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Figure 1: Our proposed image local attention guided joint depth upsampling network takes the high resolution guide image and the low
resolution bicubic upsampled target image as input. Note the upsampling enhancement in the marked patch generated by our network
compared to the 8x upsampled input next to it as well as the corresponding ground truth patch.

Abstract
Image super resolution is a classical computer vision problem. A branch of super resolution tasks deals with guided depth
super resolution as objective. Here, the goal is to accurately upsample a given low resolution depth map with the help of
features aggregated from the high resolution color image of that particular scene. Recently, the development of transformers
has improved performance for general image processing tasks credited to self-attention. Unlike previous methods for guided
joint depth upsampling which rely mostly on CNNs, we efficiently compute self-attention with the help of local image attention
which avoids the quadratic growth typically found in self-attention layers. Our work combines CNNs and transformers to
analyze the two input modalities and employs a cross-modal fusion network in order to predict both a weighted per-pixel filter
kernel and a residual for the depth estimation. To further enhance the final output, we integrate a differentiable and a trainable
deep guided filtering network which provides an additional depth prior. An ablation study and empirical trials demonstrate the
importance of each proposed module. Our method shows comparable as well as state-of-the-art performance on the guided
depth upsampling task.

CCS Concepts
• Computing methodologies → Computer vision; Image representations; Reconstruction;

1. Introduction

Image super resolution (SR) is a classical computer vision problem.
Given low resolution input the algorithm tries to compute a cor-
responding high resolution image. Recent advancements in smart-
phone photography to satellite imagery employ super resolution for
improved image quality and visual clarity. Until now, these meth-
ods have been computationally expensive and generally produce
low resolution depth maps whose clarity, however, can be increased
with RGB image guided depth super resolution. In this paper, we
deal with the classic joint depth super resolution (SR) problem.
Given a low resolution depth map (target) and a corresponding high
resolution RGB image (guide), our task is to compute the corre-
sponding high resolution depth map. Classical depth super resolu-
tion methods usually rely on a spatial filtering technique [KCLU07]

where the input is upsampled by filtering the local neighborhood
with weights directly based on the corresponding patch in the guide
image. One of the downsides of this kind of method is that it can
be time and memory consuming for very high resolution images.
Additionally, it can miss homogeneous background information.

Recent developments in machine learning for computer vision
applications have also paved the way for guided depth super res-
olution methods. In general, these applications try to infer the fil-
ter kernel weights for each target pixel with the help of a guide
RGB input image to perform an adaptive, spatially-varying con-
volution on the target image. Inspired by the classical joint depth
upsampling task, spatial filter weights for the joint bilateral filter
have been replaced by a learnable variant for the multi-view stereo
task [YG20] in the past. We take inspiration from this application
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and try to infer the neighborhood pixel weights based on an addi-
tional local image attention block to extract detailed neighborhood
features. Local image attention [YYF*20] has made it possible to
cheaply extract expressive image features for this super-resolution
tasks.

Our architecture in Figure 2 combines two main ideas. First,
we generate an enhanced target input by deep guided filtering net-
works [WZZH18] and in parallel estimate per-pixel adaptive filter-
kernels for upsampling the target images by fusing the features of
both the guide and the target. Second, we estimate corresponding
residuals which are added onto the guided filtered results to refine
the depth-map. Both approaches rely on features which are first ex-
tracted separately from the guide and target images then merged for
each task employing local attention. The last module of the network
incorporates the original low resolution bicubic upsampled target
image, guided filtered (GF) target depth and deep guided filtered
(DGF) target depth which subsequently proposes the final output
from a trainable, weighted per-pixel prediction module.

Features are extracted by a U-Net followed by a self-attention-
based transformer encoder to extract local neighborhood informa-
tion for improved edge-aware guidance. A deep merge network
(Mergenet) performs efficient cross-modal fusion of local neigh-
borhood features. By combining the RGB and the depth domain
we produce a representation which includes the high-frequency de-
tail from the guide image as well as the coarse depth information
from the target image. We use those results twice: As input for the
filter-kernels estimation and as input for constructing the residuals
from the GF as well as the DGF target map, both of which are a
function of the RGB guide image and original bicubic upsampled
target image.

