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Figure 1: Flow visualization of the Kdrmdn vortex street using a) flat ribbons and b) our proposed elliptic ribbons. Elliptic ribbons avoid
losing ribbon sections and reduce aliasing. c,d) Visualization using circular cylinders with twisting lines, to convey helicity along streamlines.
c) Procedural rendering of cylinders with projected lines enforces constant line width, reduces aliasing, and enables instant changes of twist
frequency and line width. Helicity is mapped to color from blue (high negative) over grey (zero) to red (high positive). d) Conveying helicity
via twisting lines enables using color for showing a second quantity, i.e., velocity magnitude from grey (low) to red (high).

Abstract

Flat twisting ribbons are often used for visualizing twists along lines in 3D space. Flat ribbons can disappear when looking at
them under oblique angles, and they introduce flickering due to aliasing during animations. We demonstrate that this limitation
can be overcome by procedurally rendering generalized cylinders with elliptic profiles. By adjusting the length of the cylinder’s
semi-minor axis, the ribbon thickness can be controlled so that it always remains visible. The proposed rendering approach
further enables the visualization of twists via the projection of a line spiralling around the cylinder’s center line. In contrast to
texture mapping, this keeps the line width fixed, regardless of the strength of the twist, and provides efficient control over the
spiralling frequency and coloring between the twisting lines. The proposed rendering approach can be performed efficiently on
recent GPUs by exploiting programmable pulling, mesh shaders and hardware-accelerated ray tracing.
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Figure 2: Ribbon- (left) and twist-line-based (right) helicity visualization along streamlines in a Rayleigh—Bénard convection flow, including
halos and visualization of temperature (red) and velocity magnitude (blue). The ribbons extend the technique by Neuhauser et al. [INHK*22]
to use our silhouette point-based distance for view oriented multiparameter bands. RBC volume data set courtesy of Pandey et al. [PSS18].

1. Introduction

In flow and tensor field visualizations, line primitives are used
to graphically depict characteristic pathways in these fields, like
stream- and path-lines in flow fields, or principal stress lines in
stress tensor fields. While line primitives can effectively commu-
nicate the directional structure of the fields, ribbons are often used
to show the local rotational motion via the vorticity or helicity in
addition to the directional structure [Vol89; PW94]. Ribbons are
rendered as flat, twisting quads, and, thus, can become very thin
when viewed from the side. In the worst case this can lead to disap-
pearing ribbon sections, and aliasing artifacts which are perceived
as flickering during animations.

As nowadays lines are commonly rendered as generalized cylin-
ders with a circular profile, twists along a line can also be encoded
by coloring the cylinder surface [SGS05; EBRIO9] or using addi-
tional geometric primitives placed along the lines [SPS06]. In par-
ticular, once the cylinder surface is available as a polygon mesh, the
twist can be indicated by accordingly distorting the per-vertex tex-
ture coordinates, as, for instance, shown by Stoll et al. [SGS05]. By
using a texture map containing a line pattern, this gives the impres-
sion of lines twisting around the cylinder axis and enables using
color for an additional quantity (cf. Fig. 1d). A slight drawback of
this approach is that at least locally a geometric surface representa-
tion is required, and the width of the twisting line varies depending
on the strength of the twist, i.e., the line becomes thinner and wider
with higher and lower frequency of the twist.

We address the aforementioned limitations as well as high-
quality rendering of twists along cylindrical lines (see also Fig. 2)
by the following contributions:

e We introduce the rendering of ribbons as generalized cylinders
with an elliptic profile (cf. Subsec. 3.1). By keeping the ellipse
thickness larger than zero, a minimum ribbon thickness can be
enforced when viewed from the side. Thus, ribbon sections will
never disappear and aliasing artifacts can be avoided. Lines and
ribbons can be rendered in a unified way using generalized cylin-
ders with circular and elliptic profiles.

