their correspond-
ing GPS surface patches on the GPU later on. This subdivision
plan is then streamed to the GPU, where the real-time evaluation
is performed in each frame at the Tessellation stage of the render-
ing pipeline. In the second step, the subdivision plan data is used to
compute the control-points that define the bi-cubic B-spline patches
corresponding to the limit subdivision surface of the control mesh
faces. In the third step, the resulting control points are used to eval-
uate the B-spline patch at parametric u,v-positions according to the
tessellation pattern that generates the patch geometry. The tessel-
lated geometry data is then passed on the pipeline for rasterization.
In the following, the individual steps of these stages are described
in detail.

Figure 3: Real-time tessellation pipeline for evaluating the limit
subdivision surface in our approach.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

29

A. Komar and R. Preiner / Real-Time Gaussian-Product Subdivision on the GPU

physical node

implicit node

Figure 4: Left: base control mesh face with 4 extraordinary ver-
tices (red). This gets subdivided into four sub-faces. Right: irregu-
lar node with one extraordinary vertex (bottom right).

4. Mesh Preprocessing

The first step of the pipeline is the computation of a subdivision
plan in an offline preprocessing. This plan includes a nodes array
built for each base mesh face, a stencil buffer that contains vertex
indices and is referenced by those nodes, and further mesh data
buffers for storing the covariance data and mesh topology informa-
tion on the GPU.

4.1. Node Array Generation

The purpose of the per-face node arrays is to subdivide each quad
face of the input control mesh into logical evaluation patches that
can be effectively tessellated and rasterized by the pipeline. In our
implementation each face of the base mesh gets assigned an array
of 4 nodes. The order of those nodes determines the position in
the face. This splitting ensures that each of the four resulting sub-
faces contains at most one extraordinary vertex [BFK∗16]. Sub-
faces that only contain regular vertices are denoted regular nodes,
which represent regular B-spline patches that can be directly eval-
uated. Nodes containing exactly one irregular vertex, are denoted
irregular nodes (Fig. 4 right). These nodes represent an implicit
hierarchy of all occurring sub-faces around an extraordinary ver-
tex. This implicit hierarchy allows an evaluation of the patch at
increased granularity as the point of evaluation approaches the ex-
traordinary vertex at a face corner.

4.2. Stencil and Weight Information

Both regular and irregular nodes reference stencils masks of their
corresponding control mesh vertices required for the evaluation of
their B-spline patches. The stencil vertices of a given node com-
prise the four vertices of its corresponding face as well as the one-
ring neighbor vertices around this face. The indices of these ver-
tices are pushed into a stencil buffer in the preprocessing. For reg-
ular nodes, stencil indices are read in the same order in which they
are provided to the tessellation unit as control points for the cor-
responding B-spline patch evaluation. The evaluation of irregular
nodes is discussed in more detail in Section 5.

Irregular nodes additionally store a set of weights that are used
to compute the hierarchy of subdivision levels. Irregular nodes also
reference a set of weights used for the calculation of the control
points for each subdivision level that the node represents. These
weights can be precomputed constants based on the topology in-
formation around an extraordinary vertex of specific valence. In
our implementation, we support valences up to 10 and a hierarchy
in irregular nodes of depth 10.

Figure 5: Schematic layout of set of lists stored in a linear buffer.

4.3. Vertex and Topology Data Layout

Vertex and covariance data of a covariance mesh are stored in lin-
ear GPU buffers (Figure 6). All buffers store their data in (padded)
structs of one or multiple 4D vectors to ensure efficient access on
the GPU. Vertex positions (Gaussian means) are stored in the µ
buffer holding one 4D vector per vertex, while the buffer for covari-
ance data (Σ buffer) uses two 4D vectors to store the 6 independent
values of a symmetric covariance matrix. When reading the covari-
ance data, the covariance matrix is unpacked on the GPU into a 3x3
matrix. In order to compute the Gaussian-Product subdivision, the
dual-space transformation in Eq. (2) has to be initially computed.
The transformed 9D dual-space point of each covariance vertex is
stored into 3x4 matrices with their bottom row padded by zero val-
ues. The upper triangular part of the remaining submatrix encodes
the six values of the transformed covariance matrix q̂, while the
three values of the lower triangular part store the transformed po-
sition vector q̄. These 3x4 matrices are stored in the transformed-
vertex buffer.