Our filter pathway can be interpreted as a generalized adaptive
filter with trainable pixel similarity measure. We demonstrate the
validity and importance of each module in our ablation study. Our
contributions are as follows:

• Local attention and merge block for fusing spatial information
from both the guide RGB image and the target depth to provide
better super resolution guidance

• Performance comparable to state-of-the-art methods and supe-
rior performance in some cases

2. Related Work

Classical methods

The classical joint depth super resolution literature can be divided
into filter-based methods and optimization-based approaches. In
filter-based approaches, texture and edge features are extracted
from the given guide RGB image to inform handcrafted filters that
try to estimate the weights for spatially-varying filter masks that
are convolved with the lower resolution target image. Joint bilat-
eral upsampling [KCLU07] extends the single image bilateral fil-
ter [TM98]) to steer the filter with a guide image. The bilateral
weights are obtained by converting the local guide RGB image
pixel values to bilateral weights which are then applied cross-modal
to the low resolution input. Guided filters [HST13; WZZH18] pro-
vide a similar idea of considering a filtered output factor from

the guidance image. Aforesaid methods are based on filter kernels
where strong local guide features are utilised to enhance a low res-
olution depth map. The upsampling task has also been addressed
as a global energy minimization problem, such as the Markov ran-
dom field based technique in [DT06]. Non-local means filtering
with extended regularization for additional edge weighting has fur-
ther improved joint depth upsampling [PKT*11]. These methods
all employ a regularization term which guides the target towards a
structurally similar texture of the high resolution guide image. The
fast bilateral solver combines these simple filtering methods and
approaches this problem as a domain-specific optimization algo-
rithm [BP16]. Additionally, in [HCP18] static-dynamic filter com-
binations have shown significant improvements on the joint upsam-
pling task with the help of better structural prior extraction.

Learning-based methods

Contrary to classical techniques which do not rely on supervi-
sion, data-driven learning approaches are becoming significantly
popular because of their generalisation capability. Early learning-
based methods utilised a dictionary in order to express struc-
tural similarity within paired guide and target images. Kwon et
al. [KTL15] utilize a sparse representation learning of dictionar-
ies on the geometric correlation between high-quality mesh data,
ground truth target and guide images. In [YWHM10], a sparse rep-
resentation of the target map is obtained, and corresponding coef-
ficients are used to predict a high resolution depth output. Lately,
CNN-based techniques have shown significant improvements on
the task of joint depth super resolution. Multi-scale guidance net-
works with an encoder-decoder architecture [HLT16] got rid of
depth boundary artifacts. Moreover, in [LHAY19], salient struc-
tures that are consistent in both guidance and target images are se-
lectively leveraged. The deep primal-dual network [RFRB16] with
iterative optimisation has shown better noise removal along with
good super-resolution results. Apart from these direct encoder-
decoder approaches, The Deformable Kernel Network [KPH20]
learns a sparse and spatially-variant kernel which stretches a ker-
nel non-linearly along the given pixel neighborhood. The method
in turn extracts a residual offset from the combined image features.
Apart from showing better performance, a faster extension was also
shown with almost similar metrics [KPH20]. Su et al. [SJS*19]
learn to predict the filter weights of a spatially-varying kernel as a
function of the local pixel features. A cross-task interaction mod-
ule is introduced in [SYL*21] to realize bilateral cross-modality
knowledge transfer to solve uncertainty depth estimation guided su-
per resolution. In [HZL*21], high-frequency components decom-
posed from the RGB image subsequently guide the super resolution
task. Apart from fully CNN-powered architectures, also densely
connected networks have been proposed. [LDWS19] employ a
MLP for pixel to pixel mapping of the guide information to the
target. Similarly, Tang et al. [TCZ21] utilise a deep implicit neural
representation based technique. It is essentially an MLP which ef-
ficiently extracts latent codes from the input and appends it to the
coordinates, eventually providing a depth correction residual. They
achieve state-of-the-art results on noisy joint depth super resolu-
tion tasks. Orthogonal work like [dLBD*22] directly optimizes
an explicit affinity graph to regularize the reconstruction. Over-
all, learning-based guided joint upsampling methods usually lever-
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Figure 2: Attention Guided Upsampling: Extracted features of the guide and the target are fused by a local transformer to predict filter
weights as well as an additional residual. This Information is used in the decoder block (shared weights) to predict an upsampled version of
Tg and Td separately. A final prediction layer combines all target predictions. Error(0) and Error(T) visualize the difference to the original
and the target input image.

age monocular depth-like datasets [SHKF12; LRL14; SP07; HS07;
HZL*21]. Learnt joint bilateral upsampling has been integrated
into the multi-view stereo task [YG20] where the bilateral weights
are selected as a function of the given reference image for sparse-
to-dense depth approximation which significantly reduces the com-
putation effort and provides a faster reconstruction. Contrary to the
existing networks, we contribute additional refinement to the low
resolution guided depth map inputs with the help of transformer
encoded attention weights. Additionally, our residual network con-
tributes stronger edge aware features.