e We extend the computation of silhouette points of circular cylin-
der profiles as introduced by Blinn [Bli89] to elliptic cylinder
profiles. Thus, halos around lines and ribbons can be rendered in
a single rendering pass on the GPU (cf. Subsec. 3.2).

e We propose a rendering approach for twisting lines on a general-
ized cylinder using procedural textures (cf. Sec. 4). This enables
to maintain constant thickness of the twisting lines, avoids reso-
lution limitations of image-based texture mapping, and enables
cheap anti-aliasing using fragment shader derivatives.

e We provide an efficient implementation of all proposed ren-
dering modes on the GPU using programmable pulling and
mesh shaders. In particular for larger line sets, this implemen-
tation is significantly faster than alternative implementations us-
ing geometry shaders, e.g., by Krone et al. [KBEO8], Kanzler
et al. [KFW16] and Kern et al. [KNM*21]. Our implementation
is open-source and available on GitHub (https://github.
com/chrismile/LineVis).

2. Related Work

A popular approach for rendering line data in scientific visualiza-
tion is via illuminated streamlines to enable an improved perception
of the geometric structure of the lines. The concept was first intro-
duced by Zockler et al. [ZSH96], who utilized direct line rasteri-
zation with texture mapping to perform per-fragment illumination.
Mattausch et al. [MTHGO3] build upon this work and further add
depth cues and halos along streamline silhouettes. Halos are gener-
ated by rendering the streamlines for a second time with increased
line width and no color, thereby adapting the depth test to only let
silhouette fragments pass. Everts et al. [EBRI09] use view-aligned
quads for rendering lines with depth-dependent halos. Krueger et
al. [KKKWO05] and Merhof et al. [MSE*06] propose interactive and
high quality visualizations of particle data and DTI fiber tracts, re-
spectively, using triangle primitives that are textured to achieve the
appearance of 3D primitives. Stoll et al. [SGS05] map line prim-
itives to generalized cylinders with circular profile [AB76], called
circular cylinders in our work. They recognize that view-aligned
quads do not necessarily cover the whole area of the generalized
cylinder and address this issue by using splatting in a hybrid CPU-
GPU rendering pipeline. In the tessellation process, they make use
of optimal cylinder silhouette point calculation by Blinn [Bli§9],
which we generalize in our work for elliptic cylinders.

Nowadays, most scientific visualization systems for 3D line data
work entirely on the GPU and rely on geometry shader-based cylin-
der rendering, where line segments are extruded to circular cylin-
ders in the geometry shader stage [KBEOS8; KFW16; KNM*21].
Kern et al. [KNM*21] compare geometry shader-based line raster-
ization to ray-tracing for rendering transparent lines using differ-
ent transparency rendering approaches. Voxel ray casting [KRW 18]
stores discretized line segments in a regular voxel grid and traces
rays through this grid. Han et al. [HWU*19] use ray tracing via
OSPRay [WJA*17] to efficiently render generalized line primitives
on multi-core CPU architectures. Reina et al. [RBE*06] propose
a GPU-based sphere tracing technique for hyperstreamlines, and
Eichelbaum et al. [EHS13] augment line rendering via fast ambient
occlusions on the GPU.

© 2022 The Author(s)
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Figure 3: Ribbons rendered as flat quads (left) and as elliptic cylin-
ders with a minimum thickness (right).

Ribbon-based line rendering was first introduced in the con-
text of flow visualization by Volpe [Vol89]. Rees et al. [RLN*17]
present a seeding strategy for streamribbons using the flow he-
licity & = (V x v) - v to control the seeding density. The helicity
is the scalar product between the vorticity and the velocity vec-
tor and measures the local spinning motion around the tangen-
tial axis of a flow line. Ueng et al. [USM96] introduce streamrib-
bon tracing in unstructured grids, and Zhang et al. [ZNT*18] pro-
pose Lagrangian accumulation fields for improved ribbon place-
ment. Instead of streamribbons based on the helicity like Rees et
al. [RLN*17] and Ueng et al. [USM96], Karch et al. [KSWE16]
propose the use of vortex core ribbons for flow field visualization.
At the center of the vortex core ribbon lies a vortex core line instead
of a streamline. The direction of the ribbon is then not computed via
the helicity, but by tracing two particles in the vicinity of the vor-
tex core line to deduce the ribbon direction. Wang et al. [WNW*22]
use stress ribbons to show flips in the assignment of principal stress
directions to the eigenvectors of stress tensors.

