
Vision, Modeling, and Visualization (2021)
B. Andres, M. Campen, and M. Sedlmair (Eds.)

GPU-Parallel Constant-Time Limit Evaluation of Catmull-Clark
Solids

S. Besler1 , C. Altenhofen1 , A. Stork1 and D. W. Fellner1,2

1TU Darmstadt & Fraunhofer IGD, Germany
2TU Graz, Austria

Abstract
Subdivision solids, such as Catmull-Clark (CC) solids, are versatile volumetric representation schemes that can be employed
for geometric modeling, physically based simulation, and multi-material additive manufacturing. With volumetric limit evalu-
ation still being the performance bottleneck for these applications, we present a massively parallel approach to Altenhofen et
al.’s constant-time limit evaluation method for CC solids. Our algorithm exploits the computational power of modern GPUs,
while maintaining the mathematical concepts of Altenhofen et al.’s method. Distributing the computations for a single cell
across multiple streaming multiprocessors (SMs) increases the utilization of the GPU’s resources compared to straightforward
parallelization. Specialized compute kernels for different topological configurations optimize shared memory usage and mem-
ory access. Our hybrid approach dynamically chooses the best kernel based on the topology and the evaluation parameters,
resulting in speedups of between 5.75× and 61.58× compared to a CPU-parallel implementation of Altenhofen et al.’s method.

1. Introduction

While subdivision surfaces are widely used in the entertainment
industry, especially in the fields of computer graphics and com-
puter animation, they have also been receiving increased atten-
tion in engineering in recent years. Generative design and topol-
ogy optimization – both boosted by the recent advancements in ad-
ditive manufacturing (AM) – create a need for flexible geometric
representations suited for organic shapes. At the same time, addi-
tive manufacturing allows for creating objects with locally varying
volumetric properties, such as density or stiffness, complex inner
structures, and advanced functionality that cannot be achieved by
traditional manufacturing techniques, such as milling or casting.

Subdivision solids – the volumetric extension of the concepts
behind subdivision surfaces – provide flexible volumetric represen-
tation schemes that allow for design, analysis, and manufacturing
such objects. Recent publications show how subdivision solids, i.e.
Catmull-Clark (CC) solids [JM99] can be employed for geometric
modeling [ASSF17], physically based simulation via isogeometric
analysis (IGA) [BHU10, XXD+20, AESF21], and multi-material
additive manufacturing [ALG+18, LAE+19].

The main challenge when working with subdivision solids is
efficiently evaluating the limit volume, especially in irregular re-
gions. For Catmull-Clark solids, Altenhofen et al. presented a limit
evaluation approach [AMW+18] that, similar to Stam’s approach
for CC surfaces [Sta98a], evaluates every individual limit point in
constant time. Nevertheless, evaluating the limit volume is still the
computational bottleneck when using CC solids for all three fields

mentioned above – geometric modeling, IGA, multi-material AM.
Decreasing the simulation times for CC-solid IGA would allow for
analyzing more design variants in the same time in an optimiza-
tion scenario and would enable interactive modeling environments
to provide immediate feedback on the design and especially on de-
sign changes based on simulation results. Recent developments in
additive manufacturing, i.e. digital light processing (DLP) and di-
rect image sintering (DIS) allow for processing an entire layer of
material at once instead of curing or sintering the material within
the layer along a given path. As this has tremendous potential in
reducing printing times, the slicing process has to be sped up ac-
cordingly to not become a bottleneck.

Research has oftentimes succeeded in accelerating compute
intensive tasks by parallelization and by utilizing massively
parallel processors such as graphics processing units (GPUs).
GPUs can perform generic computing tasks in parallel using a
GPGPU computing framework, such as NVIDIA CUDA [NVI21a]
or OpenCL [NVI21b]. As the algorithm by Altenhofen et
al. [AMW+18] shows little interdependency between the limit of
different cells in the CC-solid model, as well as between the limit
points of a single cell, the algorithm can benefit greatly from mas-
sively parallel computation exploiting the computational power of
GPUs. As limit evaluation can take a significant part of the compu-
tation time in the aforementioned applications, massively parallel
computation of the limit volume will greatly benefit them.

Our main contributions are:

• A massively parallel constant-time limit evaluation approach for

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

DOI: 10.2312/vmv.20211369 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-6347-2481
https://orcid.org/0000-0001-7733-4146
https://orcid.org/0000-0001-7538-7674
https://orcid.org/0000-0001-7756-0901
https://doi.org/10.2312/vmv.20211369

S. Besler, C. Altenhofen, A. Stork & D. Fellner / GPU-Parallel CC-Solids

Catmull-Clark solids, exploiting the computational throughput
of modern GPUs
• An approach to distribute the evaluation of a layered or irregular

cell across multiple streaming multiprocessors (SMs), ensuring
a sufficient workload for the GPU, even when evaluating just a
few cells
• Specialized compute kernels optimizing shared memory usage

and computation time for different topological configurations
and evaluation parameters
• A hybrid strategy that dynamically chooses the optimal kernel

for minimizing computation time by exploiting the advantages
of each kernel type

2. Related Work

The basic concept behind subdivision algorithms is to iteratively re-
fine a given control mesh following a set of subdivision rules. The
specific rules depend on the subdivision scheme to be used. For
most schemes, this refinement process converges to the so-called
limit for an infinite number of subdivision steps. Various methods
for curves, surfaces and solids have been presented over the years,
each with different requirements regarding the topology of the con-
trol mesh and the properties, e.g. smoothness, of the resulting limit
surface. While e.g. the Loop subdivision scheme [Loo87] requires
purely triangular meshes, Catmull-Clark subdivision [CC78] can
handle more complex surface meshes with arbitrary polygons.

Since performing an infinite number of subdivision steps cannot
be done in real world applications, the limit surface can only be
approximated by explicit subdivision. However, e.g. for Loop and
Catmull-Clark surfaces, Stam’s groundbreaking methods [Sta98b,
Sta98a] allow for efficiently evaluating the limit surface directly
from the control mesh. His algorithms are one of the reasons for
the wide use of subdivision surfaces in the entertainment industry.

While subdivision surfaces only describe the shape of a 3D ob-
ject by means of its outer surface, subdivision solids provide a vol-
umetric representation with cells and inner control points for in-
ternal degrees of freedom and encoding volumetric information.
Following the same concepts as subdivision surfaces, subdivision
solids feature a set of subdivision rules that converge towards the
so-called limit volume. Different polyhedral meshes can serve as
control meshes for different volumetric subdivision schemes, such
as Schaefer et al.’s scheme [SHW04] on tetrahedra, or Bajaj et al.’s
scheme [BSWX02] for hexahedral meshes. Catmull-Clark solids as
presented by Joy and MacCracken [JM99] support control meshes
with almost arbitrary polyhedra (see Section 3.1). An overview of
the individual subdivision schemes, their benefits and drawbacks
can be found in Chang’s and Qin’s survey paper [CQ03].