Transformers and local attention

Transformers [VSP*17] have become a widely used architecture,
especially in Natural Language Processing [DCLT19; BMR*20].
Transformers primarily operate with the concept of self-attention,
which explores the relation between all tokens in a sequence to cap-
ture contextual information. The base transformer encoder mod-
els have been successfully applied to low-level computer vision
tasks such as classification [DBK*20]. Recently, the Texture Trans-
former Network for image super resolution [YYF*20] uses low res-
olution and reference RGB images as queries and keys in a trans-
former. They essentially transfer the high resolution texture to a
low resolution image for a super resolution task. In the context
of guided depth super resolution self-attention has just started to
be explored as a part of larger architectures [XCW*21; YCZT22;

AC22]. The Discrete Cosine Transform module in [ZZX*22] em-
ploys an edge attention mechanism to highlight the contours which
provides useful information for guided upsampling. As basic self-
attention has quadratic complexity in the number of tokens Long-
former [BPC20b] introduces a number of different sampling ap-
proaches that improve the efficiency of attention evaluations. In
particular, the local sliding window attention mechanism scales lin-
early with the sequence length, allowing it to process even very
large token sets. This idea can also be found in [ZZX*22] where
grouped convolutions are used to compute attention maps to weight
edge information. In our scenario, we apply local sliding-window
attention to a 2d patch around a pixel. Local attention provides a
weighting of the spatially combined guide and target feature ten-
sors which helps in extracting rich contextual information. A sepa-
rate merge network further enhances the correlation between them,
leveraging both the power of CNNs and transformers for an effi-
cient depth residual computation.

3. Method

The goal in joint depth upsampling is to use a high resolution guide
image for adding missing detail in an aligned low resolution target
image. Our network solves this task in four major steps: Guided
depth proposals, feature extraction, cross-modality merging and fi-
nal guided filtering. In addition to the low resolution target image,
we obtain a guided filtered target and a deep guided filtered tar-
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(a) Guide RGB image (b) Target patch (c) GF patch (d) DGF patch (e) Output patch (f) Ground truth

Figure 3: We demonstrate the contribution of the guided filter blocks. While the target patch is clearly affected by the upsampling artefacts,
guided filter map post residual refinement clearly shows remarkable improvements wrt. feature sharpness. Deep guided filtering contributes
additional edge aware features. Finally, the weighted pixel prediction module provides additional improvements in the output patch and when
compared to ground truth, the overall upsampling artefacts are hardly noticeable.

get [WZZH18]. During feature extraction the guide image and tar-
get image are processed independently to generate feature vectors
for each pixel. In the merging stage the features from the guide im-
age are combined with the target features to produce the inputs to
the filter section. The GF target and the DGF target are filtered with
adaptive kernels and augmented with a residual estimate to the de-
tailed output depth map. The final output is a pixel-wise weighted
combination of the original target, filtered GF target and the fil-
tered DGF target. In this section we describe our architecture from
Figure 2 in detail.

Depth guided filters

Direct bicubic upsampling of low resolution images produces sig-
nificant artefacts as it does not consider the spatial context. In order
to provide better input, we utilise two simple guided filter modules.
The first block is a differentiable Guided Filter (GF) layer which
takes the low resolution target image It and high resolution image
Ig to generate a high resolution proposal Tg = GF(It , Ig) by a lin-
ear transformation [HST13]. The second block consists of a Deep
Guided Filter network which integrates the previous guided trans-
formation layers into CNNs and generates corresponding guidance
maps Td = DGF(It , Ig). See [WZZH18] for further details on the
gradient propagation through guided filtering and convolutional
guided filtering layers.

Feature extraction

Upsampling an image is inherently a local operation, however in
order to fill in local details it can help to consider the global con-
text, such as reoccurring patterns or regularities in the occurrence of
depth discontinuities. We use U-Nets [RFB15] fg and ft to extract
primary features Fg = fg(Ig) and Ft = ft(Ig), with separate weights
for the guide image Ig and target image It . It has been upsampled
with a bicubic filter to the same resolution. Those features are based
on the local neighborhood of each pixel in different scales. It is to
be noted that we do not extract features for Td and Tg, as they are
already jointly encoded with vital guide and target image informa-
tion and Fg,Ft have sufficient information for further operations in
the rest of the architecture.

