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Abstract
Recent studies have shown that volume scene representation networks constitute powerful means to transform 3D scalar fields
into extremely compact representations, from which the initial field samples can be randomly accessed. In this work, we evaluate
the capabilities of such networks to compress meteorological ensemble data, which are comprised of many separate weather
forecast simulations. We analyze whether these networks can effectively exploit similarities between the ensemble members, and
how alternative classical compression approaches perform in comparison. Since meteorological ensembles contain different
physical parameters with various statistical characteristics and variations on multiple scales of magnitude, we analyze the
impact of data normalization schemes on learning quality. Along with an evaluation of the trade-offs between reconstruction
quality and network model parameterization, we compare compression ratios and reconstruction quality for different model
architectures and alternative compression schemes.

CCS Concepts
• Computing methodologies → Learning latent representations; • Applied computing → Earth and atmospheric sciences;

1. Introduction

Meteorological ensemble data comprise multiple weather forecast
simulations, which can differ in initial conditions, numerical ap-
proximations or even physical model assumptions, and are used to
assess uncertainties of the forecast outcome. Over the last decade,
researchers have continually pushed ensemble sizes to larger scales,
while, at the same time, extending spatial domain size, resolution
and time horizon. Thus, meteorological ensembles can become ex-
tremely large. Ensembles are produced daily by weather centers
and require large amounts of secondary disk space for backup.

Due to the shear volume of meteorological ensemble data,
any attempt to analyse such datasets is intrinsically difficult.
In the scenario we consider, the ensemble dataset comprises
1000 runs of a high-resolution numerical atmospheric dynamics
model [NGW∗20], thus pushing the data volume to 60GB of mem-
ory for only a single time step. This makes it impossible to keep
the data entirely on recent GPUs and fosters the need for effec-
tive compression schemes for multi-dimensional arrays of floating-
point data. Yet, besides targeted strategies for reducing I/O band-
width and storage requirements by converting such ensembles into
compact data representations, random access to the data is manda-
tory to avoid decoding the entire ensemble for analysis tasks.

While lossless compression schemes allow for bit-wise accu-
rate reconstruction of the original data, they typically achieve up
to only 2x compression or less [SCH∗14]. Lossy data compression
schemes, such as ZFP [Lin14], SZ [DC16], or TThresh [BRLP19],

in contrast, offer higher compression ratios of 100x or more, at
the cost of introducing noticeable reconstruction errors. For most
downstream analysis tasks, however, a certain error level is accept-
able, such that lossy compression becomes a suitable tool for mem-
ory reduction [BHM∗16, CDL∗19].

As an alternative to classical lossy compressors for multi-
dimensional scalar fields, compression schemes based on fully-
connected neural networks have been proposed recently. Volume
scene representation networks (V-SRNs) have been introduced by
Lu et al. [LJLB21], and were further improved and accelerated
by Weiss et al. [WHW21] (fV-SRN). V-SRNs are an extension of
scene representation networks (SRNs), which were first developed
for representing opaque surface models [MON∗19,CZ19,PFS∗19].
Besides offering the ability to directly reconstruct single samples
from the compressed representation, V-SRNs are capable of ex-
ploiting non-local coherence in the data [CLI∗20]. This makes V-
SRNs a promising tool for compressing meteorological ensemble
data, in which coherence and correlation are often observed be-
tween multiple parameter fields of the same simulation run or be-
tween different members of the same ensemble, but are more diffi-
cult to exploit for compression than, e.g., auto-correlations in space
and time.

Contribution In this work, we evaluate the potential of V-SRNs
for learning compact representations of ensembles of volumetric
multi-parameter fields. We compare two different model architec-
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tures, which allow for efficient parameter sharing between multi-
ple parameter fields and ensemble members. We demonstrate that
this results in compression rates that are higher or on par with
those achieved by classical compression schemes, which have been
adapted to exploit redundancy between different ensemble mem-
bers. We do not focus on data with temporal variability explicitly,
but our methods generalize straight-forwardly also to ensembles of
time-variate multi-parameter fields.