Building on Stam’s efficient limit evaluation approach [Sta98a]
and incorporating Liu et al.’s insights on irregular topological con-
figurations [LZC+18], Altenhofen et al. [AMW+18] presented an
efficient limit evaluation method for Catmull-Clark solids. Similar
to Stam’s approach for CC surfaces, it evaluates every limit point in
constant time regardless of its proximity to extraordinary vertices
or edges, resulting in a linear complexity w.r.t. the total number of
limit points to be evaluated. However, volumetric limit evaluation
is still the performance bottleneck. Even though Luu et al. use the

constant-time limit evaluation, the performance of their algorithm
for slicing multi-material CC-solid models [LAE+19] is still lim-
ited by the evaluation process.

While researchers such as Hughes et al., Dokken et al. and Elber
et al. worked on employing trivariate tensor-product splines, e.g.
B-splines and NURBS volumes to geometric modeling [ME16],
IGA [HCB05, DSHB09], and multi-material AM [EDE17], these
representation schemes are out of scope for our paper. However,
especially for IGA, using tensor-product splines is much more com-
mon than using subdivision models.

To the best of our knowledge, no massively parallel algorithms
exist for evaluating the limit volume of subdivision solids. How-
ever, researchers have worked on accelerating the evaluation of sub-
division surfaces. Bolz et al. [BS02] presented a parallelized tech-
nique for Catmull-Clark surfaces, using lookup tables to rapidly
evaluate the limit. Nießner et al. [NLMD12] use a combination of
compute and tessellation shaders on the GPU to efficiently evaluate
the limit surface during rendering. For subdivision solids, Mueller-
Roemer et al. [MAS17] showed how to efficiently store and pro-
cess volumetric meshes on the GPU, using ternary sparse matrices
to represent the CC-solid control mesh and presenting a massively
parallel implementation of Catmull-Clark solid subdivision. Volu-
metric limit evaluation has not yet been performed on GPUs.

3. Catmull-Clark Solids

As our approach performs massively parallel limit evaluation on
Catmull-Clark solids, we briefly introduce the concepts of CC
solids and of Altenhofen et al.’s constant-time limit evaluation tech-
nique [AMW+18].

3.1. Terms and Concepts

Volumetric control meshes for CC solids are polyhedral meshes de-
fined by vertices, edges, faces, and cells. One of the advantages of
Catmull-Clark solid subdivision compared to the volumetric sub-
division schemes of e.g. Schaefer et al. [SHW04] and Bajaj et
al. [BSWX02] is the flexibility of the topology of the control mesh.
CC-solid control meshes can consist of any type of polyhedron
that subdivides purely into hexahedra after at most two subdivision
steps. Such polyhedra are e.g. tetrahedra, wedges, extruded poly-
gons with quadrilateral side faces, and more complex polyhedra
as shown by Liu et al. [LZC+18]. n-sided pyramids with n >= 4
do not subdivide into hexahedra and are therefore not supported in
CC-solid control meshes.

When evaluating the limit volume of a CC-solid model, regions
in the control mesh that deviate from regular hex-mesh topology
require additional attention. While Catmull-Clark surfaces define
extraordinary vertices (EVs) as control points with a valence other
than 4 – the valence being the number of edges attached to the
vertex – CC solids transfer that definition to the volumetric case
and also introduce extraordinary edges (EEs). An EE is an edge
with a valence other than 4 for internal edges and a valence other
than 3 for edges at the boundary of the control mesh. The valence
of an edge is defined by the number of attached faces. Any control
point, where multiple EEs meet for a single cell, is defined as an

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

36

S. Besler, C. Altenhofen, A. Stork & D. Fellner / GPU-Parallel CC-Solids

Figure 1: The transformation fC of each CC-solid cell C from pa-
rameter space (u,v,w) ∈ [0,1]3 to its limit volume in Euclidean
space R3. Image adopted from Altenhofen et al. [AESF21].

(a) Regular cell (b) Layered cell (c) Irregular cell

Figure 2: Local control meshes for the three cell classes defined by
Altenhofen et al. [AMW+18], with EEs and EVs marked in orange.
The cell to be evaluated is visualized in light blue. In the exam-
ples shown here, all EEs have a valence of 3. Images adopted from
Altenhofen et al. [AMW+18].

EV. For the CC-solid limit volume to be evaluatable, each cell of
the control mesh must be hexahedral and may contain at most one
EV. If a cell contains multiple EEs, they must all share a common
EV.

Each CC-solid cell C is parametrized as a unit cube in parameter
space (u,v,w) ∈ [0,1]3. The CC-solid basis functions describe the
transformation fC that maps every parameter point (u,v,w) to its
limit position (x,y,z) in Euclidean space R3 (see Figure 1).

3.2. Volumetric Limit Evaluation

The goal of limit evaluation of Catmull-Clark solids is to accu-
rately compute the limit volume of a CC-solid model without ex-
plicitly subdividing the control mesh. The limit volume is evalu-
ated per cell. For each cell, the limit is computed at a set of sam-
ple points (u,v,w), each sample point resulting in exactly one limit
point (x,y,z). The limit point is thereby defined by the local control
points and the subdivision basis functions evaluated at its parame-
ters (u,v,w). Based on their topological configuration, the cells of
a CC-solid model are categorized into three different classes that
define their subdivision basis functions in different ways.

Regular cells are cells that do not contain any extraordinary
edges. For cells inside the CC-solid model, the local control points
form a regular grid of 4× 4× 4 points as shown in Figure 2(a),
leading to 64 control points. For regular boundary cells, the top-
most layer does not exist, resulting in a grid of 3× 4× 4 control

points. The limit points pregular(u,v,w) of a regular cell are calcu-
lated as the product of its control points C and a tensor product of
three univariate B-Spline basis functions N(u,v,w):

pregular(u,v,w) = CT N(u,v,w) (1)

Layered cells have one extraordinary edge and form a layered lo-
cal control mesh as shown in Figure 2(b). Each layer represents an
irregular 2D control mesh with the same valence as the EE. There-
fore, the limit evaluation uses the 2D eigenstructures known from
Stam’s Catmull-Clark surface evaluation [Sta98a] to compute the
basis functions. The limit points playered(u,v,w) of a layered cell
are given by the product of the local control points C and the tensor
product of Stam’s 2D subdivision basis functions ϕ(u,v) with an
univariate cubic B-spline basis function N(w):

playered(u,v,w) = CT
ϕ(u,v)N(w) (2)

Irregular cells have more than one EE and therefore also an EV.
The topology of their local control mesh depends on the combina-
tion of valences of the EEs. Figure 2(c) shows an irregular cell with
two EEs, each with a valence of 3. Liu et al. presented a method for
algorithmically enumerating all possible irregular combinations,
showing examples for the valences 3 and 5 [LZC+18]. Evaluating
the limit of such cells requires the calculation of the local volu-
metric subdivision matrix and its 3D eigenstructure as described
by Altenhofen et al. [AMW+18]. With each local subdivision step,
the cell is split into a minimum of four regular sub-cells and a max-
imum of three layered sub-cells. The sub-cell that contains the ex-
traordinary vertex remains irregular and features the same topolog-
ical configuration as the original cell. Evaluating a limit point in an
irregular cell therefore results in locally subdividing the cell until
the parameter point (u,v,w) lies in a regular or layered sub-cell.
The limit point can then be evaluated using the aforementioned
strategies. Similar to Stam’s approach, all local subdivision steps
are combined into a single mathematical operation, using a consis-
tent local subdivision matrix and its 3D eigenstructure. Finally, the
limit points are computed via the product of the control points C,
the 3D eigenstructure and the volumetric basis functions N of the
corresponding regular or layered sub-cell:

pirregular(u,v,w) = CT V−T
Λ

n−1VT ĀT PT
k N(φk,n(u,v,w)) (3)

Directly evaluating regular and layered cells as well as using
the 3D eigenstructure for evaluating irregular cells results in a
constant-time volumetric limit evaluation for CC-solid models. The
approach works for both interior and boundary cells. Furthermore,
it allows for evaluating the derivatives of the basis functions re-
quired for IGA and multi-material AM slicing. The derived basis
functions at any given parameter point (u,v,w) are computed by
substituting the B-spline basis functions with their partial deriva-
tives. More details on volumetric limit evaluation can be found in
the paper by Altenhofen et al. [AMW+18].