Next, spatial self-attention compares and relates each stacked
pixel feature (Fg,Ft) against its neighbors to better judge its relative
importance and to localize important information for the final task

of edge-aware upsampling. The self-attention is only computed lo-
cally over a sliding window similar to 2D-convolutions [CGRS19;
BPC20a; RR20] but with content dependant filter weights. The
query, key and value for the attention mechanism are extracted us-
ing a linear transformation across the channel dimension which is
implemented as 1× 1 convolutions. With a quadratic window of
side-length p (here p = 5) the memory requirement of local self-
attention is limited to O(n ∗ p2) = O(n), where n is the number of
pixels in the input. Since the patch-size is a constraint for varying
and higher resolution cases, a combined feature map would provide
richer edge-aware pixel neighborhood information during attention
computation in the following stage. Hence, we use a transformer
encoder [VSP*17] T t block built with the aforementioned local
attention to enrich our spatially combined target and guide features
with detailed local information. The final features A =T (Fg+Ft)
are computed by applying the transformer to the combined U-Net-
feature-maps.

Mergenet

During feature extraction there is no cross-talk between the infor-
mation extracted from the guide image Ig and target image It . Even
though the transformer encoder block enhances the combined fea-
tures for depth guidance, only self-attention is not sufficient. The
mergenet is responsible to not only combine both modalities, but
provides further enhanced guidance cues. The Mergenet consists
of 8 2D convolution layers with ReLU blocks as activations. It con-
sists of two separate blocks (F and R), both working on the same
input, that produce the weights WF and WR needed for the Filter
and Residual steps to create the final depth prediction.

Depth decoder

The decoder module combines the result of a Filter module F with
a separately computed depth Residual R. The adaptive filter mod-
ule converts WF into a per-pixel filter kernel which is convolved
with the guided target images Tg and Td . As the adaptive filter can
only produce a weighted average of already existing depth values
the residual module estimates a depth-correction from WR and WF .
Here, WR can potentially infuse some additional information from
the guide image features estimated in the Mergenet. We apply the
same operation with shared weights to Tg and Td separately.

Tg,d
d = Fg,d(Tg,d ,WF )+Rg,d(WF ,WR) (1)
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Depth filter module F The joint bilateral upsampler [KCLU07]
has been employed as a classical solution for guided depth upsam-
pling. This method uses a range filter and a spatial filter for pre-
dicting the filtered depth output. We take inspiration from its learnt
counterpart in FastMVSNET [YG20] who implicitly try to encode
the spatial information with the help of a simple CNN. We utilise a
learned version to filter the low resolution target with kernels con-
structed from WF , rather than directly using image features. This
can be viewed as a generalized adaptive upsampler with an esti-
mated kernel for every pixel coordinate.

To predict the adaptive per-pixel filter mask, we reduce the di-
mensionality of WF with the help of a simple 1× 1 convolutional
network freduce and utilize it to convolve the target image and ob-
tain Wreduce = so f tmax( freduce(WF )).

Note that Wreduce has k2 channels, where k is the chosen kernel-
size in the filter module. Let Nk(x) be the list of indices in the pixel
neighborhood centered at x, then the filter operation can be written
as:

Fg,d(Tg,d ,WF )[x] =
k2

∑
i=1

Wreduce[x, i] ·Tg,d [Nk(x)[i]] (2)

Depth residual module R The depth values produced by the filter
are formed by building kernels which are convolved with the low-
detail target images. However, the features produced in the Mer-
genet module already contain the detailed information from the
guide image as well as the depth information from the target im-
age. We therefore use WR and WF directly to compute an additional
residual, which is added to the filter result as indicated in Equa-
tion 1. With WR and WF having the same spatial and channel di-
mensions we can combine them in an element-wise multiplication
and sum up the channels to produce a one-channel residual map.
This module can be interpreted as a simple pixel-wise weighted
residual prediction from the filter and residual weights (WR,WF ).
We will take cues from the original aligned feature maps in order
to provide proper weights for the different target proposals. We in-
terpret WF as a confidence score for the residual contribution WR
and hence compute the overall weighted residual as :

Rg,d(WF ,WR) =
C

∑
i=1

softmax(WF ) ·WR (3)

where C is the feature channel dimension of WR and WF .