We propose and analyze binary model architectures, leverag-
ing a combination of low-resolution grids of trainable spatial la-
tent features and small neural networks to read out the features and
serve as non-linear interpolation functions. Different combinations
of grids and networks are evaluated to identify trade-offs between
model parameterization, reconstruction accuracy, and compression
rate. Our analyses are tightly coupled to a case study using me-
teorological simulation data from a convective-scale ensemble by
Necker et al. [NGW∗20]. Based on this ensemble dataset, we dis-
cuss general methodological aspects, such as model design and
training procedures, and highlight the importance of data-related
aspects, such as the impact of data normalization. The code for the
project is publically available at [HW22].

2. Related Work

Scene representation networks The concept of scene rep-
resentation networks (SRNs) was concurrently introduced by
Mescheder et al. [MON∗19], Chen and Zhang [CZ19] and
Park et al. [PFS∗19], who present the idea of encoding an opaque,
uncolored surface model as an implicit function that is imple-
mented as a fully-connected neural network. The authors use
feature vectors to encode object specific information and enable
reusing models for different objects. The idea of trainable latent
features was developed further by Chabra et al. [CLI∗20], who
replace the single feature vector by a feature grid to improve re-
construction accuracy. Multiple studies explore improvements and
extensions of this idea. Martel et al. [MLL∗21] use an adaptive
data structure that is refined during training to allocate more re-
sources in areas of larger errors. A fixed multi-resolution grid is
used by Takikawa et al. [TLY∗21] and later extended with spatial
hashing by Müller et al. [MESK22], together with an efficient net-
work implementation [MRNK21]. For a more comprehensive re-
view of SRN-related literature, we refer to the overview articles by
Hoang et al. [HSB∗20] and Tewari et al. [TFT∗20]. The works by
Lu et al. [LJLB21] and Weiss et al. [WHW21] extend SRNs for
volumetric data compression. The latter contributes in particular a
fast network evaluation method to speed up training and decom-
pression. Mishra et al. [MHBB22] leverage fully-connected neural
networks for interpolating scientific data. We build upon and ex-
tend these works by focusing explicitly on the multi-parameter and
ensemble compression capabilities of V-SRNs.

Lossy volume compression schemes Prior work in the area of
lossy compression schemes can be categorized into three classes
of algorithms. Transform coding-based schemes [YL95, LCA08]
employ the discrete cosine or wavelet transformation to transform
the data into a basis in which only few coefficients are relevant,
while many others can be removed. Quantization schemes represent

Table 1: List of available simulation parameters.

Name (Short name) Unit Value range

Temperature (tk) Kelvin [200,300]
3D wind speed (u, v, w) ms−1 [−40,40]

relative humidity (rh) % [0,100]
water vapor mixing ratio (qv) 1 [0,0.02]

mixing ratio of hydrometers (qhydro) 1 [0,0.01]
geopotential height (z) m [200,20000]
radar reflectivity (dbz) dBZ [−30,40]

contiguous data blocks by a single index or a sparse combination
of learned representative values [SW03, FM07, GIGM12, GG16].
One instance of this class of compression algorithms is the SZ
algorithm [DC16, ZDL∗20] using lossy curve fittings. Tensor de-
composition schemes decompose the data directly using, e.g., a
singular value decomposition. As one instance of such schemes,
TThresh [BRLP19] can achieve extremely high compression ra-
tios of 1000x or more. In interactive scenarios, mostly transform
coding-based schemes are applied brick-wise, in which case high
compression ratios are traded in on fast GPU-based decompres-
sion, see e.g. [DMG20, MAG19]. Focusing on applied scientific
data compression, various studies have evaluated the applicability
and performance of lossless and lossy data compression algorithms
on atmospheric datasets [HWK∗13, BHM∗16, DCG19, KRD∗21],
and Dueben et al. [DLB19] discuss methods for efficient storage of
weather forecast ensembles. Baker et al. [BPH22] have introduced
a data-based similarity measure, termed DSSIM, for evaluating the
quality loss in scientific data after lossy compression.