To efficiently represent the topology of arbitrary meshes in linear
buffers on the GPU, we use a specific buffer layout that compactly
stores a set of lists of variable length in a linearly addressed GPU
buffer. Examples for such buffers are the neighbors buffer, contain-
ing the indices of all neighbors of each vertex, and the linked-faces
buffer, containing the indices of all faces surrounding a vertex. A
visualization of the buffer layout employed for this data is given in
Figure 5. At the beginning of the buffer an offset lookup table is lo-
cated. At the index of each vertex, this lookup table holds the offset
of the starting position of its neighbors or linked-faces list. At the
position given by this offset, the first element stores the length of
the list, followed by the list data.

5. Real-Time Evaluation and Rendering

In this section we describe the implementation of the algorithm
above in the OpenGL pipeline, and discuss specific details on the
buffer accesses. Figure 6 depicts the data flow between shaders.
Input buffers (green) are defined or precomputed on the CPU and
uploaded to the GPU in the preprocess.

5.1. Tessellation Control

The Tessellation Control Shader (TCS) performs the single
Gaussian-Product subdivision step to produce the four sub-nodes
of each face. To this end, it first transforms the covariance mesh
vertices stored in the input µ buffer and Σ buffer to a correspond-
ing 9-dimensional point q (Eq. (2)). The resulting transformed and
subdivided hyperpoints are then stored in the Transformed Vertex
buffer for later access. The shader is executed four times for each

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

30

A. Komar and R. Preiner / Real-Time Gaussian-Product Subdivision on the GPU

Figure 6: Flow of data buffers (blue) and input buffers, filled by the CPU (green) over the main processing steps of the OpenGL tessellation
stage (gray): Tessellation Control Shader (TCS), Tessellation Unit (TU) and Tessellation Evaluation Shader (TES).

control mesh face and also accesses the topology information from
the linked faces and neighbors buffer.

For irregular nodes bordering extraordinary vertices, the TCS
also computes the control points of the different levels of the im-
plicit subdivision hierarchy. To this end, it reads the subdivision
weights for each level from the Weights Buffer. The resulting sub-
divided control points are then written to the Subdivided Points
buffer, organized by faces and subdivision depth. These control
points are already precomputed in the TCS to enable a quick access
in the following Tessellation Evaluation stage. Finally, the Tessel-
lation Unit (TU) is set up for uniform tessellation (equal outer and
inner levels).

5.2. Tessellation Evaluation

After the TU, the Tessellation Evaluation Shader (TES) computes
the 3D position of each generated vertex. This is done by reading
the node responsible for its parametric position from the nodes ar-
ray. If this node is a regular node, the corresponding 9-dimensional
B-spline patch is evaluated and the resulting 9D surface point is
transformed back to 3D space. If the node is an irregular node, we
first determine the level of the implicit hierarchy the corresponding
parametric point maps to (Figure 4 right). Then, the control points
corresponding to this level are fetched from the subdivided points
buffer. Finally, the B-spline patch is evaluated and the position of
the vertex is transformed back into 3D space and passed on down
the pipeline.

To make the TES execution more efficient, the array of nodes for
each face is read once per face in the TCS and forwarded to the TES
threads. The widely used principle of gather reads was also applied
to the fetching of subdivided control points of extraordinary nodes.
As soon as the required subdivision level is calculated, all control
points are fetched and cached inside a local shader array, and then
used both for the surface point and surface tangent evaluations.