4. Massively Parallel Limit Evaluation

Limit evaluation is a computationally expensive process heavily re-
lying on floating point arithmetic. Since current generation GPUs

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

37

S. Besler, C. Altenhofen, A. Stork & D. Fellner / GPU-Parallel CC-Solids

feature higher arithmetic throughput than CPUs, a massively par-
allel implementation exploiting the computational power of GPUs
is expected to drastically reduce the runtime of the limit evaluation
algorithm. However, massively parallel computation requires inde-
pendent computations and data subsets to make full use of the high
arithmetic throughput of the massively parallel processor.

In our massively parallel limit evaluation approach, we designed
separate evaluation algorithms for each cell class to allow fine-
grained optimization of our methods to the requirements of each
class.

4.1. Pipeline

Our method uses the CPU to categorize the cells and precompute
the needed 2D and 3D eigenstructures. The computation of basis
functions and limit points is executed on the GPU in parallel using
the NVIDIA CUDA toolkit [NVI21a].

Categorizing the cells into the three classes – regular, layered
and irregular – requires analyzing the topology of the volumetric
model, i.e. the one-ring neighborhood of every cell. We do this
by traversing a pointer-based half-face data structure that describes
the CC-solid object. To calculate the 2D and 3D eigenstructures,
the corresponding local subdivision matrices are constructed and
their eigenvalues and eigenvectors are computed. During this step,
our algorithm divides the 2D eigenstructures needed for evaluat-
ing layered cells and 3D eigenstructures of irregular cells into sub-
matrices as described in Section 4.2.2. The subdivision basis func-
tions and limit points are finally computed on the GPU. Figure 3
shows the evaluation pipelines for the three cell classes.

4.2. Parallelization

Following the NVIDIA CUDA programming model for modern
NVIDIA GPUs [NVI20a], work is organized in a grid of blocks,
containing groups of threads, all of which execute the same pro-
gram – the so-called kernel. The blocks of a grid are scheduled onto
the streaming multiprocessors (SMs) – hardware units on the GPU,
that contain multiple cores and on-chip shared memory, accessible
from all cores of the SM. The threads of each block are executed
by the cores of an SM. As SMs do not feature a scheduler per core,
threads are grouped into clock-synchronous execution units of 32
threads, called warps.

The programming model defines the hierarchy of threads and de-
fines data exchange between threads. The threads of a block can use
the shared memory of the SM to store and exchange data. Data ex-
change between the blocks of a grid or between the GPU and CPU
is done via global memory – the GPUs DRAM. Threads belonging
to the same warp can also make use of warp-shuffle operations to
exchange data stored in registers.

Our GPU-parallel limit evaluation uses one block per regular
cell. For layered and irregular cells, multiple blocks are used to
compute the limit of each cell.

The actual computation of the limit points is parallelized within
each block in two different ways, again based on the cell’s topology.
The thread-based approach computes one limit point per thread.

Collect local
control points

Evaluate B-spline
basis functions

Multiply weights
and control points

(a) GPU-parallel limit evaluation of regular cells

Collect local
control points

Pre-calculate
2D eigenstructures

Evaluate layered
basis functions

Multiply weights
and control points

(b) GPU-parallel limit evaluation of layered cells

Collect local
control points

Pre-calculate
2D eigenstructures

Pre-calculate
3D eigenstructures

Evaluate irregular
basis functions

Multiply weights
and control points

(c) GPU-parallel limit evaluation of irregular cells

Figure 3: Pipelines of our GPU-parallel limit evaluation technique
for each cell class – regular, layered and irregular. Steps that are
executed on the CPU are colored in lavender, while steps that are
performed on the GPU are shown in green.

This approach maximizes the multiply-add instruction to memory
instruction ratio by maximizing the work per thread. The warp-
based approach allocates an entire warp to compute a limit point,
maximizing parallelism, while also optimizing global memory ac-
cess across the warp. As we provide individual kernels per cell
class, our method features a hybrid approach that dynamically
chooses between the thread-based and the warp-based kernel for
each cell class, based on the number of cells in the corresponding
cell class and the number of sample points per cell.

As the block size cannot exceed a hardware limit of 1024
threads [NVI20a] and the performance of a compute kernel is im-
pacted by the block size, the implementation limits the block size to
reach optimal performance. Our experiments showed that the per-
formance of the kernels peaks at a maximum block size of 128. If
the number of limit points per cell exceeds the maximum thread
count, the threads of each block compute the limit points using a
block-stride loop.

4.2.1. Regular Cells

The massively parallel limit evaluation uses a single block to com-
pute all limit points of a regular cell. Each thread – or warp, respec-
tively – computes one or more limit points of the cell by evaluating
Equation (1).

Figure 4 shows the calculations for evaluating a limit point p

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

38

S. Besler, C. Altenhofen, A. Stork & D. Fellner / GPU-Parallel CC-Solids

p = CT
0 N =

(
c1 . . . c32 c33 . . . c64

)


n1
...

n32
n33

...
n64


pthread =

(
c1n1 + . . .+ c32n32 + c33n33 + . . .+ c64n64

)thread1

pwarp =
(
c1 c33

)(n1
n33

)thread1

+ . . .+
(
c32 c64

)(n32
n64

)thread32

pwarp =
(
c1n1 + c33n33 + . . .+ c32n32 + c64n64

)
Figure 4: Limit evaluation of a regular cell using the thread-based
as well as the warp-based evaluation approach. The thread-based
approach computes one limit point in a single thread, while the
warp-based approach uses an entire warp to compute the limit
point.

inside a regular cell using the thread-based and the warp-based ap-
proaches. The control points as well as the number of basis func-
tions along each parameter axis u, v, w are stored in shared memory,
as they are constant across all limit points of the cell. The warp-
based kernel also stores the basis functions along each parameter
axis in shared memory, as these are accessed by all threads of the
warp. As the number of control points and basis functions of regular
cells will either be 64 for inner cells or 48 for boundary cells, we
optimize shared memory consumption of the compute kernels by
allocating shared memory based on the local topology (internal or
boundary). Our implementation features a thread-based kernel and
a warp-based kernel for internal cells (REG64), as well as a thread-
based kernel and a warp-based kernel for boundary cells (REG48).