3. Data

We evaluate the compression capabilities of V-SRNs on a multi-
parameter ensemble dataset, which was generated to study corre-
lation patterns in atmospheric dynamics [NGW∗20]. The dataset
comprises 1000 runs of an atmospheric dynamics model over a
rectangular domain in central Europe. Nine prognostic atmospheric
parameters are stored at regular time steps of one hour, on a rectan-
gular grid with 352×250 nodes and 20 levels in height. Due to the
presence of mountain ranges and topography in the simulated do-
main, large parts of the data in lower levels are missing due to grid
cells lying below the earth surface. For simplicity, we omit grid lev-
els with missing values and restrict the dataset to the 12 top-most
levels, which are free of missing values. A list of the available pa-
rameters is given in Tab. 1. The fields possess different physical
interpretations and differ in value range and statistical distribution.
As shown in Fig. 1, the distribution of field values varies not only
between different parameters, but also between height levels of the
same field, which complicates the learning task for deep learning-
based compression algorithms.

Data normalization To facilitate model optimization, we exam-
ine the effect of different normalization methods, which rescale all
parameters to a value range of [0,1]. In the context of data compres-
sion, data rescaling has been discussed by Dueben et al. [DLB19]
and was found to improve compression efficiency. We compare
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Figure 1: Value distribution marginalized over different height lev-
els for parameters tk, rh and qv. Distributions of the same parame-
ter may differ with respect to value range or variability.
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Figure 2: Influence of the three variants of interval rescaling on
the data parameters tk (top row), qv (middle row) and rh (bottom
row): a) global min-max, b) local min-max, c) level-wise min-max.

.

three alternative variants of min-max normalization (see Fig. 2),
which reflect a trade-off between expressiveness of the rescaling
and storage space required for keeping the meta information:

• Global min-max rescaling: minimum and maximum values are
computed over the whole domain, all ensemble members, and
all time steps. Minimum and maximum values can be stored as
one floating point number each.
• Local min-max rescaling: minimum and maximum values are

computed for each grid location separately from the statistics of
all ensemble members and all time steps. Minimum and maxi-
mum values are stored as a full grid of floating point numbers.
• Level min-max rescaling: minimum and maximum values are

computed separately for each height-level in the data. Minimum
and maximum values are stored as one-dimensional arrays of
floating point values.

4. Model design

(V-)SRNs, in their basic form, are fully-connected neural networks
that define a parametric mapping from 3D position coordinates

to the d-dimensional data domain [MON∗19, CZ19, PFS∗19]. To
enable sharing of model parameters between different ensemble
members, we consider generalized V-SRN mappings, which re-
ceive information about the member identity as an additional input.

Encoding of the spatial coordinates For our experiments, we
assume that position coordinates are normalized to have val-
ues in [0,1]3. The analyzed V-SRN architectures can be sub-
divided into three modules: a constant input encoding, a low-
resolution grid of trainable feature vectors, and a compact fully-
connected auto-decoder. For the input encoding, we use Fourier
features [MST∗20], which map the position coordinates, p =
(px, py, pz) ∈ [0,1]3, to wave-like features

fi j =
(
sin(2πνi n jp),cos(2πνi n jp)

