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Abstract

We propose a new exemplar-based image inpainting method in this paper. Our method is based on the Criminisi pipeline. We
focused on three main stages of the pipeline; calculation of priorities, construction of patches, and the search for the best match.
To assign a high priority to patches constructed from the edge pixels, we use the ability of segmentation algorithms to divide an
image into different texture blocks. The patches built from pixels located at the border between several texture blocks receive a
high priority. Unlike most patch-based image inpainting methods which use regular patches (rectangle, square), the shape and
size of our patches depend on the textural composition around the original pixel. The patches are built using a region growing
principle in the different texture blocs around the original pixel. The search for the best match is done contextually. We search
for the best match of the patch with the highest priority in a similar environment to its neighborhood around the target zone.
The method is simple and easy to implement. The experiments show that our method obtains more plausible results than the
basic method of Criminisi and its improved version Amoeba in most cases.
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1. Introduction

Digital image inpainting is an important task in computer vision
that aims to restore damaged or missing parts of an image. It is
used in several applications ranging from the restoration of art-
works (paintings, films, photographs) [BBSO1, KMFR95] to the
removal of unwanted artifacts from images and videos (object re-
moval) [CPT04a, LMWY13]. Unlike other image restoration prob-
lems like denoising where the pixels to be processed contain both
the correct information and the bias, in image inpainting, we do not
have any information on the value of pixels to be inpainted. The
inpainting problem is described as follows: Let I be an Image of
size m X n. Mathematically, / can be defined as a two-dimensional
function
I : MxN — R
(xy) = I(xy)

where k is the number of color channels (1 for gray images and
3 for RGB images). M = {1,2,...,m} and N = {1,2,...,n}. Within
the framework of the inpainting problem, 3Q C M X N, V(x,y) €
Q I(x,y) =? . In the literature, Q is called the target zone,
M x N\ Q the source zone denoted by ®, and the set of border
pixels between the two regions is denoted by 8Q. The objective
of inpainting is to reconstruct the unknown pixels in a way that
is not detectable to observers, i.e., the result should appear natural
to the human eye and should be as physically plausible as possi-
ble [CPT04a].
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To solve inpainting problems, researchers proposed a wide range
of solutions based on different approaches [GL.14]. One of the sim-
plest and most effective solutions is the exemplar-based algorithm
proposed in [CPTO4a]. It is a simple-well-defined pipeline that
gradually and iteratively fills the vacuum area Q. Once Q and @
are defined, the algorithm performs 4-main steps at each iteration:
1- it calculates the priorities of the candidate patches, 2- it searches
for the best match for the candidate patch with the highest priority,
3- it propagates structures and textures into 2, and finally 4- it up-
dates Q, ®, and Q. The method’s effectiveness primarily depends
on the reliability and precision of the processes used at each stage
of the pipeline. Our main objectives in this work are: (1) to pro-
pose a new image inpainting method based on this pipeline. (2) to
compare the results of our method with those of other methods.

The research has three main contributions. Firstly, we propose a
new formula for calculating the priority of candidate patches. We
use the reliability of image segmentation algorithms (ability to de-
termine the borders between the different texture blocks of an im-
age) to assign high priorities to candidate patches constructed from
the texture border pixels (edge pixels). This ensures the continu-
ity of the image structures in Q. Secondly, instead of using geo-
metrically regular patches (squares, rectangles) like in traditional
exemplar-based methods, we execute a local region growing pro-
cess to build up the patches efficiently. This approach reduces the
likelihood of copying inconsistent pixels. Finally, once the candi-
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date patch with the highest priority is determined, the search for
the best match in & is performed contextually, i.e., we are not only
looking for the best match of the patch, but the best match in a con-
text similar to the one surrounding the patch in the target area. This
contextual approach improves the consistency between & and the
new texture created to fill Q.

The paper is organized as follows. In section 2, we review some
relevant works on image inpainting. We present the new method
in section 3. Section 4 describes the experimental procedures and
analyzes the results. The conclusions of the research are presented
in section 5.