4.2.2. Eigenstructure Tiling

In contrast to the evaluation of regular cells, the evaluation of lay-
ered and irregular cells uses 2D and 3D eigenstructures as described
in Section 3.2. To reduce access times and increase throughput of
the computation, the 2D and 3D eigenstructures of layered and ir-
regular cells, are stored in shared memory. Due to the arbitrary size
of the eigenstructures – depending on the valences of the EEs –
and the limited amount of shared memory available on each SM,
a single eigenstructure can limit parallelism by consuming the en-
tire shared memory of a block or can even exceed the amount of
shared memory available per block. Therefore, our method uses
tiles – sub-matrices with fixed sizes – of the eigenstructures to
compute the limit points of layered and irregular cells. Assigning
each tile to a different block ensures that the eigenstructures can be
kept in shared memory, regardless of their dimensions, while also
maintaining parallelism by distributing the eigenstructures across
multiple blocks. Figures 5(a) and 5(b) show the tiling of 2D and

E =



e1,1 · · · e1,16
...

. . .
...

e32,1 · · · e32,16
e33,1 · · · e33,16

...
. . .

...
e64,1 · · · e64,16



E1,1 =

 e1,1 · · · e1,16
...

. . .
...

e32,1 · · · e32,16



E2,1 =

e33,1 · · · e33,16
...

. . .
...

e64,1 · · · e64,16


(a) Tiling of a 64×16 2D eigenstructure E into two tiles of 32×16

E =



e1,1 · · · e1,64
...

. . .
...

e32,1 · · · e32,64
e33,1 · · · e33,64

...
. . .

...
e64,1 · · · e64,64



E1,1 =

 e1,1 · · · e1,32
...

. . .
...

e32,1 · · · e32,32


...

...

E2,2 =

e33,33 · · · e33,64
...

. . .
...

e64,33 · · · e64,64


(b) Tiling of a 64×64 3D eigenstructure E into four tiles of 32×32

Figure 5: Dividing of 2D and 3D eigenstructures E into tiles.
Tiling the eigenstructures allows for distributing a single eigen-
structure across multiple blocks, storing each tile in shared mem-
ory of the corresponding block. As 2D eigenstructures have a fixed
width of 16 columns, they are just split horizontally. 3D eigenstruc-
tures are of arbitrary size N×M. They are split in both directions.

3D eigenstructure matrices into 2 and 4 tiles, respectively. As each
block accesses just one tile of the eigenstructure, it does not com-
pute the actual limit point, but an intermediate result. The final limit
point is computed by aggregating all intermediate results across the
corresponding blocks.

4.2.3. Layered Cells

The limit evaluation of layered cells follows Equation (2) presented
in Section 3.2. The 2D eigenstructure is split into tiles as described
in the previous section in order to optimize shared memory us-
age. Each tile of the eigenstructure is assigned to one block, which
computes all intermediate limit points produced by the tile. For
the thread-based evaluation, each thread computes one or more in-
termediate limit points. For the warp-based evaluation, the same
number of intermediate points is computed by each warp. Figure 6
shows the computation of the layered subdivision basis functions
N, which are then multiplied with the individual control points.

In addition to its sub-matrix of the 2D eigenstructure, each block
stores the control points of the corresponding layered cell in shared
memory to reduce access times. The warp-based kernel also stores
the basis functions along each parameter axis in shared memory.
To reduce bank conflicts during the evaluation process, the sub-
matrices of the eigenstructures are transposed while being copied
to shared memory and are therefore stored in column-major order.
The implementation supports 2D eigenstructure tiles of 16×16 and

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

39

S. Besler, C. Altenhofen, A. Stork & D. Fellner / GPU-Parallel CC-Solids

bu =


bu1
bu2
bu3
bu4

 bv =


bv1
bv2
bv3
bv4

 bw =


bw1
bw2
bw3
bw4

 buv = vec(bubT
v)

N =


bw1Ebuv
bw2Ebuv
bw3Ebuv
bw4Ebuv

=



bw1E1,1buv
bw1E2,1buv
bw2E1,1buv
bw2E2,1buv
bw3E1,1buv
bw3E2,1buv
bw4E1,1buv
bw4E2,1buv



N1 =


bw1E1,1buv
bw2E1,1buv
bw3E1,1buv
bw4E1,1buv

 N2 =


bw1E2,1buv
bw2E2,1buv
bw3E2,1buv
bw4E2,1buv


block1 block2

Figure 6: Computation of the weight matrix using a tiled 2D eigen-
structure E and three univariate B-Spline basis functions bu, bv, bw.
As shown in Figure 5, each tile is assigned to one block on the GPU.
Each block computes a part of the weight matrix N. The intermedi-
ate limit points are given by the product of the partial weight matrix
and the respective control points. They are accumulated in global
memory via atomic operations to compute the actual limit point.

32×16, implementing one thread-based kernel and one warp-based
kernel per tile size – LAY 16x16 and LAY 32x16, respectively.

4.2.4. Irregular Cells

In addition to the 2D eigenstructures, evaluating irregular cells
requires the 3D eigenstructures as shown in Equation (3). Our
massively-parallel method uses approaches analogous to the eval-
uation of layered cells described in the previous section. The 3D
eigenstructures are tiled and assigned to individual blocks, which
compute the corresponding intermediate limit points.

Each block stores its sub-matrix of the 3D eigenstructure, the
local control points of the cell, as well as the number of basis func-
tions along each parameter axis u, v, w in shared memory, as this
data is constant across all limit points the block computes. To save
registers for the thread-based kernel, the size, data pointer, k and
n of the 2D eigenstructures are also stored in shared memory, al-
though they are only accessed by a single thread. The warp-based
kernel additionally stores the actual basis functions along each pa-
rameter axis, the univariate and trivariate basis functions, as this
data is accessed by each thread of a warp. Similar to the kernels
for evaluating layered cells, the sub-matrices of the 3D eigenstruc-
tures are stored in column-major order. Figure 7 shows the compu-
tation of the weights for a limit point using a tiled 3D eigenstruc-
ture. The 3D eigenstructure tiles are supported in sizes of 32× 32
(IRR32x32) and 64× 32 (IRR64x32). Each tile size again imple-
ments a thread-based kernel and a warp-based kernel.

bu =


bu1
bu2
bu3
bu4

 bv =


bv1
bv2
bv3
bv4

 bw =


bw1
bw2
bw3
bw4


buvw = vec(vec(bubT

v)bT
w)

N = Ebuvw =

((
E1,1 E1,2

)
buvw(

E2,1 E2,2
)

buvw

)

N1 = E1,1

 buvw1
...

buvw32

 + E1,2

buvw32
...

buvw64



N2 = E2,1

 buvw1
...

buvw32

 + E2,2

buvw32
...

buvw64



block1 block2

block3 block4

Figure 7: Computation of the weight matrix using a tiled 3D eigen-
structure E (see Figure 5) and three univariate B-Spline basis func-
tions bu, bv, bw. Each block processes one tile of the eigenstruc-
ture and computes part of the weight matrix N. Similarly to layered
evaluation, the intermediate limit points are accumulated in global
memory via atomic operations.