3. Generalized Cylinders with Elliptic Profile

To avoid the drawbacks of ribbon rendering via flat twisting quads,
we introduce a unified stylized rendering method for lines and rib-
bons. By using generalized cylinders with elliptic profile as the ba-
sic rendering primitives, a minimum ribbon thickness can be en-
sured to avoid losing ribbon sections and aliasing artifacts (see
Fig. 3), and both ribbons and lines can be rendered by switching
between an elliptic and circular profile.

3.1. Definitions

An elliptic cylinder of a curve x(t) with radius r and dilation factor
w in normal direction n(7) is defined as the set of points

p(T,0) = x(t) + rF () (w-cos(9) sin(p) 0)". (1)
F (1) = (n(7),b(1),1(1)) € SO(3) is a frame matrix based on the
Frenet—Serret frame, with 7(t) being the tangent, n(t) being the
normal, and b(1) being the binormal of the curve x at T. @ is an angle
in the range [0, 27). For discretized curves in 3D space, the tangent
is approximated by the direction of the line segment between two
adjacent points, and the normal and binormal are chosen as two
vectors orthonormal to the tangent (cf. Stoll et al. [SGS05]). We
follow the approach by Rees et al. [RLN*17] to obtain a normal
and binormal vector that are rotated according to the local helicity
of the flow field. For stress ribbons, two orthogonal eigenvectors
of the stress tensor can be used as the normal and binormal, as
proposed by Wang et al. [WNW*22] (cf. Fig. 9).
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Elliptic
Cylinder

Figure 4: Left: Generalized cylinder with elliptic profile (blue) in-
tersected with the normal plane (gray). Right: Computation of sil-
houette points (Pmax, Pimax) for an elliptic cylinder cross-section.

The cross-section of an elliptic cylinder, as illustrated in
Fig. 4 left, is defined as the intersection of the cylinder with a plane
normal to its spanning curve. At each point along the curve, the
normal plane contains the normal and binormal of the curve. Lines
can be mapped to circular or elliptic cylinders by adapting the dila-
tion factor w. For w = 1, the cross section of the cylinder is a circle
and lines are rendered as circular cylinders. Ribbons are rendered
as elliptic cylinders (i.e., the cross section of the cylinder is an el-
lipse). By using a dilation factor w < 1 in the normal direction of
the ribbon, the torsion is encoded via the anisotropy of the ellipse.
For lim,,_, a perfectly flat ribbon geometry is obtained. By setting
the cylinder thickness to a positive value, i.e., w > 0, it is avoided
that ribbons become flat and cannot be accurately reconstructed at
the given sampling frequency. In all figures in this work involving
ribbons, w is set to 15% of the ribbon width. In Sec. 5, we describe
how to efficiently render generalized cylinders on the GPU, by ex-
truding a line into a polygonal representation that is then rasterized
or ray traced.