2. Related works

Restoration of paintings is an activity as old as art. It consists of
restoring damaged paintings "by hand" (loss of paint, weakened
canvas, tears, water damage, or fire) so that the result is as similar
as possible to the original work or so that the changes are imper-
ceptible and consistent [CRG*13]. It is a tedious task and requires
an artistic background and a lot of concentration. Researchers have
recently proposed several digital solutions that attempt to virtually
replicate the basic techniques used by professionals to recover the
damaged parts of images [PPM12]. These solutions can be classi-
fied into two algorithmic classes: sequential algorithms [GL14] and
deep learning [SWFY20,PKD*16].

2.1. Sequential methods

Depending on the used approach, sequential methods can be
grouped into three sub-classes: diffusion-based methods, exemplar-
based methods, and methods using both approaches.

2.1.1. Diffusion-based inpainting

Diffusion-based methods use principles similar to physical prop-
agation phenomena to locally propagate information from & into
Q. The basic principle consists in exploiting information from the
neighborhoods of the border pixels 8 to smoothly extend & into
Q while taking care to preserve the orientation of the isophote lines
[GL14]. Various mathematical models have been used in the frame-
work of diffusion-based image inpainting. They include Partial
Differential Equations (PDE) [Sch15], Fourier Transform [MT19],
wavelets [CDNL98, DJL*12], Cahn-Hilliard Equation [BHS09,
BEGO7], statistical and stochastic modeling [GG84,LZW03].

In recent decades, the diffusion-based methods that have re-
ceived the most attention are those based on partial differential
equations. The pioneering work in the field is the method proposed
by Bertalmio et al. [BSCBOO]. After identification of the Q area
by the user, they used an anisotropic diffusion model to smoothly
propagate neighborhood information from the border pixels 6Q
into Q. To ensure the continuity of the isophote lines, the propaga-
tion was done according to the normal of the gradient vector of the
pixels along the border Q. The main drawbacks of this technique
are its slowness and the difficulty to restore large textured regions.
In order to improve the computational time, Telea [Tel04] presented
a Fast Marching Method for image inpainting. They diffused an
image smoothness estimator along the image gradient, similar to

[BBSO1]. The image smoothness was estimated as a weighted aver-
age over a known image neighborhood of the pixel to be inpainted.
To maintain the isophote lines direction, other PDE-based models
have been suggested, including Total Variational (TV) [SC02] and
Curvature-Driven Diffusion [CSO01].

Diffusion-based methods are suitable for completing straight
lines, curves and for inpainting small areas and, they avoid having
unconnected edges. However, they are not well suited to recover
the texture of large surfaces [GL14].

2.1.2. Exemplar-based inpainting

The general principle behind this approach is based on the idea that
it is possible to consistently restore damaged parts of an image by
filling unknown pixels with color values from the source area. Pix-
els can be restored in blocks (patch-based inpainting) [BDTL15] or
individually (pixel-based inpainting) [WL00a, DSC04].

Giving priority to edge pixels, Qiang et al. [QHX17] restored Q
pixel by pixel. After selecting border pixels with the highest pri-
ority at each iteration, they constructed (searched for) a subset of
candidate patches for each selected pixel P; similar to the patch
centered at P;. The value of the center pixel of each candidate patch
is a possible value of P;. The median method is adopted to select
the best filling value of P;. As in other pixel-based methods, this
solution suffers from high computational costs and has difficulty
restoring large textures made up of many small objects [GL14].

To speed up the restoration process, an obvious solution is to
proceed by copying sub-regions of pixels (patches) at the same
time. One of the most promising patch-based methods was pro-
posed by Criminisi et al. [CPT04a]. As discussed above, it is a
pipeline made up of four main steps that restore Q by gradually
sampling and copying sub-regions of color values from the source
region ®. To ensure the propagation of the image structures in Q,
they assigned a high fill order priority to patches containing edges.
The hindrance of this method is the propagation of synthetic er-
rors. i.e., copying a few unreliable pixels in one step is enough to
make the result inconsistent and implausible. Over the past two
decades, many improvements have been proposed. In most solu-
tions, the general idea of the pipeline remains unchanged. Only the
approaches used at one or more stages of the pipeline are improved
or modified [FZ18, OLKK19].