)
with frequency scales νi = 2i, i ∈ N, and axis-aligned unit direc-
tions n j, j ∈ {x,y,z}. Note here, that similar embeddings with ran-
domly chosen frequencies and orientations have been proposed by
Tancik et al. [TSM∗20], but did not yield better results in our ex-
periments. Additionally, we utilize an axis-aligned, regular grid of
multi-dimensional feature vectors [CLI∗20]. The grid has a pre-set
coarse spatial resolution (compared to the resolution of the origi-
nal data grid) and captures non-local variability in the data. Dur-
ing inference, the features are interpolated trilinearly to match the
input position. The network weights and the feature grid are opti-
mized jointly during training. More elaborate multi-resolution fea-
ture grids have been proposed recently [MESK22], but were found
to not improve the compression-accuracy trade-off of our architec-
tures. For the auto-decoder network, we employ multi-layer percep-
trons (MLPs) with l fully-connected layers with c hidden channels.
Each layer performs an affine transformation with non-linear acti-
vation. Following Weiss et al. [WHW21], we use the SnakeAlt ac-
tivation in all but the last layer, and discretize the network weights
using half-precision floats and the latent grid using 8 bit per chan-
nel. Multi-parameter data is represented by augmenting the output
dimension of the decoder models.

Encoding of the ensemble dimension To inform the V-SRN
about which ensemble member to reproduce, we explore two
different ensemble encoding strategies. First, a separate grid
of feature vectors is allocated for each ensemble member
and the auto-decoder network is shared between ensemble
members. This is similar to how the time dimension is en-
coded in fV-SRN [WHW21], and replicates the approach of
Park et al. [PFS∗19] in the limit of vanishing spatial resolution.
We term this architecture the multi-grid configuration. Second, we
consider SRNs with a single feature grid, which is shared among
all ensemble members, and a separate auto-decoder per ensemble
member. The intuition is, that the ensemble information is stored in
the shared feature grid, and the separate decoders learn to extract
member-specific features from the common grid, thus allowing for
efficient reuse of model parameters. We term this variant the multi-
decoder configuration. As a baseline comparison method, we con-
sider training a separate V-SRN with a single decoder and a single
feature grid for every member.

Training At training time, we draw 6×106 random positions uni-
formly distributed in [0,1]3 and sample the original member vol-
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Figure 3: Reconstruction accuracy of multi-parameter models for
parameters u, v and w. Results are shown for single-parameter
models (solid lines), two-parameter models (u and v, dashed lines),
and three-parameter models (u, v and w, dotted lines). Colors in-
dicate different model configurations, chosen appropriately to have
good reconstruction accuracy at each compression ratio.

umes using trilinear interpolation. We choose a fixed number of
samples per ensemble member proportional to the number of sam-
ples in the original data grid. The network predictions are matched
against the ground truth using the L1 loss function and stochastic
gradient descent. In every mini-batch, we balance the number of
samples evenly between all ensemble members to ensure equally
distributed gradient variances for all member models. We use the
Adam optimizer with an initial learning rate of 10−2 and learning
rate decay of 0.2 after every 20 epochs. Training lasts for a total
of 50 epochs with resampling of the training data applied after ev-
ery 10 epochs. Loss-adaptive resampling strategies, as described by
Weiss et al. [WHW21], were found to increase training stability for
high-capacity models and slightly improve overall model accuracy.
Switching to L2 loss or omitting the balanced sample distribution
among ensemble members led to inferior results.

5. Single-member experiments

To assess the performance of V-SRNs, we first examine the re-
construction accuracy of models which are trained to represent pa-
rameter fields from single ensemble members, without accounting
for the ensemble dimension. To guarantee proper gradient back-
propagation, we fix the decoder architecture as a three-layer MLP
and vary the number of channels per layer as well as the resolution
and the number of channels in the feature grid. Models were trained
separately for dataset parameters tk, rh, qv, u, v and w, and sep-
arately for multiple ensemble members. Exemplary compression-
accuracy curves for parameters u, v and w with level-wise min-max
normalization are shown in Fig. 3 (solid lines).