The surface normal of each tessellated vertex is computed
analytically by evaluating the partial derivatives of the 9D B-spline
basis functions in the u and v direction. These tangents at the limit
hyper surface point are then transformed back to 3D space by
employing the analytic derivations for 3D tangents [PBW19]:

µu = Σ(q̄u− [q̂u]µ)

µv = Σ(q̄v− [q̂v]µ) (4)

n =
µu×µv

||µu×µv||

Here qu = (q̂u, q̄u) denotes the 9D tangent vectors in parametric
u direction, µ is the corresponding 3D position of the vertex and µu
is the 3D tangent vector at position µ in direction u. This is analo-
gous for the v direction.

5.3. Discussion

Our pipeline and data structure setup differs from the previous
work of Brainerd et al. [BFK∗16] in several aspects. The work of
Brainerd et al. uses explicit edge tagging to define semi-sharp fea-
tures [DKT98], which affects the complexity of the resulting quad
hierarchy around these edges. Faces bordering semi-sharp creases
require individual crease stencils and need to store explicit crease
flags and sharpness values. Additionally, irregular nodes bordering
a crease edge need to be decomposed into another, second level of
child nodes in a quad hierarchy. In contrast, as the non-linear GPS
scheme natively allows to produce features of arbitrary sharpness
(Figure 1), we do not need to store any extra tagging information.
Moreover, the need for storing hierarchical quad trees for each face
is eliminated, and is replaced by a constant set of four sub-nodes
per face in our setup.

The parametric evaluation of limit surface patches in our pipeline
also requires a transformation of Gaussians to the 9D dual space
and back, which however is comparably cheap (Eq. (2) and (3)).
The transformed 9D vectors are stored in a GLSL mat3x4 type and
all linear combinations are calculated in this matrix form. At the
end of the tessellation evaluation stage, the evaluated 9D surface
positions are transformed back to 3D space and passed on to the
rasterization stage.

6. Results

The performance evaluation of our pipeline as well as the render-
ings presented in this section were performed on a system with

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

31

A. Komar and R. Preiner / Real-Time Gaussian-Product Subdivision on the GPU

Wirecube
40 / 16 / 48

Blub
132 / 39 / 130

Anvil
246 / 22 / 244

Spot
206 / 102 / 204

Bob
334 / 20 / 334

35.6 ms (1.1 s) 46.4 ms (2.9 s) 61.3 ms (5.3 s) 112.1 ms (4.4 s) 82.5 ms (7.3 s)

Figure 7: Information and renders of all covariance meshes used in the performance analysis. Top: input covariance mesh with number of
vertices / number of irregular vertices / number of faces. Bottom: rendered GPS limit surface at tessellation level 6, with GPU render time
compared to the computation time for CPU subdivision (in parentheses). All images were rendered at 1440p resolution.

AMD Ryzen 7 1800X CPU, 16GB of RAM and Nvidia GTX 1080
GPU. All meshes were efficiently shaded using material captures in
order to avoid extensive bias of the measured performance by the
fragment computations.

6.1. Performance Evaluation

Five meshes were chosen for a time analysis of the pipeline.
We picked meshes of varying geometric complexity, Gaussian
anisotropy, and different number of vertices. Statistics of the cho-
sen meshes along with their GPS renderings and performance mea-
surements can be seen in Figure 7. On average, we observe speedup
factors of 30 – 90 using our GPU subdivision renderer in compari-
son to a multi-threaded CPU subdivision with 8 threads.

First, performance was compared between the test covariance
meshes. As they span a wide variety of vertex and face counts as
well as numbers of extraordinary vertices, noticeable differences in
the preprocessing and render times are expected. These differences
are displayed in Figure 9 at the upper left. An interesting observa-
tion can be made, e.g., by comparing the frame render times of the
Anvil and the Spot mesh. Although Spot comprises a slightly lower
vertex and face count than the Anvil, it requires almost twice the
per-frame rendering time. This can be accounted to the much larger
number of extraordinary vertices (105 vs. 22 in the anvil mesh) in
its topology, leading to a higher number of irregular patches and
therefore much more expensive evaluations of patches of increased
granularity around the extraordinary vertices.