To overcome the problem of discontinuous structures and incon-
sistent textures, several authors proposed improvements. Xu and
Sun [XS10] designed a patch structure sparsity function to assign
high priorities to patches located at the image structure. Instead
of directly copying the patch with the best match, they built the
patch to be filled as the sparse linear combination of candidate
patches under the local patch consistency constraint in a framework
of sparse representation. Lu et al. [LHLC10] suggested using adap-
tive patch sizes according to structure and the local texture. After
calculating the best match, Castillo et al. [CCWB18] used a region
growing process (amoeba) to extract only consistent and reliable
pixels instead of copying all the pixels in the patch.

2.1.3. Hybrid methods

Hybrid methods aim to combine the two previous approaches by
simultaneously taking advantage of the capacity of the diffusion-
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based methods to preserve the structure of images and the
exemplar-based methods to reconstruct large textures. The idea be-
hind is to separate images into several components ( e.g., struc-
ture, texture), then to restore them individually using the most suit-
able approach and combine the results, or combine the different
approaches into a global function.

Bertalmio et al. [BVSOO03] suggested to decompose images into
the sum of two functions (structure and textures), then to recon-
struct each of the components separately using a suitable filling-
in algorithm, and finally combine the two output components to
have the result. Following the same pipeline, Grossauer [Gro04]
proposed to fill-in the structure component with the PDE-based
solution of [GS03]. He employed the texture synthesis algorithm
in [WLOODb] to restore the texture component. Wu and Ruan [JQOS]
used a bi-directional diffusion PDE to inpaint the structure after
separating the structure part from the texture part with the total vari-
ation equation. The texture was restored using an exemplar-based
inpainting solution constrained by a cross-isophote diffused data
term.

Unlike the previous solutions, which separated the decomposi-
tion and filling-in stages, Elad et al. [ESQDO05] combined the two
stages in a single task. The separation was done using the mor-
phological component analysis (MCA) algorithm proposed in their
previous work to decompose the image into texture and cartoon
layers. They modeled the inpainting problem as an optimization.
Bugeau et al. [BBCS10] proposed to combine the texture synthesis
term, the diffusion term, and a third term (coherence term) into an
energy function. The restoration was executed by minimizing the
energy function.

2.2. Deep learning techniques

With the recent evolution in deep learning, several learning models
have been proposed to restore damaged parts of digital images. The
deep learning methods used for image inpainting are mainly based
on traditional Convolutional Neural Networks (CNN) or Generative
Adversarial Networks (GAN).

[KSSH14, CSL*17, KY15]proposed to first train a neural net-
work model to automatically map the unknown pixels without
user intervention (blind inpainting). The model suggested by Cai
et al. [CSL*17] is a CNN with three convolutional layers, which
takes as input a damaged image, identified the corrupted or un-
known pixels, and automatically restores them. The model was
trained using Stochastic gradient descent with standard backpropa-
gation. After extracting the missing regions, Alilou and Yaghmaee
[KY15] sorted them according to their size and then applied a pre-
trained Generalized Regression Neural Network (GRNN) model
for restoration. To restore shape with sharp structures and fine-
detailed textures Yan et al. [YLL" 18] incorporated a special shift-
connection layer with guidance loss to the U-Net architecture. They
took into account the shape of the missing region as an important
parameter in the recovering process.