Impact of model parameterization For all parameters, we find
that the details of the decoder architecture have a minor effect
on the reconstruction accuracy compared to the parameteriza-
tion of the latent grid, which is consistent with prior work by
Weiss et al. [WHW21]. We note that the compression and recon-
struction performance of the models depends crucially on an appro-
priate choice of the grid resolution in horizontal and level direction.
Given a fixed grid resolution, we observe a sigmoid-shaped depen-
dence of the reconstruction accuracy on the number of grid feature
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Figure 4: Impact of data normalization on reconstruction accuracy
(RMSE) for models with varying complexity. Point size indicates
model complexity (larger point→ bigger model). Global min-max
normalization is considered as baseline. Points below the dashed
diagonal line indicate an improvement.

channels. This indicates that an increasing number of grid channels
can partially compensate for a reduction in spatial grid resolution,
but not indefinitely. This behavior is observed in qualitatively the
same way for various decoder complexities.

Impact of data normalization To evaluate the impact of data nor-
malization on the training outcomes, we retrain single-parameter
models on target data to which we apply different normalization
schemes. We consider global min-max normalization as a baseline
and investigate the effect of applying level-wise or local min-max
normalization instead. Specifically, we train model configurations
with a three-layer MLP (c= 32), and set the latent grid resolution to
a fraction of 1/2 to 1/8 of the original data grid in all directions. We
consider grid feature dimensions of 4 or 8. Fig. 4 illustrates the out-
come of such experiments for three parameters with different statis-
tical distributions in height (cf. Fig. 1). For qv and rh, only minimal
improvements can be observed from global min-max normalization
to level-wise min-max, independent of the model configuration. For
tk, which exhibits a much stronger variation of value distribution
with height (see Fig. 1, left), both local and level-wise min-max
normalization help to reduce the reconstruction error. Local nor-
malization performs better than level-wise min-max only for mod-
els with high parameter complexity. We attribute this to the fact that
local normalization improves uniformity of the data, but potentially
destroys spatial coherence patterns due to high-frequency compo-
nents in the minimum- and maximum-value fields (see Fig. 2, mid-
dle column). Due to the preferable compression rate vs. accuracy
trade-off, we use level-wise min-max normalization as a default
for all further experiments. More generally, we conjecture that the
importance of appropriate data normalization arises due to the in-
ability of the L1 loss function to properly resolve multi-scale ef-
fects. For the field parameter tk, the pronounced field gradient in
the vertical direction provides a strong learning signal, while the
variability of the data within each level is weighted as relatively
less important. Differences in variability, as seen in parameter qv
(see Fig. 1, middle), appear less problematic.

Multi-parameter models To evaluate the ability of V-SRNs to
fit multi-parameter data, we select a triplet of field parameters –
u, v and w, i.e. 3D wind components – for which strong inter-
parameter correlations can be expected due to physical reasoning.
We train model configurations of different complexity on predict-
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Figure 5: Reconstruction accuracy vs. compression rate for clas-
sical compression algorithms, applied to ensemble data separately
for each 3D member volume (solid line) or to a 4D array of stacked
member volumes (dashed line).

ing single parameters one at a time, all jointly, or only the horizontal
winds. We use model configurations identical to those of the single-
parameter experiments, except for adapting the final model layer to
the number of required model outputs. Results of the trainings are
shown in Fig. 3. The multi-parameter models show qualitatively
the same accuracy-compression trade-off as the single parameter
models. In particular, the grid parameterization is found to be more
important than the decoder complexity. Models with wider decoder
layers did not yield higher accuracy than shown in Fig. 3. At low
compression ratios (blue curves), u and v are predicted best by the
two-parameter model, which suggests that knowledge of both pa-
rameters supports accurate reconstruction. At the same time, the
three-parameter configuration yields the largest reconstruction er-
ror, indicating that joint prediction of unsuitable pairs may hamper
high reconstruction accuracy. The parameter is difficult to predict
even by single-parameter models, as seen from the low DSSIM val-
ues, and thus disturbs the reconstruction of u and v. Only at very
high compression ratios, the three-parameter model yields the high-
est reconstruction accuracy on all parameters.

6. Ensemble experiments

For all subsequent experiments, we use a subset of 64 members
of the original ensemble, if not stated otherwise. Experiments are
carried out using data for the parameter tk, subject to level-wise
min-max normalization.