Next, we investigate the performance characteristics across dif-
ferent tessellation levels. Figure 9 shows the timings for all test
meshes between level 1 and 6. All charts exhibit similar perfor-
mance characteristics that describe an approximate exponential

growth over increasing tessellation levels. This is expected, since
with increasing tessellation levels the number of output vertices
grows exponentially as well. For the meshes used, subdivision lev-
els 1 to 3 consistently exhibit similar frame times on our system,
with level 5 marking the start of exploding computational effort
(> twice the effort than level 1). In general, it can be seen that for
most meshes up to ∼ 300 vertices, real-time render times at 60 fps
(orange mark) can be achieved up to a tessellation level of 3 to 4.

6.2. Qualitative Evaluation

The primary key for high-quality shading is the availability of ap-
propriate surface normals. The visual quality and continuity of
shading using analytic vertex normals was therefore evaluated at
different tessellation levels. The quality of the computed normals
can be seen in Figure 8. Even at low tessellation levels (up to 2),
the reflection lines are smooth to an extend. Increasing the tessella-
tion level, the quality augments further. At the highest tessellation

(a) L2 Vertex normals (b) L6 Vertex normals (c) CPU Reference

Figure 8: Reflection lines on the anvil model shaded with vertex
normals for different tessellation levels and the CPU reference.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

32

A. Komar and R. Preiner / Real-Time Gaussian-Product Subdivision on the GPU

Figure 9: Render times for all test meshes and all tessellation levels. The orange line in the diagrams indicates the 60 FPS mark. Upper left
chart displays a performance comparison between all meshes, both for the preprocessing and the per-frame render time.

level (6), no visible artifacts can be seen in the reflection lines. The
availability of accurate per-vertex normals is vital for use in reflec-
tive surface shading, especially when rendering the limit subdivi-
sion surfaces at lower, performance-friendly tessellation levels.

Finally, we investigate potential issues of numerical stability and
geometric accuracy, which for instance are raised by the fact that
the actual subdivision is performed in an intermediate dual space.
Transforming the mesh data to and from this space requires several
matrix inversions, which are performed only at GPU float preci-
sion. In particular, highly anisotropic or flat covariance matrices
can be close to being ill-conditioned, and might thus be prone to
numerical instabilities under such transformations. To this end, we
perform image-based quantitative comparisons between our real-
time rendering frames and a comparable CPU-based reference out-
put. For this test, we chose the anvil mesh, which exhibits many
highly flat or elongated Gaussians, and the Blub model, exhibit-
ing a strongly scaled-down Gaussian at its tip. This was done by
writing the rasterized output world-space positions at each pixel to

Figure 10: Renders of two meshes with highlighted regions and
their corresponding difference image regions. A white pixel repre-
sents no measurable difference between float values. Differences
are only measurable along shape silhouettes, which is accounted
to different tessellation patterns.

separate images for each method. The norms of the pixel-based de-
viation vectors where then measured and normalized by the bound-
ing box diagonal of the model. Figure 10 shows zoomed-in parts of
the resulting difference images for two models, which are scaled by
a factor s = 580 for the Anvil and s = 530 for the Blub mesh, and
finally inverted (white is zero, black is 1× s). At close inspection,
the only measurable deviations are found at individual pixels along
the silhouettes of the shapes. These residuals, however, can be ob-
served for any shapes, and are accountable to expectable deviations
of the OpenGL output tessellation pattern in the final tessellation
level from the output mesh topology of the recursively subdivided
reference result.