Introduce by Goodfellow et al. [GPAM™*14] to perform gen-
erative modeling, GANs have been used by several authors to
solve image inpainting problems [YLY*18, VSB19]. Pathak et al.
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[PKD*16] proposed an unsupervised visual feature learning algo-
rithm driven by context-based pixel prediction to preserve the ap-
pearance and the semantics of visual structures in images. They
trained a CNN model to predict missing pixels based on their
surrounding context. Their model is a simple encoder-decoder
pipeline. The role of the encoder is to extract a latent feature repre-
sentation of the image and then using these features the decoder re-
stores the unknown regions. To make the prediction look real, they
used an adversarial loss function similar to [GPAM™ 14]. Focusing
on both the local and global consistency of the inpainted image,
lizuka et al. [ISSI17] presented a learning model for image com-
pletion. Their architecture consists of a completion network and
two auxiliary context discriminator networks used only for training
the completion network. During the training process, the discrimi-
nators’ role is to check if the inpainted image generated by the com-
pletion network is real, while the completion network is trained to
fool both discriminator networks.

3. Method

We present a new image inpainting method based essentially on
the [CPT04b] pipeline in this section. The method focuses on three
main aspects: the calculation of the priorities, the construction of
the patches, and the search for the best match. The main idea is to
use the abilities of image segmentation algorithms (boundary de-
termination between different texture blocks of an image) to assign
high priority to patches constructed from border pixels located on
the edges. Then, we use a region growing principle to build the
pixel subset (patch), which has to be extended in Q. Instead of
searching only for the best patch match in ®, we search for the best
match in an area similar to the initial neighborhood of the patch
around the target zone.

3.1. Priorities calculation

To ensure the continuity of image structures in €, it is necessary
to give a high priority of fill order to the patch containing edges
[CPT04b]. Based on this observation, we proposed a new formula
to calculate priorities. Let p;(xp,yp) be a pixel belonging to the
border 8Q, the priority of the patch constructed from p; is

P(p;) = N(p;) x Distance(p;,Center) x Rate(p;)/Conf(p;) (1)
where:

N(p;) corresponds to the number of texture blocks surrounding
the pixel p;. It is determined using the color image segmentation
process [GGGD14]. As shown in Figure 1(c) N(p;) =3, N(p2) =
2, N(p3) = 1. This implies that around pixels pi, ps, and p3 there
are 3, 2, and 1 texture blocks, respectively. N(p;) assigns a high
priority to the patches built from border pixels located at the edges.
This ensures the propagation of image structures in Q.

Distance(P;,Center) is the Euclidean distance between P; and
Center. In our approach, we have divided Q into a disjoint sub-
sets Q1,Q5,...,&; as illustrated in Fig 1(b). Let C;(X,Y) be the
center of the subset Q; = {pi(x1,y1),p2(x2,¥2),..., pu(xn,yn)}:
X = %):Z:lxi’ Y = %Zgzly,-. Assume that P; is at the border of

Q;. Then, Distance(P;,C;) is the Euclidean distance between P; and
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Figure 1: lllustration of a segmentation case. a) 24 x 24 generated image, b) mask, c) segmented image

Figure 2: Known pixels priority box: rate(Py) > rate(P,) (see
Equation 1)

C;. This parameter promotes filling (restoration) from the outside to
the inside of Q.

Rate(P;) is the rate of known pixels in a predefined maximum
radius. This parameter gives filling priority to areas with a high
known pixels ratio. It is calculated by dividing the number of
known pixels contained in the delimited perimeter by the total num-
ber of pixels in the space. As shown in Figure 2, the box built
around P; contains more known pixels than the one built around
P,, so Rate(Py) > Rate(P,).

Conf(P;) prevents reconstructions that suddenly prolong the
edges in Q. For example, in Figure 2, a rapid extension of the grid
inside Q without considering the green texture would result in an
inconsistent restoration. In the initial state, each border pixel has
confidence of 1. Let K be the subset of border pixels created af-
ter filling a patch constructed from a pixel P with Conf(P) = i.
Vpi € K,Conf(p;) =i+1.