Classical compression baseline To set a baseline for achievable
compression ratios from parameter sharing in the ensemble dimen-
sion, we select three commonly used compression algorithms from
the literature and evaluate compression performance for ensemble
member volumes compressed separately and jointly. We choose
SZ3 [DC16] as an example of predictor-based compression algo-
rithms, ZFP [Lin14] as an algorithm with block-wise transform
coding, and TThresh [BRLP19], which is based on the Tucker de-
composition of tensor data. To allow for a fair comparison between
the algorithms, we apply all algorithms with a suitable set of thresh-
olds on absolute error, record the achieved compression ratio and
measure the resulting reconstruction accuracy in terms of root mean
square error (RMSE) and DSSIM [BPH22]. To evaluate the ability
of compression algorithms of exploiting inter-member similarities,
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Figure 6: Comparison of compression algorithms, averaged over
all ensemble members. For the baseline compression methods, the
best configuration from Fig. 5 are selected. Every point repre-
sents a trained network or an invocation of a baseline compression
method. Arrows indicate improving quality.

we propose a test setting, where an ensemble of 3D volumetric
scalar fields is first compressed in a member-by-member config-
uration (i.e. one 3D volume at a time) and subsequently with all
members in common. The comparison of the required storage space
per member allows to draw conclusions about whether similarities
between ensemble members are exploited efficiently.

Fig. 5 depicts the trade-off between reconstruction accuracy vs.
compression ratio found in this procedure. ZFP does not take ad-
vantage of between-member similarities. For most accuracy set-
tings, a higher compression ratio is obtained when the 3D vol-
umes are compressed separately. ZFP generally yields poor quality
for compression ratios above 30x, but single-member compression
is generally preferable. Ensemble compression is favorable with
the SZ3 algorithm, in the case of low error thresholds and low-
ratio compression. For intermediate and highly lossy compression
single-member compression yields lower errors at a given com-
pression ratio. We therefore select the single-member configura-
tion as a baseline for comparison against V-SRN models. TThresh
yields overall the best reconstruction accuracy, and is the only algo-
rithm to take advantage from the ensemble dimension throughout
the whole range of reconstruction accuracies. We therefore select
the ensemble-wise compression for further comparisons.

Ensemble V-SRNs We apply both V-SRN configurations under
the same conditions as the classical compressors. For both architec-
tures, we train model variants with three- and four-layer MLP de-
coders and 32, 64 and 128 channels per layer, and find that models
with four layers and 32 channels yield the best balance between re-
construction quality and compression rate. For multi-decoder mod-
els, higher decoder capacity is needed to achieve good accuracy,
in comparison to V-SRNs trained on single member volumes. This
can be seen as a consequence of sharing local feature vectors be-
tween multiple decoders. Due to the decoder being unique for every
member, increases in decoder size limit the achievable compression
ratio. For the multi-grid models, we note that four-layer MLPs with
32 channels yield similar reconstruction accuracy as three-layer ar-
chitectures with 64 channels, at less than half the storage cost. Fur-
ther increase of decoder complexity led to only marginal accuracy
improvements at significant additional storage cost. Given a fixed
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Ground Truth SZ3 TThresh Multi-decoder Multi-grid

Figure 7: Qualitative comparison when compressing three member volumes of the tk parameter using SZ3, TThresh, and our two methods
“multi-decoder” and “multi-grid”. The models were trained on 64 ensemble members, the first three are shown along the rows. Compression
ratios of the methods are as follows: SZ3: 248.81x, TThresh: 253.25x, Multi-decoder: 251.88x, Multi-grid: 248.00x. For colorbar, see Fig. 2.

decoder configuration, feature grid resolution and channel number
of the investigated architectures are determined empirically to op-
timize reconstruction accuracy.