5. Results

To assess the performance of our GPU-parallel limit evaluation
method, we measured the computation time and geometric error
for four CC-solid models with increasing topological complexity
– i.e. increasing numbers of EEs, EVs and crease edges. The four
models car, tripod, engine mount and connecting rod are shown
in Figure 8 while their topology is analyzed in Table 1. For each
of the four models and each cell class, we evaluated various num-
bers of limit points on various subdivision levels with our GPU-
parallel approach on three different NVIDIA GPUs – GeForce
GTX 1070, RTX 2080 Ti, and Quadro GP100 – as well as with
a CPU-parallel implementation of Altenhofen et al.’s original algo-
rithm [AMW+18] on an Intel i7-6700k CPU. The subset of chosen
GPUs represents a mid-range and a high-range consumer GPU, as
well as a GPU for professional use featuring HBM2 memory.

5.1. Thread-Based vs. Warp-Based Evaluation

First, we compared the computation times of the thread-based
and the warp-based kernels for the different cell classes (see Sec-
tion 4.2). As the thread-based kernels focus on arithmetic opera-
tions, they outperform the warp-based kernels when evaluating a
sufficiently large number of limit points per cell. In these situa-
tions, the many sample points spawn enough threads to properly
utilize the GPU, while also benefitting from the higher arithmetic

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

40

S. Besler, C. Altenhofen, A. Stork & D. Fellner / GPU-Parallel CC-Solids

(a) Car model (b) Tripod model (c) Engine mount model (d) Connecting rod model

Figure 8: Visualization of the four CC-solid models used for benchmarking our approach. The images show the control mesh in gray, the
limit surface transparently in yellow and evaluated limit points in red.

Model n #cells
Regular Layered Irregular

64 48 16x16 32x16 32x32 64x32

Car
0 24 0 (-) 0 (-) 16 (66.7%) 0 (-) 8 (33.3%) 0 (-)
1 192 40 (20.8%) 88 (45.8%) 56 (29.2%) 0 (-) 8 (4.2%) 0 (-)
2 1536 792 (51.6%) 600 (39.1%) 136 (8.9%) 0 (-) 8 (0.5%) 0 (-)

Tripod
0 1088 360 (33.1%) 504 (46.3%) 168 (15.4%) 20 (1.8%) 12 (1.1%) 24 (2.2%)
1 8704 5448 (62.6%) 2776 (31.9%) 380 (4.4%) 40 (0.5%) 12 (0.1%) 48 (0.6%)
2 69632 55944 (80.3%) 12696 (18.2%) 804 (1.2%) 80 (0.1%) 12 (0.0%) 96 (0.1%)

Engine Mount
0 3120 1088 (34.9%) 1288 (41.3%) 352 (11.3%) 140 (4.5%) 0 (-) 252 (8.1%)
1 24960 16288 (65.3%) 7136 (28.6%) 752 (3.0%) 280 (1.1%) 0 (-) 504 (2.0%)
2 199680 164144 (82.2%) 32416 (16.2%) 1552 (0.8%) 560 (0.3%) 0 (-) 1008 (0.5%)

Conn. Rod
0 9056 4336 (47.9%) 2940 (32.5%) 708 (7.8%) 352 (3.9%) 164 (1.8%) 556 (6.1%)
1 72448 53968 (74.5%) 14700 (20.3%) 1476 (2.0%) 928 (1.3%) 180 (0.2%) 1196 (1.7%)
2 579584 507184 (87.5%) 64620 (11.1%) 3012 (0.5%) 2080 (0.4%) 212 (0.0%) 2476 (0.4%)

Table 1: Topology of the four test models for different subdivision levels n. The cells are categorized into different classes and sub-classes,
each evaluated by a specific compute kernel. The sub-classes for regular cells are defined by the number of control points – 64 for internal
cells and 48 for boundary cells – while the sub-classes of layered and irregular cells are defined by the size of the eigenstructure tiles. For
every cell class, the table shows the absolute and relative number of cells in the corresponding CC-solid model.

intensity of the thread-based kernel. The warp-based kernels, on the
other hand, can still maintain proper GPU utilization when evaluat-
ing only a few sample points per cell due to their inherently higher
thread count per block.

Using 43 = 64 and 83 = 512 sample points per cell (see Fig-
ure 9), the thread-based kernel outperforms the warp-based ker-
nel for regular and layered cells. Even though the thread-based
approach is faster for these cell classes independent of the sam-
ple count, the speedups of the thread-based approach over the
warp-based approach are only measured as 3.87× (REG64), 2.87×
(REG48), 1.06× (LAY 16x16) and 1.36× (LAY 32x16), respectively,
when sampling each cell at 64 points. The higher sample count of
512 sample points leads to higher speedups of 10.10×, 10.13×,
5.15× and 2.67×, respectively. For irregular cells, the low num-
ber of sample points per eigenstructure tile when sampling at 64
sample points prohibits the thread-based kernel from fully utiliz-
ing the GPU. The warp-based kernel shows speedups of 1.10× and
1.59× over the thread-based approach. Increasing the sample count
to 512 also increases the number of threads per block and enables
the thread-based kernel to outperform the warp-based kernel even
for irregular cells by factors of 3.54× and 2.29×.

The effect of using the hybrid approach of dynamically choos-
ing the optimal kernel based on the evaluation parameters can be

seen in Figure 10 where we measured the performance when eval-
uating entire models instead of individual cell classes. The hy-
brid approach achieves a speedup of 1.63× on the engine mount
model and 1.56× on the connecting rod, compared to pure warp-
based evaluation. For both models, the thread-based approach out-
performs the warp-based approach, but is slower than the hybrid
approach, showing speedups of 1.40× and 1.31× over the warp-
based kernels. The tripod shows the thread-based approach to be
the fastest, with a speedup of 1.15× over the warp-based approach,
while the hybrid approach only achieves a speedup of 1.10×. The
car model features too few cells to produce conclusive results.

5.2. CPU vs. GPU

In this section, we present the performance comparison of our
GPU-parallel technique and the CPU-parallel implementation of
Altenhofen et al.’s approach [AMW+18]. Figure 11 shows the run-
time and speedup per cell class for evaluating 64 and 512 sample
points per cell using the Intel Core i7 CPU as well as our set of
different NVIDIA GPUs. For all cell classes, all GPUs evaluate the
cells in less time than the CPU. The data show that compute power
is the most important factor influencing the evaluation time. The
RTX 2080 Ti outperforms the other GPUs in most cases. Only the

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

41

S. Besler, C. Altenhofen, A. Stork & D. Fellner / GPU-Parallel CC-Solids

REG64
REG48

LAY16x16

LAY32x16

IRR32x32

IRR64x32
0

1

2

·10−2
3.

87
x

2.
87

x

1.
06

x 1.
36

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x 1.
00

x

1.
00

x

1.
10

x

1.
59

x

Cell class

R
un

tim
e

in
m

s

Thread
Warp

(a) Connecting rod, evaluating 43 = 64 sample points per cell

REG64
REG48

LAY16x16

LAY32x16

IRR32x32

IRR64x32
0

5

10

15
·10−2

10
.1

0x

10
.1

3x

5.
15

x

2.
67

x

3.
54

x

2.
29

x

1.
00

x

1.
00

x 1.
00

x

1.
00

x

1.
00

x

1.
00

x

Cell class

R
un

tim
e

in
m

s

Thread
Warp

(b) Connecting rod, evaluating 83 = 512 sample points per cell

Figure 9: Average evaluation time of the thread-based and warp-based kernels per cell for every cell class. The speedup of each kernel type
compared to the slower kernel type is shown above each bar. The connecting rod model is the most complex in our benchmark, featuring all
cell classes. The warp-based kernels outperform the thread-based kernels when evaluating irregular cells with 64 sample points per cell. For
all other configurations, the thread-based kernels evaluate the cells in less time.