3.2. Patch construction

Once the pixel with the highest priority has been determined, we
construct the subset of the known pixels that must be extended
into Q. Unlike traditional methods that propose building a reg-

ular patch (circle, square, rectangle) centered around the border
pixel, we suggest constructing an irregular patch using a region-
growing technique. Let P be the border pixel with the highest pri-
ority. The principle is to grow a region in each texture block around
P and finally merge the resulting blocks into one set (see Figure
3). The growth process in a block starts from a pixel C, a neigh-
boring pixel of P belonging to the corresponding block. The basic
principle of the growing process is inspired by the morphological
amoeba algorithm [LDMOS5]. Algorithm 1 describes the main idea
behind the process. It takes as input an image to restore Graylm,
the central pixel from which the growth is made P, a cumula-
tive difference threshold B > 0 which is used to manage the lu-
minosity variation in the texture block, a rate A used to control
the patch extent according to the image size, and the Mask. We
start by marking all the pixels of the image as unprocessed. Py
is marked as belonging to the growing region SegBlock. Each of
the neighboring pixels to P; (we denote them P;) belonging to &
receives as cumulative difference Pj.cum_diff = |Graylm(Py) —
GrayIm(P;)|. In Algorithm 1, these steps are computed by the func-
tions ComputeCum_dif fNeighbour(). Then, all the P; are stacked
in a stack Stk and marked as treated. As long as Stk is not empty,
we unstack a Pixel P;. If P.cum_diff < B and |P;.x — Px| <=
A x GrayIm .Width and |P.y — Py| <= A x Graylm.height, P; is
put into SegBlock. All the untreated neighboring pixels of P; be-
longing to ® (we note them P)) receive a value Pj.cum_diff =
Pi.cum_dif f +|GrayIm(P;) — GrayIm(P;)|. Each P; is then marked
as processed and stacked in Stk. Once the process is applied to all
the texture blocks in the direct neighborhood of P, the final patch is
the union of the resulting SegBlocks.

3.3. Best match determination

The search for the best match is performed contextually. We find
the best match in an environment similar to the home region (a
neighborhood similar to the one surrounding the patch around ).
This avoids copying regions surrounded by neighborhoods differ-
ent from the original one. We define a context with a predefined
dimension around the template (the match). Note that the context
size may be reduced depending on the location of the template. For
example, templates located at the borders of the image frame can
only be surrounded by a smaller context. As shown in Figure 4, we
see that the best match which does not take into account the en-
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Figure 3: Patch growing. a) 24 X 24 generated image with target area €, b) growing regions:P is the border pixel with the highest priority,
R1,Ry and R3 have been grown from Py, P, and Pj3 respectively, c) Patch = Ry |JR|JR3

Algorithm 1 Region growing: Graylm, Mask,P,P;, § > 0,A > 0
1: Stk
2: Segblock < {P}
3: W = Graylm.width
4: H = Graylm.height
5: N < ComputeCum_dif fNeighbour(Py,Graylm,Mask)
6: MarkAsTreated(N)
7
8
9

. Stack(Stk,N)
: while Stk # () do
: P; < Unstack(Stk)
10: if P.cum_diff <P && |Pix—Px| <AXW && |P.y —
Py| <A x H then

11: Segblocks < Segblock\J{P;}

12: N < ComputeCum_dif fNeighbour(P;, Graylm,Mask)
13: MarkAsTreated(N)

14: Stack(Stk,N)

15: end if

16: end while
17: return Segblock

vironment (Match;), would lead to an incoherent extension of the
green texture block into the gray metal bar.

Another context with the same dimension is defined around the
patch in its original environment. As shown in Figure 5, the area
delimited by I' contains both the patch P and the neighborhood V.
C'=PUV,PNVNQ=0and ||T]| = ||’||. The best match is the
one that minimizes SSD(P,P') x SSD(V,V')/|V|. With V # () and
SSD() refering to the sum of squared differences.

3.4. Patch extension and update

Once the best match is found, we perform region growing from the
correspondents of the different C; pixels in the best match area (see
Figure 6(b)). The union of the different resulting growing regions
corresponds to an extension of the patch. Then, Q is filled with
the subset of the excess pixels (see Figure 6(c)). Q,® and 3Q are
then updated. Let P be the current border pixel from which the
patch is built and, R = {P, P,, ..., Px} the set of the border pixel
generated after partially filling Q. VP; € R,Conf(P;) = Conf(P)+
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Figure 4: lllustration of contextual and non-contextual matching:
Matchy is obtained using the context and Matchy without the con-
text.