Fig. 6 illustrates the complexity-accuracy trade-off for differ-
ent configurations of both architectures in comparison to the se-
lected variants (single-member or ensemble-wise compression) of
the classical compressors. Multi-grid models allow for higher com-
pression ratios in our test because the majority of parameters is
concentrated in the feature grid, which is stored in 8 bit format,
thus requiring only half the memory space of an identical number
of half-precision network parameters. The accuracy of multi-grid
models reaches an optimum around compression ratios of 10x, and
is limited by stochastic noise in the optimization of the grid param-
eters at lower compression ratios. For intermediate and high com-
pression ratios, above 20x, both model variants outperform SZ3
and ZFP in reconstruction accuracy with respect to both RMSE
and DSSIM. Given a fixed storage budget, the multi-decoder con-
figuration achieves slightly better reconstruction accuracy. At com-
pression ratios above 200x, both architectures come close to the
accuracy of TThresh.

In Fig. 7, we compare the visual quality of renderings of three en-
semble members, obtained from reconstructions with compression
ratios around 250x. ZFP has been omitted from this comparison
due to very low reconstruction quality. The multi-decoder model
preserves visual high-frequency structures the best. Both TThresh
and the multi-grid model show a tendency to smooth fine-scale
details, with TThresh additionally introducing stripe-like artifacts.
SZ3 is found to preserve high-frequency field structures in regions
of high variability, but introduces fine-granular noise in regions,
where the fields should be smooth. The V-SRN models, in contrast
rather have a tendency to smooth out fine details, which can be seen
as another advantage, depending on the subsequent analysis task. A
significant advantage of the V-SRN-based approaches lies in their

decompression speed. To reconstruct the full-resolution voxel grid,
the reference implementations of TThresh and SZ3 require 50ms
and 10ms, respectively, on an Ubuntu 20.04 workstation with In-
tel Xeon W-2133 CPU (3.60GHz), 32GB RAM, and Nvidia Ti-
tan RTX GPU. Our proposed multi-grid and multi-decoder models
sample the full-resolution data in less than 2ms, and allow for ren-
dering and random data access directly out of the compressed data
structure.

We note that the performance benefit of V-SRNs over classi-
cal compression algorithms in our application appears compara-
tively smaller at first sight than was reported in earlier works, such
as [WHW21,LJLB21]. We attribute this to the properties of the data
that we use for our experiments. The meteorological data differs
from previously studied datasets with respect to data size and dis-
tribution of variability. In particular the low voxel number and high-
frequent variability in the vertical direction prevent the grid-based
V-SRNs from achieving higher reconstruction accuracy, because
subsampling of the feature grid vertically impedes reconstruction
accuracy. Additionally, many of the datasets in earlier studies pos-
sess areas of constant field values. Closest to our example is the
Hurricane Isabel dataset [isa] as studied by Lu et al. [LJLB21],
finding that V-SRNs perform similar to TThresh at compression
rates around 500x. We expect larger storage savings for simulation
data at sub-kilometer resolution, where the fields are determined
by low-frequent variability, and for data with higher resolution in
the vertical direction, which would simplify the exploitation of data
coherence along a third spatial dimension.

Generalization to new ensemble members In Fig. 8, we inves-
tigate whether the shared representations of the proposed mod-
els encode information that is representative of the full ensem-
ble. For this, we re-used the trained models from previous experi-
ments, fixed the parameterization of the shared model components,
and retrained the member-specific components from scratch. Multi-

c© 2022 The Author(s)
Eurographics Proceedings c© 2022 The Eurographics Association.

14



K. Höhlein, S. Weiss & R. Westermann / Volume Representation Networks for Ensemble Compression

10−2 10−1

RMSE (original)

10−2

10−1

RM
SE

 (r
et

ra
in

ed
)

multi-decoder

2x subs., large dec.
8x subs., large dec.
4x subs., large dec.
2x subs., small dec.
8x subs., small dec.
4x subs., small dec.

10−2 10−1

RMSE (original)

multi-grid
16x subs., large dec.
8x subs., large dec.
4x subs., large dec.
16x subs., small dec.
8x subs., small dec.
4x subs., small dec.