Car
Tripod

Engine Mount

Connecting Rod
0

5

10

15

20

1.
43

x

1.
15

x 1.
40

x

1.
31

x

1.
31

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
10

x

1.
63

x

1.
56

x

R
un

tim
e

in
m

s

Thread
Warp
Hybrid

(a) 43 = 64 sample points per cell

Car
Tripod

Engine Mount

Connecting Rod
0

50

100

1.
97

x

3.
02

x

4.
14

x

4.
56

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

2.
00

x

2.
58

x

3.
63

x

4.
68

x

R
un

tim
e

in
m

s

Thread
Warp
Hybrid

(b) 83 = 512 sample points per cell

Figure 10: Runtime for each of the four models for evaluating the entire model using either the thread-based, warp-based or hybrid approach.
The speedup of each kernel type over the slowest kernel type is shown above each bar. For 64 samples per cell, the hybrid approach exploits
the speedup of the warp-based approach when evaluating irregular cells (see also Figure 9(a)), while for 512 samples, the thread-based
approach is dominant.

irregular cells of the connecting rod, sampled with 64 samples per
cell, show little difference between the RTX 2080 Ti and GP100.

However, the margin between the RTX 2080 Ti and the Quadro
GP100 is larger than the difference in raw compute power of the
two GPUs. The extensive use of atomics for the evaluation of lay-
ered and irregular cells limits memory bandwidth during writes to
global memory and therefore prohibits the GP100 from making use

of its wide memory bus. Our method excels at evaluating regular
cells. The RTX 2080 Ti produces speedups of 199.44× (REG64)
and 159.31× (REG48) compared to the CPU when sampling 512
sample points per cell. The more complex cell classes show lower
speedups of 74.98× (LAY 16x16) and 27.14× (LAY 32x16) for lay-
ered and 9.14× (IRR32x32) and 18.04× (IRR64x32) for irregular
cells. Reducing the sample count also reduces parallelism of the

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

42

S. Besler, C. Altenhofen, A. Stork & D. Fellner / GPU-Parallel CC-Solids

REG64
REG48

LAY16x16

LAY32x16

IRR32x32

IRR64x32
0

5

10

·10−2
36

.2
9x

38
.8

6x 5.
23

x 8.
95

x

2.
48

x

4.
62

x

59
.3

7x

41
.9

2x

12
.9

5x

23
.0

8x

4.
51

x

10
.4

6x

59
.6

6x

65
.7

4x

9.
92

x

17
.8

1x

4.
76

x

10
.2

5x
Cell class

R
un

tim
e

in
m

s

i7-6700K (OpenMP)
GTX 1070 (Hybrid)
RTX 2080 Ti (Hybrid)
GP100 (Hybrid)

(a) Connecting rod, evaluating 43 = 64 sample points per cell

REG64
REG48

LAY16x16

LAY32x16

IRR32x32

IRR64x32
0

10

20

30

·10−2

74
.1

2x

82
.9

5x

20
.0

9x

9.
31

x

2.
69

x

4.
61

x

19
9.

44
x

15
9.

31
x

74
.9

8x

27
.1

4x 9.
14

x

18
.0

4x

97
.4

2x

12
5.

95
x

35
.9

0x

18
.0

2x

4.
84

x

8.
55

x

Cell class

R
un

tim
e

in
m

s

i7-6700K (OpenMP)
GTX 1070 (Hybrid)
RTX 2080 Ti (Hybrid)
GP100 (Hybrid)

(b) Connecting rod, evaluating 83 = 512 sample points per cell

Figure 11: Average evaluation time per cell using the CPU and three different GPUs, evaluating 64 and 512 sample points per cell. The
speedup achieved on each GPU compared to the CPU implementation is shown above each bar. Increasing the number of sample points also
increases the speedup of our approach, especially for regular cells. For irregular cells, the RTX 2080 Ti and GP100 show little difference in
the runtime of limit evaluation for 64 samples, while the increased sample count of 512, allows the RTX 2080 Ti to outperform the GP100
significantly. As in Figure 9, we only show the results for the connecting rod in these diagrams.

limit evaluation and directly impacts performance. The speedups
are lowered to 59.37×, 41.92×, 12.95×, 23.08×, 4.51× and
10.46×, respectively.

The number of cells per cell class also influences the perfor-
mance of the algorithm. Cell classes containing only a few cells
spawn an insufficient number of blocks to fully utilize the GPUs
and therefore limit the speedup of the GPU approach compared
to the CPU implementation. The speedups achieved for evaluating
layered and irregular cell classes with a large number of cells –
LAY 32x16 and IRR32x32 – in the connecting rod are much higher
(especially for the RTX 2080 Ti) than the speedups for LAY 32x16
and IRR32x32. The RTX 2080 Ti is affected by this the most as it
features the most SMs. The performance of the GTX 1070 is im-
pacted less, as this GPU features fewer SMs but a larger number of
FP32 units per SM [NVI20b, NVI20a].

Figure 12 shows the performance measurements for evaluating
entire models. As for the individual cell classes, the overall eval-
uation time of the models is primarily determined by the process-
ing power of the GPU, as the RTX 2080 Ti shows the lowest run-
times, followed by the GP100 and the GTX 1070. The achieved
speedups depend on the total number of cells, as the car model
only achieves a maximum speedup of 5.75×, while the tripod, en-
gine mount and connecting rod models achieve maximum speedups
of 30.04×, 49.97× and 61.58×.

5.3. Sample Points per Cell vs. Number of Cells

Like Altenhofen et al.’s original approach, our GPU-parallel evalu-
ation method evaluates every single limit point in constant time.
Linearly increasing the sample count also linearly increases the

computations per cell. Therefore, in a sequential environment, the
runtime of the algorithm is expected to be linear w.r.t. the sample
count. In the massively parallel environment, the increased work
does not automatically increase the runtime by the same amount,
as the algorithm can use more threads per block to compute the
additional limit points. Increasing the sample count will therefore
not significantly impact throughput of the GPU-parallel implemen-
tation as long as the number of samples is less than or equal to the
maximum block size. If the sample count exceeds the maximum
block size, the work per thread increases linearly, as each thread
computes multiple limit points. The setup time of the block, as well
as copying data from global memory to shared memory, however,
is independent of the sample count. An increase in the number of
limit points evaluated per block will therefore reduce the overhead
relative to the evaluation time and lead to sublinear growth of the
runtime w.r.t. the number of sample points, as shown in Figure 13.

In addition to the number of sample points per cell, the perfor-
mance benefits of our method depends on the total number of cells
and the number of cells in specific cell classes. Small models with
too few cells – also in individual classes – do not scale well with the
massively parallel paradigms of modern GPUs (see Section 5.2).