7. Limitations and Future Work

In this work, we have presented a GPU-based real-time rendering
pipeline for probabilistic Gaussian-Product subdivision surfaces.
We have shown that the evaluation of this non-linear subdivision
scheme can be efficiently performed by exploiting the duality prop-
erties of the Gaussian-based schemes to standard linear schemes.
The fact that the core subdivision evaluation using bi-cubic B-
splines actually operates on a mesh embedded in a 9-dimensional
space doesn’t pose any further problem to a practical realization
on the GPU: once the input position and covariance data of the
mesh vertices are transformed using standard matrix-vector arith-
metic, the evaluation of the bi-cubic B-spline patches are separable
to each dimensional component. Exact analytic normals of the non-
linear limit surface can be computed on the fly, when accepting a
minimal computational overhead.

One of the major drawbacks of this subdivision scheme at first
glance seem to be the increased memory requirements for storing
covariance meshes, increasing vertex data storage by factor of 3. In
reconstruction scenarios, where the input covariance meshes might

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

33

A. Komar and R. Preiner / Real-Time Gaussian-Product Subdivision on the GPU

be extracted from Gaussian mixtures that already compress po-
tential huge point cloud data, this apparent overhead seems to be
quickly outweighed [PBW19]. However, in modeling applications,
where this representation avoids a potential memory overhead for
otherwise necessary topological refinement, this limitation might
be qualified to some extend. However, comparing the actual mem-
ory footprints for defining geometric features in practical modeling
examples on both probabilistic and standard subdivision surfaces,
will be content of future work.

The efficiency of our pipeline could be improved by introducing
different optimizations. Using alternative calculation patterns in the
TCS could reduce the number of redundant calculations of control
points. Furthermore, memory accesses could be optimized in order
to reduce the waiting time on global memory fetches inside shaders.

So far, our technique only works for the probabilistic analogue
of Catmull-Clark subdivision applicable to quadrilateral covari-
ance meshes. However, applying it on triangular covariance meshes
requires the evaluation of B-spline patches in a similar fashion
[Sta01], and only requires the appropriate adaption of the face
parametrization and GPU tessellation pattern.

Finally, our evaluation and performance analysis has demon-
strated that the generation of smooth limit surfaces around extraor-
dinary vertices is still a critical performance factor, again empha-
sizing the importance of sanitized high-quality control meshes and
skilled quad control mesh modeling.

8. Conclusion

We have presented a thorough technical description of a practical
real-time rendering pipeline for Gaussian-Product subdivision sur-
faces. Our approach bases on previous linear approaches that aim at
evaluating the limit surfaces in individual patches by employing the
tessellation capabilities on a GPU. We have analyzed quantitative
and qualitative aspects of the resulting renderings over different test
models and different tessellation levels, and investigated the visual
quality and accuracy of the GPU-based subdivision technique as
compared to a standard recursive reference solution on the CPU.
By enabling real-time feedback in interactive applications based on
these enriched mesh model, we envision new development in ap-
plications of real-time animation and modeling.

References
[BFK∗16] BRAINERD W., FOLEY T., KRAEMER M., MORETON H.,

NIESSNER M.: Efficient gpu rendering of subdivision surfaces using
adaptive quadtrees. ACM Transactions on Graphics (TOG) 35, 4 (2016),
1–12. doi:10.1145/2897824.2925874. 2, 3, 4, 5

[BLZ00] BIERMANN H., LEVIN A., ZORIN D.: Piecewise smooth sub-
division surfaces with normal control. In Proc. SIGGRAPH (2000),
pp. 113–120. doi:10.1145/344779.344841. 2

[Bun05] BUNNELL M.: Adaptive tessellation of subdivision surfaces
with displacement mapping. GPU Gems 2 (2005), 109–122. 3

[Cas12] CASHMAN T. J.: Beyond catmull–clark? a survey of advances in
subdivision surface methods. Computer Graphics Forum 31, 1 (2012),
42–61. doi:10.1111/j.1467-8659.2011.02083.x. 2