3.2. Silhouette Point-based Screen-Space Outlines

Screen-space outlines (also called halos) are important visual cues
to help distinguish individual lines. To render cylinders with ha-
los in one single rendering pass, one needs to determine whether a
point on a cylinder lies close to the cylinder’s screen-space silhou-
ette. When rendering elliptic cylinders, this computation becomes
considerably more complicated compared to the situation where
circular cylinders are used. To compute whether a cylinder point
p belongs to the outline, the shortest distance of the point to the
silhouette edges of the cylinder as seen from the camera position
needs to be computed, and the point is drawn black if this distance
is close to zero. This problem can be reduced from three to two
dimensions, by projecting the camera position c,,,,;4 into the nor-
mal plane of the cylinder for the point p with associated tangent ¢
(cf. Fig. 4). Blinn [B1i89] shows that this dimensionality reduction
does not change the distance to the cylinder silhouette edges. In the
normal plane, we can now use the distance to the silhouette points
Pmax and p,q. of the elliptic cross-section w.r.t. the projected cam-
era position c¢. The silhouette points are those points on the cylinder
where the view rays touch the ellipse surface. In the following, we
assume that all ellipses have unit extent in one direction, and extent
w in the other direction. The extents will then be multiplied with
the ribbon width.
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Without loss of generality, we further assume that the center of
the elliptic cross-section lies at (0, O)T, and the coordinate axes are
aligned with the tangent frame of the line. The world-space camera
position ¢,,,,74 (assuming that the coordinate system is normalized
to have its origin at the center of the ellipse) can be projected onto
the normal plane, i.e.,

C = Cyorld — <Cwurldvl> -t

2
= Cworld — <Cworld7 (0707 ])T> . (0707 1)T~

The quadratic form to express that a 2D point in homogeneous
coordinates p = (x,y,1)” lies on the ellipse in Fig. 4 right is

)C2 2
=4y —1=0. 3)
w

This quadratic form can also be expressed as pTA p =0 with
1

Lo o .
A=10 1 0 :diag(—z,l,fl). 4)
0 0 —1I W

The simpler case of computing silhouette points for a circular
cross-section has first been described by Blinn [B1i89]. An ellipse is
a special case of a conic section in two dimensions. Given the posi-
tion ¢ of the camera in the normal plane, the silhouette points pmax
and pj,,,. are exactly those points on the conic section which are
touched by the tangents of the conic section w.r.t. the camera posi-
tion. For this, we can compute the polar / = Ac of the camera point,
which is a line that intersects the conic section in these two points
[Ricl1] (cf. pp. 149-154). Please note that both points and lines
can be represented in 2D real projective space as homogeneous co-
ordinate vectors with three components. In order to compute the
intersection of / with the conic section, the algorithm described by
Richter-Gebert [Ric11] (cf. pp. 194-196) can be employed.

0 I, =l
First, we compute B = MITAM ywithM; = —I; O Ix
Ly =L 0
Then, with u being the last, if non-zero, entry of /, we can compute
1 B B
o= —y/— . 5
u Bia Bn ©)

If the last entry of / is zero, a different sub-matrix of B needs to be
selected for computing o.. When u corresponds to the n-th element
of /, we need to compute the determinant from the entries of B not
located at row or column 7.

Let C = B+ oM; and (i, j) be the index of a non-zero element
C; j of C. Then the two intersection points pmax and Phax are the
ith row and jth column of C, respectively. Finally, we can compute
p’ = meet(l,join(c, p)) =1 x (¢ x p), which is the projection of the
cylinder point p onto the silhouette. The meet operation applied on
two lines yields their intersection point, and the join operation ap-
plied on two points yields their connecting line. Both operations
can be expressed as cross-products on homogeneous coordinate
vectors ([Ricll] (cf. pp. 52-54)). Finally, the absolute silhouette

P —Pmas |2
L . . Hp//yxa.x_l"max |2 . .
coincides with the silhouette points. Thus, a black outline is drawn

for A > 1 —e. The outline width € is given in object space, thus the

position is equal to A = 2—1 ‘ A becomes 1 when p
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‘Pnj
u _, u \ v/
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Figure 5: Mapping stripes (k = 3) in texture coordinate space onto
a cylinder with high rotation (without our width correction).

outline width on the screen is dependent on the size the cylinder
takes up on the screen. In case it is desired, € can also be scaled
with the view distance to the cylinder point and the field of view of
the camera to achieve halos with constant screen-space size.

As a side note, it is interesting that the proposed approach is also
directly applicable to hyperstreamlines [DH93], where a cylinder
with half-radii varying according to two mutually orthogonal di-
rection vectors is formed along a stream line. The only difference
to a ribbon is that hyperstreamlines have two separate dilation fac-
tors wy, wp in the quadratic form in Equation 4 for the normal and
binormal direction.