Depth prediction

The final module is a simple pixel-wise weighted depth prediction
(pred) module that estimates the final output from the three pro-
posed depth maps (It ,Tg

d ,Tc
d). We will take cues from the original

guide feature map and just computed WR and WF in order to pro-
vide proper weights for the different target proposals. This block
consists of 4 convolution layers which estimate the final weights
Wpred = so f tmax(pred(Fg,WF ,WR)). Thus, the final upsampled
depth prediction is given as:

D f inal = ∑softmax(Wpred) · (It ,Tg
d ,Td

d) (4)

Loss function

Given the ground truth high resolution target image Dgt , and the
network output as D f inal , we train our network with a L1 loss.

Loss =
1

Np

Np

∑
y=1

|(D f inal −Dgt)| (5)

Here, Np is the total number of pixels in the target image.

Table 1: Ablation study for 8x resolution on NYUv2: Numbers indi-
cate RMSE (lower the better) for the case of 8x bicubic upsampling.

Method RMSE

Without transformer 2.80
Without Mergenet 2.95
Without prediction block (mean) 2.79
Without dgf 2.81
Without cdgf 2.73
Without filters 2.84
Without residuals 2.85
Ours 2.71

4. Experiments and Results

Datasets and training setup

Our network is trained on NYUv2 [SHKF12] training dataset
which consists of 1000 images. We test our trained network on the
test split of NYUv2 consisting of 449 images, following the estab-
lished split protocol of [KPH20]. Additionally, we also test our net-
work on [LRL14] test split and [SP07] test split, following the test
convention of [LRL14; KPH20]. It is to be noted that the network
is trained separately with 4x, 8x, and 16x downsampling as input
following the mentioned conventions. The downsampled target im-
age is upsampled with the help of bicubic upsampling and is used
as an input along with the high resolution RGB guide image. We
use a NVIDIA RTX3090 to train our network for approximately 14
hours. Keeping in mind the massive self-attention computation cost
which involves memory cost proportional to p× p per pixel, we use
an efficient implementation without rearranging keys and values in
memory with custom CUDA kernels for the attention computations
[Zha19].

Hyperparameters

For the experiments presented in the following sections, our feature
channel dimension is set to 128. The NYUv2 training dataset is
trained on its full resolution of 480x640 pixels at a batch size of 1.
We use 1e-3 as the learning rate for the Adam optimizer. We further
decay our learning rate by a factor of 0.2 every 22 epochs. We use
a patch size of 5 for the image local attention in all scale scenarios.
Our number of heads for the transformer encoder block is set to 1
and the dimension of the feedforward channels is 128. The filter
kernel size is set at 7 for all upscale factors. The network is trained
end-to-end for 50 epochs.
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Input HR Bicubic DKN [KPH20] JIIF [TCZ21] Ours

Figure 4: Qualitative analysis of joint depth upsampling with the help of our network. We demonstrate (5x) upscaled absolute error maps
with respect to the ground truth for the patches marked in green in the input HR (High Resolution) images. We compare our network output
with DKN [KPH20] and JIIF [TCZ21] on the NYUv2 [SHKF12] test dataset. Brighter regions indicate higher error.

(a) Guide RGB image Ig (b) Bicubic upsampled target input It (c) Network output D f inal (d) Ground truth depth map Dgt

Figure 5: 8x bicubic upsampled example from the Middlebury dataset. Notice the bicubic upsampling artifacts in the target input image(b).
Figure (c) shows visual improvement over the target input. Ground truth (d) is given for reference.

Quantitative results

We compare our method with other learnable joint upsampling al-
gorithms on multiple test datasets (NYUv2, Lu, Middlebury) as
shown in Table 2. Our algorithm’s performance is comparable and
near superior to state-of-the art methods with regard to Root Mean
Square Error (RMSE). Our network achieves state of the art on the
4x upsampling task of the NYUv2 dataset, Middlebury dataset; and
on 8x upsampling task of NYUv2 and Lu dataset. It demonstrates
near state of the art performance for 16x upsampling task with re-
spect to the leading methods which proves our method’s generali-
sation capabilities. Although we outperform JIIF [TCZ21] on mul-
tiple test sets for 4x, 8x upsampling, performance drops slightly
behind JIIF in 16x upsampling test scenarios. With the increased
upsampling factor (16x) the neighborhood context of a fixed-sized
local attention encoder is decreased relative to the target image size.
We identify this as the main cause for the limited performance.
Nevertheless, our network performs effectively well in comparison
to leading methods within a reasonable training period, as we are
runner up to JIIF [TCZ21] for Middlebury and Lu test datasets.