~2

Figure 5: Best match with context: T = PUV, I = PPUV’, PN
vNnQ=0 PNV NnQ =0 and |IT|| = ||T’|].
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Figure 7: Some steps of the restoration process

1. The process is repeated until we have no more border pixels.
Figure 7 presents the progress of the restoration at some stages.

4. Experiments

To demonstrate the effectiveness of our method, we carried out sev-
eral experiments. The datasets used in our experiments are images
from [CCWBI18]. This benchmark is known for containing images
with attributes that present challenges in preventing artifact gener-
ation and preserving content and structure.

Instead of defining patches using a regular shape as in most
Criminisi-based inpainting methods, we controlled the patch ex-
tent using two parameters A and the maximal cumulative differ-
ence P (see algorithm 1). We submitted 16 incomplete images to
restore (see Fig 8) to three exemplar-based inpainting methods;
the original method of Criminisi et al. [CPT04b], the modified
version (amoeba) proposed by Castillo et al. [CCWB18], and to
our method. For the Criminisi algorithm, 19 restorations were per-
formed on each image using different patch sizes ranging from 2
to 20. The restorations with the amoeba method were performed
using the maximum amoeba distance 7TH set to 20 and a physical
distance PD = 1. We tested different radii ranging from 1 to 10 for
each image. For our method, the maximal cumulative distance 3
was set to 0.15 in the LAB color space. For each image, we carried
out 20 reconstructions with a random value of A selected between
0.01 and 0.1. The context was a 3xAx W X 3 A * H rectangle cen-
tered on the border pixel with the highest priority (W and H are
the width and the height of the image, respectively). Fig 8 shows
images of the benchmark.

4.1. Results and validation

The main goal of inpainting algorithms is to improve image filling
quality so that any imperfection is not noticeable by a person who
is not familiar with the original image. The ideal is to let the results
be appreciated by human observers in order to judge the perfor-
mance of the algorithms. To get around this tedious task, we used
three metrics: Peak Signal-to-Noise Ratio (PSNR) [MM98] , Edge
Histogram (EH) [WPP02] and Structural Similarity Index(SSIM)
[WBO02].

Peak Signal-to-Noise Ratio (PSNR) is a measure of distortion
used in image processing to quantify the performance of image
restoration or compression algorithms. It is an estimate of the re-
stored image quality compared with the original image. Let A be a
restored image and B the corresponding original image, both with
size M X N.

2
PSNR(A,B) = 1010g(m) 2
where S = 255 for an 8-bit image and
| My o
MSE(A, B) = m;gA(z,ﬂ—B(w)l 3)

Edge Histogram: The EH descriptor represents the distribu-
tion of 5 types of edges (vertical, horizontal, 45-degree diagonal,
135-degree diagonal, and non-directional edges ) in each local area
called a sub-image. The image is divided into a grid of 4 x 4 blocks.
Whatever the size of the image, the final descriptor is an edge his-
togram with 150 bins (80 bins (local) + 5 bins (global) + 65 bins
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=

Figure 8: Benchmark: In pink the target areas

(semi-global)) [WPPO2]. Let A and B be two images, the distance
D(A, B) between their edge histogram can be measured by

79
D(A,B) =Y |(Local_Ali] — Local _B[i])|-+
i=0
4
5% Y |(Global_Ali] — Global_B[i))| @
i=0
64

|(Semi_Global_Ali] — Semi_Global_Bli])|
i=0

=

Structural Similarity Index(SSIM) is a human visual system
(HVS) based metrics introduced by Wang and Bovik [WBO02] to
assess the human visibility similarity between a restored image and
the original. SSIM measures the similarity of the combination of
contrast and luminance [ANC12]. Let A and B be the original im-
age and the restored one. Both images are first divided into blocks
of size 8 x 8 and converted into vectors. Let x = {x,x2,...,x7}
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and y = {y1,y2,...,yr } be two corresponding vectors from A and B
respectively:

T BB C) (02 + 02+ Cy)

where C1 and C, are constants. uy, uy are the mean values of the
vectors x and y. G,% and 03 the variances and, Oyy the covariance
between x and y.