4. Twist-Line Rendering

A different possibility to visualize twists along lines is to draw thin
lines on the surface of an extruded cylinder with circular profile,
which spin around the line with a frequency indicating the strength
of the twist, e.g., the strength of the local helicity when visualizing
flow fields. While helicity can also be mapped to color along the
cylinder surface, an advantage of using twisting lines is that color
can then be used to encode another parameter, so that relationships
between twist and this parameter can be conveyed. Furthermore,
the resulting visualizations can be shown effectively in black and
white printing.

Twisting lines are implemented as periodic procedural line tex-
tures, which are evaluated in a fragment shader to let the lines twist
on the cylinder surface (cf. Fig. 5). Procedural textures have mul-
tiple advantages over pre-computed image-based texture maps as
used by Stoll et al. [SGSO05]. Firstly, the user can zoom onto an ar-
bitrarily small surface area without the finite resolution of a texture
map becoming evident. Secondly, cheap anti-aliasing can be im-
plemented using fragment shader derivatives, as, for instance, de-
scribed by Schéfer [Sch15]. Thirdly, by using procedural textures,
multiple additional parameters can be encoded by the colors of the
regions between the twisting lines (see Fig. 2). Lastly, and most im-
portantly, the problem of varying line thickness depending on the
strength of the twist, which is paramount to using a pre-computed
line texture, can be avoided. An illustration of this effect as well
as the result that is obtained via a procedural texture is shown in
Fig. 6.

To render lines on the cylinder surface that spiral around the
cylinder axis with a frequency given by the local helicity, the accu-
mulated helicity is used to shift the procedural texture u-coordinate
according to the local twist at the cylinder axis. Therefore, the accu-
mulated helicity r, = Y} h;l; f is computed for each line point in a
preprocess. h; is the helicity at the i-th line point, and /; is the length

© 2022 The Author(s)
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(b) (© (d)

Figure 6: a) To maintain the selected line width wy, the texture
line width wy, of the twisting line that is mapped onto the cylinder
needs to be adapted. b, c) Without width correction (i.e., when using
image-based texture mapping), the twisting lines become thinner
in regions of high helicity. d) Constant width of twisting lines is
achieved by our approach.

of the line segment connecting the i-th line point with it’s succes-
sor. f is the twist frequency factor which determines the frequency
of the twist, i.e., the distance between the rendered twisting lines
on the cylinder surface. Then, in the vertex shader the texture co-
ordinate u = (@, j +r») mod 27“ is computed. Here, k controls the
number of twisting lines, and @, ; is the angle of the circle point on
the cylinder (cf. Fig. 5), and black anti-aliased outlines are drawn if
u is close to 0 using fragment shader derivatives. The texture coor-
dinate v corresponds to the length along the cylinder. It is currently
unused in the procedural texturing approach, as the stripes can also
be represented as a 1D texture in u.

The described procedure results in a total of k lines twisting
around the surface of the generalized cylinder with a speed de-
pending on the helicity at the line point in which normal plane a
cylinder point lies. A fragment is rendered black, i.e. as part of a
twisting line, when u < wy,. We can choose the twisting line width
wy in the u-axis (i.e., along the circular cross-section) dynamically
with our procedural texturing approach. However, as demonstrated
in Fig. 6a), when the line twists, the real thickness of the line w; is
not equal to the width w;, of the twisting line in the u-axis. Fig. 6b,c)
shows how the twisting lines appear when the line width varies de-
pending on the strength of the twist, and Fig. 6d) shows the result
of adaptive line width correction.