Figure 8: Reconstruction accuracy on unseen ensemble members
after retraining of only the member-specific model parts for differ-
ent model configurations. Marker size encodes model complexity,
black dotted line indicates identity.

decoder models with higher-capacity decoders (solid lines) achieve
better reconstruction accuracy than models with simpler decoders
(dashed lines). Nevertheless, all multi-decoder models fail to retain
the same accuracy for new members. Models with higher complex-
ity in the latent features perform comparatively worse in fitting un-
seen ensemble members. The pattern is apparent for model config-
urations that build on the highest-resolution grid in the test (Fig. 8,
blue lines, 2x subsampling), and which exhibit the largest recon-
struction error compared to the remaining configurations. We con-
jecture that a lack of complexity in the latent grid forces the models
to learn more abstract and generalizable representations, thus pro-
viding better starting conditions for training on unseen members.
For the multi-grid configuration, all models are able to achieve al-
most identical loss levels on unseen members as on the original
member set, which confirms the intuition that member-specific in-
formation is stored in the feature grids.

Impact of ensemble size Experiments with different numbers of
ensemble members were conducted for ensemble sizes between 2
and 128 members. The results indicate that multi-grid models are
not affected significantly by changes in ensemble size, suggesting
once more that member-specific information is stored in the feature
grids. Multi-decoder models yield comparable accuracy for vari-
ous ensemble sizes at equal compression rates, as well. However,
for large ensembles, the evaluation of multi-decoder models is con-
strained by the memory capacity of the GPU, since the shared fea-
ture grid for the full ensemble must be held in device memory, or
streamed from system memory or disk.

7. Conclusion

We have analyzed how volume scene representation networks (V-
SRNs) can be used to transform a meteorological multi-parameter
ensemble into compact neural data representations. We compared
two model architectures, which exploit relationships between dif-
ferent field parameters and between ensemble members. Our find-
ings suggest that V-SRNs, in particular in the multi-grid config-
uration (see Sec. 4), yield promising performance at high com-
pression ratios, where they outperform the classical compressors
SZ3 or ZFP in reconstruction accuracy. We found that in meteo-
rological applications the accuracy of V-SRNs may be affected by

the choice of hyper parameters and peculiarities of the data dis-
tribution. We demonstrate that the latter can be counteracted with
appropriate data normalization. However, the necessity of tuning
grid resolution and feature channels currently remains a drawback
of V-SRN-based data compression. Nevertheless, V-SRNs come
with a significant advantage in reconstruction speed and flexibil-
ity on multi-parameter data, compared to classical floating-point
compressors. This makes them appealing for visual analytics tasks,
where an interactive exploration of large multi-parameter ensem-
bles is paramount, using parallelizable statistical evaluations on the
whole dataset.

In the future, we intend to shed light on the embedding of
network-based compression of multi-parameter ensembles into vi-
sual data analysis workflows. For large ensembles comprising bil-
lions of data points with many parameters per point, visual analysis
techniques like parallel coordinates plots or scatter plot matrices
cannot be realized on the GPU due to memory limitations. The fast
random access capabilities of V-SRNs allow to overcome these lim-
itations, while at the same time preserving the spatial structure of
the data, so that linked 3D spatial data views can be integrated.
To improve usability, we will analyze how to design generalizing
V-SRNs to limit retraining for new datasets. For this, we consider
V-SRNs as a mapping from a latent space representation to an en-
semble, and explore speeding up training through direct prediction
of the feature representation for new ensembles. Another promis-
ing approach could be the combination of V-SRN decoders with
generative network architectures, such as variational auto-encoders
or generative adversarial networks, which could help to circumvent
storage of member-specific feature grids by generating the required
features efficiently on demand. Furthermore, we plan on exploring
improved methods for hyper-parameter selection, which will en-
able a higher level of automation and adaptivity, and will improve
accessibility of V-SRNs for practical compression applications.
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