Let L be the number of local windows over the images. So A =
{A],Az7 ...,AL} and B = {Bl,BZ, ...,BL} then,

M
SSIM(A,B) = % Y SSIM(A;,B;) ©)
i=1

Table 1 presents the values of parameters that produce the best
result for each image of the benchmark for each of the three met-
rics. Since EH reflects the distance between the original image and
the inpainted one, the optimal restoration is the result that generates
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Table 1: Best metric values obtained by the methods are presented in bold font: The parameters that produce the best results are indicated
in the brackets (best radii for Criminisi and Amoeba and, \ * 10° for our method). For the EH metric, the smaller values indicate better
reconstructions while for PSNR and SSIM larger values indicate better reconstructions.

Criminisi Amoeba Our method

Image Size (W x H) PSNR SSIM EH PSNR SSIM EH PSNR SSIM EH
Bicycle 460 x 300 24.13(10) | 0.84(3) 18.71(9) 24.5(5) 0.95(4) 14.62(11) | 24.69(15) | 0.96(30) | 15.61(25)
Twobirds 600 x 450 16.45(5) 0.71(1) | 39.77(16) | 17.25(12) | 0.75(1) | 27.27(12) | 22.41(25) | 0.94(25) | 25.78(25)
BattleShip 1024 x 756 22.16(11) | 0.85(6) | 46.01(13) | 23.02(8) 0.87(4) 44.20(8) 23.4(45) | 0.84(15) | 47.91(45)
Blueman 1024 x 681 18.5(7) 0.91(2) 17.53(9) 18.67(11) | 0.94(6) 18.25(16) | 19.02(30) | 0.95(30) | 17.98(15)
BrickHouse 1024 x 683 24.43(15) | 0.89(5) | 31.86(13) | 24.28(6) 0.84(8) 38.55(6) | 24.50(35) | 0.91(35) | 31.82(35)
Bungee 206 x 308 17.06(4) 0.80(8) 38.41(5) 16.78(19) | 0.81(20) | 35.06(19) | 17.08(25) | 0.82(25) | 29.78(25)
Castle 1024 x 768 23.87(9) | 0.91(11) | 33.72(9) | 23.89(13) | 0.94(9) 39.24(2) | 23.84(40) | 0.97(35) | 32.80(60)
Cat 1024 x 683 23.2(18) 0.97(9) | 42.74(15) | 23.64(3) 0.98(1) | 35.48(14) | 23.59(10) | 0.98(25) | 38.75(25)
Child 1024 x 680 25.63(5) | 0.95(13) | 30.85(16) | 25.73(13) | 0.97(1) 28.29(2) | 25.64(25) | 0.96(55) | 29.68(20)
Eagle 600 x 402 28.57(20) | 0.94(2) | 27.26(17) | 28.46(7) 0.95(1) 19.91(20) | 29.36(15) | 0.95(10) | 29.78(55)
fish 1024 x 768 24.14(5) | 0.84(15) | 30.51(16) | 24.16(2) 0.91(6) 28.29(2) | 24.43(30) | 0.91(10) | 30.66(25)
matrioska 1440 x 971 19.56(13) | 0.74(11) | 27.69(16) | 19.58(17) | 0.89(1) 25.84(2) 19.34(45) | 0.85(15) | 29.43(30)
mochizuki 547 x 346 24.04(18) | 0.89(1) 19.89(19) | 22.47(9) 0.82(1) 16.71(17) | 25.27(10) | 0.94(50) | 18.80(25)
mountains 512 x 683 27.539) | 0.94(17) | 8.32(15) | 28.81(17) | 0.97(15) 10.43(4) | 28.51(15) | 0.97(20) | 9.80(15)
penguins 615 x 461 19.71(13) | 0.86(15) | 18.96(19) | 19.31(19) | 0.91(8) 18.8(11) 19.61(10) | 0.92(35) | 17.71(15)
car 500 x 375 24.08(17) | 0.91(3) 8.34(3) 24.19(8) 0.95(2) 10.44(3) | 25.06(15) | 0.96(10) | 8.32(15)