To counteract varying thickness depending on the twist, fore-
shortening of w; is compensated by increasing w;, correspondingly.
Therefore, we make use of the trigonometric equalities for the two
right-angled triangles in Fig. 6a), i.e.,

tanoc:@and cosoc:&, 6)
dx Wy

to compute the line thickness in the tangential axis of the cylinder
as
Wr

)

Wy= ———""F_".
! cos(arctan%)

dr

Here, dx = ||p; — pi—1]l2 = I; and dy = circumference - =

‘é’—;:dr = %dr. pi are the line points, d; is the diameter of the cylin-

der (i.e., the line width), and dr = r; — r;_ is the helicity difference.
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Figure 7: Top: Indices in programmable pulling for N = 8. Bottom:
Ribbon rendered using meshlets for N = 8 and M = 1. Segments
belonging to the same meshlet are colored identically.

dx and dy are in world-space and their direction and ratio corre-
spond to the direction and ratio of the texture coordinate deriva-
tives dv and du, respectively. Furthermore, it should be noted that
the procedural texture coordinate u lies in the range [0, 2%) If aline

pattern is encoded into a texture map with coordinates in the range

— (@n,j+r,) mod 21
[0,1), we can use u = ~*———.

5. Implementation

The proposed rendering techniques can be implemented efficiently
on a wide range of graphics hardware. The open-source imple-
mentation (https://github.com/chrismile/LineVis)
includes additional rendering options to achieve high quality,
i.e., cylinders are rendered with the Blinn-Phong shading model
[BIi77], and an additional depth cue is integrated by desaturating a
cylinder’s color slightly with increasing distance to the camera.

Many current implementations of line rendering via cylindrical
shapes use geometry shaders [KFW16; KNM*21], which take a
line segment as input and output the triangle geometry of the corre-
sponding part of the cylinder. For each line, two sets of vertices on
circles around each of the line endpoints are created, and triangles
are formed by connecting these vertices. For the elliptic cylinders
introduced in Sec. 3, we use the normal direction of the ribbon for
orienting the circles before connecting the vertices on them.

Geometry shaders, however, are notoriously slow on modern
GPUs [Barl5] if many vertices or polygons are generated, and have
been abandoned on many mobile devices and by Apple’s Metal
graphics API. A replacement would be generating the cylinder tri-
angle mesh on the CPU and uploading it to the GPU, but this
would make fast updates, when changing, e.g., the cylinder thick-
ness or radius, unfeasible. A more flexible replacement for geom-
etry shaders are programmable pulling [Rdk12] and mesh shaders.
Programmable pulling stores the line data in a storage buffer in
GPU memory, which can be read using random access operations.
A fixed-function index buffer is used, storing the topology of the
cylinder mesh. Then, in the shader, the correct line points are
fetched from memory. The line point index is derived by divid-
ing the cylinder mesh vertex index by the number of circle points
(idx/N), as shown in Fig. 7 top. The circle point index can also
be deduced from the vertex index (idx%N). The remaining opera-
tions are analogous to those in geometry shader-based rendering,
but while the geometry shader processes one line segment, the ver-
tex shader in programmable pulling processes only one cylinder
vertex.
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Figure 8: Frame time in milliseconds of different implementations
of elliptic ribbon (top) and twisting lines (bottom) rendering on
different GPUs, measured for a centrifugal pump (Fig. 11, 986,889
line segments) at a resolution of 3840x2160 pixels. The dashed bars
show the frame times when rendering plain ribbons without halos
and texture-based twisting lines. Note that Vulkan mesh shaders are
only supported on the NVIDIA GPU.

When rendering the line data with mesh shaders, the lines are
first subdivided into groups of M line segments in a preprocess on
the CPU. One mesh shader work group then processes one such set
of M line segments collaboratively during rendering and extrudes
these line segments into a set of cylinder segments analogously to
the geometry shader (cf. Fig. 7 bottom). An advantage of meshlets
is that they could also be used for coarse scale visibility culling in
order to improve performance. If for each meshlet the world space
bounding box is stored, a so-called task shader can check whether
the bounding box of the respective meshlet intersects the view frus-
tum of the camera. If not, the whole meshlet can be immediately
discarded for rendering. Another use-case of meshlets is shown in
the work by Ibrahim et al. [IRR*22], where meshlets are used for
fast probabilistic occlusion culling of particle data.