[CC78] CATMULL E., CLARK J.: Recursively generated b-spline sur-
faces on arbitrary topological meshes. Computer-aided design 10, 6
(1978), 350–355. doi:10.1016/0010-4485(78)90110-0. 1,
2

[DKT98] DEROSE T., KASS M., TRUONG T.: Subdivision surfaces in
character animation. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques (1998), pp. 85–94. doi:
10.1145/280814.280826. 2, 5

[DS78] DOO D., SABIN M.: Behaviour of recursive division surfaces
near extraordinary points. Computer-Aided Design 10, 6 (1978), 356–
360. doi:10.1016/0010-4485(78)90111-2. 2

[Kob00] KOBBELT L.: Square root 3 subdivision. In Proceedings of
the 27th annual conference on Computer graphics and interactive tech-
niques (2000), pp. 103–112. doi:10.1145/344779.344835. 2

[Loo87] LOOP C.: Smooth subdivision surfaces based on triangles. Mas-
ter’s thesis, University of Utah, Department of Mathematics (1987). 2

[NLMD12] NIESSNER M., LOOP C., MEYER M., DEROSE T.: Feature-
adaptive gpu rendering of catmull-clark subdivision surfaces. ACM
Trans. Graph. 31, 1 (Feb. 2012), 6:1–6:11. doi:10.1145/
2077341.2077347. 3

[PBW19] PREINER R., BOUBEKEUR T., WIMMER M.: Gaussian-
product subdivision surfaces. ACM Transactions on Graphics 38, 4 (July
2019), 35:1–35:11. doi:10.1145/3306346.3323026. 2, 3, 5, 8

[PEO09] PATNEY A., EBEIDA M. S., OWENS J. D.: Parallel view-
dependent tessellation of catmull-clark subdivision surfaces. In Pro-
ceedings of the conference on high performance graphics 2009 (2009),
pp. 99–108. doi:10.1145/1572769.1572785. 3

[PIX21] PIXAR: Opensubdiv api (version 3.4.4), 2021. URL: https:
//graphics.pixar.com/opensubdiv/. 3

[SJP05] SHIUE L.-J., JONES I., PETERS J.: A realtime gpu subdivision
kernel. In ACM SIGGRAPH 2005 Papers (New York, NY, USA, 2005),
SIGGRAPH ’05, ACM, pp. 1010–1015. doi:10.1145/1186822.
1073304. 3

[Sta98a] STAM J.: Evaluation of loop subdivision surfaces. In SIG-
GRAPH’98 CDROM Proceedings (1998). 3

[Sta98b] STAM J.: Exact evaluation of catmull-clark subdivision surfaces
at arbitrary parameter values. In Siggraph (1998), vol. 98, pp. 395–404.
doi:10.1145/280814.280945. 2, 3

[Sta01] STAM J.: On subdivision schemes generalizing uniform b-spline
surfaces of arbitrary degree. Computer Aided Geometric Design 18, 5
(2001), 383–396. doi:10.1016/S0167-8396(01)00038-3. 8

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

34

https://doi.org/10.1145/2897824.2925874
https://doi.org/10.1145/344779.344841
https://doi.org/10.1111/j.1467-8659.2011.02083.x
https://doi.org/10.1016/0010-4485(78)90110-0
https://doi.org/10.1145/280814.280826
https://doi.org/10.1145/280814.280826
https://doi.org/10.1016/0010-4485(78)90111-2
https://doi.org/10.1145/344779.344835
https://doi.org/10.1145/2077341.2077347
https://doi.org/10.1145/2077341.2077347
https://doi.org/10.1145/3306346.3323026
https://doi.org/10.1145/1572769.1572785
https://graphics.pixar.com/opensubdiv/
https://graphics.pixar.com/opensubdiv/
https://doi.org/10.1145/1186822.1073304
https://doi.org/10.1145/1186822.1073304
https://doi.org/10.1145/280814.280945
https://doi.org/10.1016/S0167-8396(01)00038-3