Table 2: Average values of metrics over all of our experiments

Criminisi | Amoeba | Our method
PSNR 22.69 22.79 23.48
SSIM 0.87 0.90 0.92
EH 27.53 25.71 2591

the lowest value. However, for PSNR and SSIM the best results are
those that generate the highest values.

Criminisi results: The results in table 1 show that the patch ra-
dius of the best reconstruction is different for each metric in all
cases. For the SSIM metric, the patches that generate the best val-
ues are generally below 10, which is the reverse for the EH metric
where the best values of the patch sizes are mainly between 13 and
19. In the case of the PSNR metric, the patches producing the best
values do not have a specific interval. In general, it is difficult to
predict the radius for each metric that yields the value.

Amoeba results: As in Criminisi, the metrics do not unani-
mously indicate the best reconstruction for all cases. The PSNR
and EH metrics tend to produce the best values for large patches
(> 10), while SSIM generates the best values for small patches (in
most cases close to 1).

QOur results: Except for the Twobirds image where the metrics
agree on the A value generating the best reconstruction, the param-
eter values are divergent for the other images. However, there are
several cases where at least two of the metrics indicate the same
value as the one having the best reconstruction. In general, the best
values of A oscillate between 0.01 and 0.03 for each of the metrics.

An analysis of the results of each image reveals that our algo-
rithm produces the best restoration in 13 of the 16 cases for the
PSNR metric, see Table 1. For the SSIM metric, our method is the
best in 14 cases and in 6 cases for the EH metric. The average value

obtained for each of the metrics on the benchmark is presented in
Table 2. We note that our method wins over the two others accord-
ing to the PSNR and SSIM metrics. However, the amoeba method
is slightly better for the EH metric. In general, these results reflect
an improvement in the restoration quality obtained with our method
compared to those of Amoeba and Criminisi.

The best results (subjective judgment) generated by each of the
three methods for some images are presented in Figure 9. These
results do not correspond to those indicated by the metrics in all
cases. We can see that the results obtained by our method are the
most plausible in the majority of cases.

4.2. Conclusion

A new exemplar-based inpainting method was presented in this
work. Based on Criminisi’s pipeline, our method proposes sev-
eral improvements at each stage of the restoration process. A new
priority function was defined. To give a high order priority to the
patches constructed from the pixels located on the edges, we used
the ability of color segmentation algorithms to subdivide images
to determine the patches covering the largest number of texture
blocks. This approach allowed for a considerable improvement in
the reconstruction of continuous structures in the image. Unlike in
most exemplar-based inpainting methods where patches are usu-
ally defined by regular structures (square, rectangle, ...), in the new
method, the patches are built using a region-growing algorithm in
the different texture blocks surrounding the border pixel with the
highest priority. The search for the best match is done contextually.
We look for the best match in a neighborhood similar to the one
surrounding the patch around the target area.

To demonstrate the effectiveness of our method we used a bench-
mark of 16 images. A comparison of our results with those obtained
by the Criminisi and Amoeba algorithms shows a clear improve-
ment in the quality of the restoration obtained by our method. Our
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Figure 9: A subjective selection of the most plausible results for some images

results have fewer inconsistent artifacts, and the restored images painting method based on the Criminisi pipeline. Although having
are more plausible. a complexity close to that of the basic Criminisi algorithm, a naive
implementation of our method can quickly increase the time of the

The innovations proposed in this research (the priority function, restoration considerably.

the construction of the patch, and the search for the best match)
can be used in any other modular version of the exemplar-based in-
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