As seen in Figure 11, the GPU-parallel implementation is most
efficient when evaluating regular cells. The GPU-parallel imple-
mentation will therefore benefit from subdividing models with a
high number of irregular cells, as just one of the resulting 8 cells
will remain irregular while the other 7 will either have a regular or
layered topology. Simultaneously reducing the sample count by a
factor of two along each axis produces the same limit points, while
increasing the ratio of regular to irregular cells. Figure 14 shows
that subdividing the model before evaluation improves the runtime

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

43

S. Besler, C. Altenhofen, A. Stork & D. Fellner / GPU-Parallel CC-Solids

Car
Tripod

Engine Mount

Connecting Rod
0

50

100

150

0.
90

x

4.
43

x

7.
12

x 8.
31

x

0.
64

x

4.
93

x

13
.4

2x

16
.1

4x

1.
26

x

6.
19

x

11
.4

4x

15
.6

6x

R
un

tim
e

in
m

s

i7-6700K (OpenMP)
GTX 1070 (Hybrid)
RTX 2080 Ti (Hybrid)
GP100 (Hybrid)

(a) 43 = 64 sample points per cell

Car
Tripod

Engine Mount

Connecting Rod
0

500

1,000

3.
80

x

16
.9

9x

14
.8

1x

16
.6

2x

5.
75

x

30
.0

4x

49
.9

7x

61
.5

8x

4.
32

x

27
.3

0x

27
.9

5x

30
.6

5x

R
un

tim
e

in
m

s

i7-6700K (OpenMP)
GTX 1070 (Hybrid)
RTX 2080 Ti (Hybrid)
GP100 (Hybrid)

(b) Models at 83 = 512 sample points per cell

Figure 12: Runtime per model for the CPU and three different GPUs, all evaluating 64 and 512 sample points per cell. The speedup for each
GPU compared to the CPU is shown above each bar. Increasing the sample count also increases the speedups of our approach compared
to the CPU implementation due to the increased thread count per block and therefore higher parallelism. Sampling the car model with 64
samples per cell results in a slowdown due to poor utilization of the GPU and the overheads of memory transfer and kernel launches negate
the faster evaluation times of the massively parallel implementation.

23 43 83

0

5

10

·10−4

Sample points per cell

R
un

tim
e

in
m

s
pe

rl
im

it
po

in
t Car (RTX 2080 Ti)

Tripod (RTX 2080 Ti)
Engine Mount (RTX 2080 Ti)
Connecting Rod (RTX 2080 Ti)

Figure 13: Runtime per limit point for increasing number of sam-
ple points per cell. As every sample point is evaluated in constant
time, the average runtime per limit point would be constant for a se-
quential algorithm. In a massively parallel environment, however,
the runtime per sample point decreases with higher sample counts,
due to higher GPU utilization and parallelism.

up to a certain level, until too few sample points per cell remain in
order to utilize the GPU efficiently. For the tripod and the engine
mount, the best results were achieved at one subdivision step and
83 sample points. The connecting rod shows the smallest runtime
at two subdivision steps and 43 sample points (Figure 14).

0 @ 163 1 @ 83 2 @ 43
0.1

0.2

0.3

0.4
·10−5

Subdivision level @ sample points per cell

R
un

tim
e

in
m

s
pe

rl
im

it
po

in
t Tripod (RTX 2080 Ti)

Engine Mount (RTX 2080 Ti)
Connecting Rod (RTX 2080 Ti)

Figure 14: Comparing the runtime per limit point for different
subdivision levels and sample counts. For each explicit subdivision
of the model, the sample count is reduced by a factor of 8, resulting
in the same number of total limit points. The car model has been
omitted in this diagram as the model features too few irregular cells
to benefit from subdivision.

5.4. Accuracy

In order to maximize the computational throughput on consumer
GPUs with a limited number of FP64 cores, our GPU-parallel
method uses single precision floating point arithmetic. While this

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

44

S. Besler, C. Altenhofen, A. Stork & D. Fellner / GPU-Parallel CC-Solids

produces less accurate results than the CPU-parallel implementa-
tion, which uses double precision floating point arithmetic, it allows
for a high performance on a wider range of hardware.

To analyze the difference in accuracy, we computed the average
error erravg over all limit points for each model and compared the
results for the thread-based and the warp-based kernels. Using the
CPU implementation as the baseline, the error err of a single limit
point p(u,v,w) is defined by the Euclidean distance between the
limit point evaluated on the CPU and the limit point evaluated on
the GPU:

err(p(u,v,w)) = ‖pcpu(u,v,w)− pgpu(u,v,w)‖2 (4)

As this computes the absolute error of each point, the error will
scale with the maximum distance of the limit points to the origin.

Due to the different kernel designs, the error depends on whether
the thread-based or the warp-based evaluation approach is used to
evaluate the limit points. The warp-based kernel uses significantly
fewer add operations per limit point compared to the thread-based
kernel by computing every 32nd weight and aggregating the results
via warp-shuffle reduction. Since each add operation can introduce
numerical errors due to floating point arithmetic, the limit points
evaluated with the warp-based kernels expectedly show a higher
accuracy than the ones of the thread-based kernels.

For evaluating the car model at 512 sample points per cell,
a purely thread-based evaluation produced an average error of
erravg = 1.10 · 10−7 compared to the CPU implementation, while
a purely warp-based approach produced an error of 7.63 · 10−8.
Evaluating the engine mount, tripod and connecting rod models
resulted in errors of 7.49 · 10−6 vs. 4.64 · 10−6, 2.80 · 10−7 vs.
1.75 · 10−7, 1.59 · 10−5 vs. 9.94 · 10−6 – thread-based vs. warp-
based. As the hybrid evaluation technique dynamically chooses be-
tween both kernel types, the errors lie between these values. As all
CUDA capable GPUs follow the same standards for floating point
arithmetic [NVI20a], the error is consistent across all tested GPUs.

6. Conclusions and Future Work

In our paper, we presented the first massively parallel approach for
evaluating the limit volume of Catmull-Clark solid models. Adapt-
ing the concepts of Altenhofen et al.’s constant-time limit evalua-
tion technique [AMW+18], we designed specific compute kernels
for the individual cell classes, to minimize resource usage while
maximizing performance. To satisfy the need for a high number of
threads, we introduced thread-based as well as warp-based evalua-
tion kernels that differ in the workload of each thread. Furthermore,
we split the computation of the limit of layered and irregular cells
across multiple blocks by tiling the 2D and 3D eigenstructures.

We analyzed the performance of our massively parallel algo-
rithm considering the complexity of the CC-model to be evaluated
and the number of sample points per cell. The test models showed
speedups of up to 199.44× for regular cells, 74.98× for layered and
18.04× for irregular cells compared to the CPU-parallel implemen-
tation resulting in total speedups of between 3.80× and 61.58× for
our four test models on three different GPUs.

Due to the fact, that each cell or eigenstructure sub-matrix

spawns one block on the GPU, the algorithm shows better scaling
for a large number of cells with few sample points, than for a small
number of cells with a large number of sample points. This also
leads to low speedups compared to the CPU implementation when
evaluating models with few cells, as the GPU cannot be fully uti-
lized, leaving whole SMs idle. The worst case – low cell and sample
count – spawns a small number of blocks and warps, which reduces
the potential for latency hiding. To counteract this, our method fea-
tures a hybrid approach, dynamically choosing between the thread-
based and the warp-based kernels to increase parallelism by spawn-
ing an entire warp – instead of one thread – per limit point.