6. Performance Evaluation and Results

All timings are obtained on a system running Windows 10, an Intel
Xeon CPU with 3.80GHz, and an NVIDIA GeForce RTX 3090.
Alternatively, we have used an AMD Radeon RX 6900 XT GPU on
a Xeon CPU with 3.9GHz. Rendering is to a 3840x2160 viewport.

In Fig. 8, we compare the performance of different implementa-
tions of the proposed rendering techniques for ribbons and twisting
lines, based on rasterization and ray tracing. The baseline, the flat
bands, are rendered using geometry shaders. All tests have been
performed for the line data set in Fig. 11. The performance data
is averaged for a camera path around the object. Programmable
pulling and mesh shaders perform significantly better than geome-
try shader-based rendering. Using static triangle meshes performs
similarly well when geometry does not need to be recomputed
in every frame, but uses more GPU memory (approx. x10). Ray
tracing-based methods provide advantages for dense data sets not
tested here, as occluded geometry can be culled using an acceler-
ation structure, while rasterization-based methods need to process
the whole geometry data in every frame.

Vulkan ray tracing (VRT) builds a hardware-dependent accel-
eration structure on top of the generated static triangle mesh. We

Figure 9: Stress ribbons: Following the major principal stress di-
rection, ribbons are oriented normal to the minor stress direction.
Flips indicate where the assignment of eigenvectors to the medium
and minor principal stress direction changes.

believe that the performance decrease when ray tracing generalized
cylinders with elliptic profile is due to the used ray-tracing acceler-
ation structure. Cylinders with elliptic profile take up more empty
space in the axis-aligned bounding boxes used by the acceleration
structures, resulting in more intersection candidates that do not lead
to ray-geometry intersections. As can be seen in Fig. 8, the tech-
niques presented in this work, like silhouette point-based halos and
twisting lines, result in some performance decrease especially on
AMD hardware, but can clearly still run in real-time.

In Fig. 9, the visualization of a stress tensor field via elliptic rib-
bons is shown. Ribbons can effectively encode the direction of one
of the principal stress directions as well as the orientation of the
two remaining principal stress directions via a ribbon’s twist. In the
shown example, a trajectory is computed by following the major
principal stress direction in a 3D stress tensor field. At every point
in this field, a stress tensor is given from which the three principal
stress directions can be computed via an eigenvalue decomposi-
tion. An elliptic ribbon can then be formed by using the remaining
medium and minor principal stress directions as semi-axes of the
elliptic profile, and by adjusting the lengths of the axes to obtain a
flat yet non-vanishing appearance.

Fig. 11 shows the use of elliptic ribbons and twisting lines to
encode helicity in addition to a second variable, i.e., turbulence ki-
netic energy, mapped to color. The simultaneous encoding of two
quantities can effectively hint to spatial correlations between them.
While it is more intuitive to discern the sign of the helicity through
a color mapping like in Fig. 12, it is possible to see that the ribbons
and twisting lines rotate in positive direction in the inside of the
rotor and in negative direction on the outer ring of the centrifugal
pump due to their winding. Another advantage compared to simply
mapping helicity to color is that the resulting visualizations can be
shown effectively in black and white printing (cf. Fig. 13).

7. Discussion and Limitations
7.1. Performance

A slight drawback of elliptic ribbons, as show in the previous sec-
tion, is the additional cost for rasterization and ray intersection
tests due to the higher number of primitives. The time complex-
ity for n triangles lies in O(n) for rasterization and O(logn) for
ray tracing. This means that the overhead of elliptic ribbons only
contributes logarithmically to the overall cost of ray tracing, but
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linearly to rasterization. We believe it should be evaluated in fu-
ture work whether virtual geometry approaches like Nanite in Un-
real Engine 5 [KSW21] could be used to reduce the overhead of
the rasterization of generalized cylinders. This way, the additional
computational cost of the silhouette point-based halos and twisting
lines also could become decoupled from the amount of geometry
rendered, as the shading and lighting computations would in such
a system only be performed for visible geometry.