Qualitative results

We provide a qualitative comparison of the visual clarity of our re-
sults with examples from different datasets. In addition, Figure 4
shows a comprehensive comparison with DKN [KPH20]. Addi-
tionally, one can also visualize the NYUv2 [SHKF12] test im-
age input along with the 8x upsampled bicubic target input. Over-
all, one can notice that our network provides a sharper depth out-

put compared to the naive upsampling as well as to the advanced
DKN [KPH20] approach. For a more comprehensive insight on the
generalisation, we have also provided the results on the Middlebury
test set [SP07] in Figure 5. Compared to the degraded (8x bicubic
upsampled) input and the corresponding ground truth, the network
output is able to preserve sharp details and only introduced very few
interpolation artifacts. Visually, the network recovers a substantial
amount of depth data in all settings and displays low absolute error
along edges of image structures.

Ablation study

To investigate the importance of the individual components in our
network, we perform an ablation study by removing each of the
six primary training modules from our overall architecture. As pre-
sented in Table 1, removing the transformer or the depth filter hin-
ders the performance of our network. Additionally, one can also
observe that the absence of the residual module significantly dete-
riorates the performance as the enhanced cross-model transfer from
the target embedding during the final depth computation at the end
of the pipeline is missing. Additionally, if we do not enhance the
transformer fused target and the guide embedding with the help of
our proposed Mergenet, the network struggles to transfer the high
resolution texture features to the final depth. Additionally, absence
of the depth prediction module also highlights the need of careful
pixel selection provided by the fused guidance weights. Introduc-
ing GF and DGF provides a much needed prediction prior which
again infuses the guide RGB features from the beginning and helps
the network to predict the final depth from a better target stand-
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Table 2: Quantitative evaluation (lower is better) for different methods. The evaluation is done in accordance with conventional evaluation
metric protocols [KPH20; TCZ21]. Here, the RMSE is taken in units of centimeter. Best results are in blue, and second best results are
highlighted in pink.

Method NYUv2 Middlebury Lu
4x 8x 16x 4x 8x 16x 4x 8x 16x

Bicubic 4.28 7.14 11.58 2.28 3.98 6.37 2.42 4.54 7.38
DMSG([HLT16], from [KPH20]) 3.02 5.38 9.17 1.88 3.45 6.28 2.30 4.17 7.22
DJF([LHAY16], from [KPH20]) 2.80 5.33 9.43 1.68 3.24 5.62 1.65 3.96 6.75
DJFR([LHAY19], from [KPH20]) 2.38 4.94 9.18 1.32 3.19 5.57 1.15 3.57 6.77
PAC([HLT16], from [KPH20]) 1.89 3.33 6.78 1.32 2.62 4.58 1.20 2.33 5.19
DKN[KPH20] 1.62 3.26 6.51 1.23 2.12 4.24 0.96 2.16 5.11
FDSR[HZL*21] 1.61 3.18 5.86 1.13 2.08 4.39 1.29 2.19 5.00
CTKT[SYL*21] 1.49 2.73 5.11 - - - - - -
DCTNet[ZZX*22] 1.59 3.16 5.84 1.10 2.05 4.19 0.88 1.85 4.39
JIIF[TCZ21] 1.37 2.76 5.27 1.09 1.82 3.31 0.85 1.73 4.16
Ours 1.34 2.71 5.39 1.07 1.86 3.57 0.89 1.73 4.25

point. This underlines the effect and importance of all the proposed
modules in our pipeline.

5. Conclusion

We propose a novel architecture to combine the power of CNNs
and transformer-based encoders to solve the guided depth upsam-
pling task with efficient local image attention. Our network con-
sists of a local attention block for extracting edge-aware features
from both input modalities, followed by merge networks for cross-
modal fusion. To predict the final depth map we extend a set of
learned adaptive filters by adding a novel depth residual computa-
tion. This increases the sharpness of the upsampled depth map.The
approach yields state-of-the-art results in smaller upsampling cases
and performs well on larger upsampling tasks when compared to
leading methods. We tune the local attention patch size for the opti-
mal trade-off between compute time and performance. An ablation
study demonstrates how each sub-module of our network architec-
ture plays an important role in understanding, gathering and subse-
quently merging the image features. In future work, we would like
to improve performance over a wider range of upscaling factors,
minimizing the effort for retraining. For example, certain parts of
the network can be fine-tuned to accommodate for different input
scales while the large U-nets stay fixed. Also a training scheme that
trains on multiple datasets and upsampling factors at the same time
can improve the generality of the model.
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