Our approach can be further improved by using CUDA streams.
Overlaying memory transfers and kernel execution would reduce
the evaluation times of the CC-solid models, while the concurrent
execution of multiple kernels would reduce the impact of under-
populated cell classes.

So far, we focused on evaluating the positions (x,y,z) ∈ R3 of
the CC-solid limit points. In the future, we plan to apply our mas-
sively parallel approach to isogeometric analysis as well as to slic-
ing multi-material CC-solid models in order to measure the perfor-
mance gains in these concrete applications.

References

[AESF21] Christian Altenhofen, Tobias Ewald, André Stork, and Di-
eter W. Fellner. Analyzing and improving the parameterization quality of
catmull–clark solids for isogeometric analysis. IEEE Computer Graph-
ics and Applications, 41(3):34–47, 2021. 1, 3

[ALG+18] Christian Altenhofen, Thu Huong Luu, Tim Grasser, Marco
Dennstädt, Johannes Sebastian Mueller-Roemer, Daniel Weber, and An-
dré Stork. Continuous property gradation for multi-material 3d-printed
objects. In Solid Freeform Fabrication Symposium, volume 29, pages
1675–1685, 2018. 1

[AMW+18] Christian Altenhofen, Joel Müller, Daniel Weber, André
Stork, and Dieter W. Fellner. Direct limit volumes: Constant-time limit
evaluation for catmull-clark solids. In Hongbo Fu, Abhijeet Ghosh, and
Johannes Kopf, editors, Pacific Graphics Short Papers. The Eurograph-
ics Association, 2018. 1, 2, 3, 6, 7, 11

[ASSF17] Christian Altenhofen, Felix Schuwirth, André Stork, and Di-
eter Fellner. Implicit mesh generation using volumetric subdivision. In
Fabrice Jaillet and Florence Zara, editors, Workshop on Virtual Reality
Interaction and Physical Simulation, VRIPHYS’17, Lyon, France, 2017.
1

[BHU10] Daniel Burkhart, Bernd Hamann, and Georg Umlauf. Iso-
geometric finite element analysis based on Catmull-Clark subdivision
solids. Computer Graphics Forum, 29 (5):1575–1584, 2010. 1

[BS02] Jeffrey Bolz and Peter Schröder. Rapid evaluation of Catmull-
Clark subdivision surfaces. In Proceedings of the seventh international
conference on 3D Web technology, pages 11–17. ACM, 2002. 2

[BSWX02] Chandrajit Bajaj, Scott Schaefer, Joe Warren, and Guoliang
Xu. A subdivision scheme for hexahedral meshes. The visual computer,
18(5-6):343–356, 2002. 2

[CC78] Edwin Catmull and James Clark. Recursively generated B-
spline surfaces on arbitrary topological meshes. Computer-aided design,
10(6):350–355, 1978. 2

[CQ03] Yu-Sung Chang and Hong Qin. Mass: Multiresolutional adaptive
solid subdivision. 05 2003. 2

[DSHB09] Tor Dokken, Vibeke Skytt, Jochen Haenisch, and Kjell
Bengtsson. Isogeometric representation and analysis: bridging the gap

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

45

S. Besler, C. Altenhofen, A. Stork & D. Fellner / GPU-Parallel CC-Solids

between cad and analysis. In 47th AIAA Aerospace Sciences Meeting In-
cluding The New Horizons Forum and Aerospace Exposition, page 1172,
2009. 2

[EDE17] Ben Ezair, Daniel Dikovsky, and Gershon Elber. Fabricating
functionally graded material objects using trimmed trivariate volumetric
representations. In Proceedings of SMI’2017 Fabrication and Sculpting
Event (FASE), Berkeley, CA, USA, 2017. 2

[HCB05] Thomas J.R. Hughes, John A. Cottrell, and Yuri Bazilevs. Iso-
geometric analysis: Cad, finite elements, nurbs, exact geometry and mesh
refinement. Computer methods in applied mechanics and engineering,
194(39):4135–4195, 2005. 2

[JM99] Kenneth I. Joy and Ron MacCracken. The refinement rules for
catmull-clark solids. In Technical. Report. Citeseer, 1999. 1, 2

[LAE+19] Thu Huong Luu, Christian Altenhofen, Tobias Ewald, André
Stork, and Dieter Fellner. Efficient slicing of catmull–clark solids for 3d
printed objects with functionally graded material. Computers & graph-
ics, 82:295–303, 2019. 1, 2

[Loo87] Charles T. Loop. Smooth Subdivision Surfaces Based on Trian-
gles. PhD thesis, Department of Mathematics, The University of Utah,
Masters Thesis, 01 1987. 2

[LZC+18] Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and
David Bommes. Singularity-constrained octahedral fields for hexahedral
meshing. ACM Transactions on Graphics (TOG), 37(4):93, 2018. 2, 3

[MAS17] Johannes Sebastian Mueller-Roemer, Christian Altenhofen,
and André Stork. Ternary sparse matrix representation for volumetric
mesh subdivision and processing on GPUs. Computer Graphics Forum,
36(5):59–69, 2017. 2

[ME16] Fady Massarwi and Gershon Elber. A b-spline based frame-
work for volumetric object modeling. Computer-Aided Design, 78:36–
47, 2016. 2

[NLMD12] M. Nießner, C. Loop, M. Meyer, and T. DeRose. Feature-
adaptive gpu rendering of catmull-clark subdivision surfaces. ACM
Transactions on Graphics (TOG), 31(1):6, 2012. 2

[NVI20a] NVIDIA Corporation. CUDA C++ PROGRAM-
MING GUIDE, 2020. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html. 4, 9, 11

[NVI20b] NVIDIA Corporation. CUDA GPUS | NVIDIA Developer,
2020. https://developer.nvidia.com/cuda-gpus. 9

[NVI21a] NVIDIA Corporation. CUDA Zone | NVIDIA Developer,
2021. https://developer.nvidia.com/cuda-zone. 1, 4

[NVI21b] NVIDIA Corporation. OpenCL | NVIDIA Developer, 2021.
https://developer.nvidia.com/opencl. 1

[SHW04] Scott Schaefer, Jan Hakenberg, and J. Warren. Smooth sub-
division of tetrahedral meshes. In Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing, pages 147–
154. ACM, 2004. 2

[Sta98a] Jos Stam. Exact evaluation of Catmull-Clark subdivision sur-
faces at arbitrary parameter values. In Proceedings of the 25th an-
nual conference on Computer graphics and interactive techniques, pages
395–404, New York, NY, USA, 1998. ACM, ACM. 1, 2, 3

[Sta98b] Jos Stam. Fast evaluation of loop triangular subdivision surfaces
at arbitrary parameter values. In Computer Graphics (SIGGRAPH’98
Proceedings, CD-ROM Supplement), 1998. 2

[XXD+20] Jin Xie, Jinlan Xu, Zhenyu Dong, Gang Xu, Chongyang
Deng, Bernard Mourrain, and Yongjie Jessica Zhang. Interpola-
tory catmull-clark volumetric subdivision over unstructured hexahedral
meshes for modeling and simulation applications. Computer Aided Ge-
ometric Design, page 101867, 2020. 1

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

46

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/opencl