7.2. Line Primitive Types

In this work, we have demonstrated our contributions for stream-
ribbons and twisting lines generated from the velocity and helicity
of flow fields and stressribbons generated from the eigenvectors of
tensors in a stress tensor field. However, our contributions are also
applicable to any other ribbon generation approach, like the vortex
core ribbons by Karch et al. [KSWE16].

Streamribbons and twisting lines based on the helicity both share
a common shortcoming. In Fig. 12 left, for example, we see on
the leftmost side of the image many neighboring, parallel cylinders
with high negative helicity, and thus twisting lines rotating with
high frequency around them. The twisting lines, as well as the rib-
bons, may suggest the existence of particles rotating around the
center streamline with a distance equal to the radius of the tube.
This is, however, generally not the case. Also, the initial ribbon di-
rection and twisting line angle is arbitrarily chosen, so the rotation
of neighboring ribbons or twisting lines may be shifted. Karch et
al. [KSWE16] try to solve these issues with vortex core ribbons. At
the center of the vortex core ribbon lies a vortex core line instead
of a streamline. The direction of the ribbon is then not computed
via the helicity, but by tracing two particles in the vicinity of the
vortex core line to deduce the ribbon direction. This means that the
ribbon better complies with the local particle motion in close vicin-
ity to the center line. By computing the angle between consecutive
vortex core ribbon sections, the twisting lines can be generalized to
use the local particle motion instead of the helicity.

In the abstract we state that the length of the cylinder’s semi-
minor axis can be adjusted such that the ribbons always remain
visible. For a perspective projection, the cylinder can still become
arbitrarily thin due to area foreshortening. If desired this problem
can be solved by giving the axes of the cylinders a minimum screen
space length that the ribbon thickness must not fall below.

7.3. Geometry, Shading and Lighting Continuity

In Sec. 6, we have shown how our proposed generalized cylinders
with elliptic profile, silhouette point-based screen space outlines
and twisting lines can be efficiently implemented by rasterizing or
tracing rays against extracted triangle meshes, which are inherently
only a C° continuous approximation of the real ribbons. By linearly
interpolating the tangent vector between vertices using hardware-
accelerated barycentric interpolation, C! continuous lighting and
shading can be achieved. We would like to note that, aside from
the performance evaluation, none of our contributions are depen-
dent on the underlying geometric representation. They can also be
used with implicit approaches, e.g., a generalization of the hyper-
streamline sphere tracing approach by Reina et al. [RBE*06] that
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Figure 10: Top: Triangle mesh with low number of subdivisions.
Bottom: Sphere-traced elliptic ribbons.

provides geometry, lighting and shading interpolation of higher or-
der. As can be seen in Fig. 10, a sphere-tracing based approach can
result in a smooth representation even at a low level of geometric
subdivision. Recently, Pan et al. [PHB16] and Reshetov [Res22]
have shown that interest exists in the development of higher-order
smooth representations of flat ribbon geometry using, for example,
developable surfaces and doubly ruled bilinear patches.

8. Conclusion and Future Work

In this work, we have introduced generalized cylinders with elliptic
profile as a visual mapping for ribbons, to avoid aliasing and disap-
pearing ribbon sections as occurring when ribbons are rendered as
flat quads. We have shown how silhouette points of the elliptic pro-
file can be computed, which generalizes the work by Blinn [Bl1i89]
and enables single-pass rendering of stylized halos. A second visual
mapping for twists along lines was introduced, which draws twist-
ing lines on the surface of a circular tube to show the helicity of the
underlying field. We have shown that our ribbon and twisting lines
approach can be implemented efficiently on recent GPUs using fea-
tures like programmable pulling and mesh shaders. In the future
we want to examine how deferred shading and hierarchical culling
can be used for faster rasterization of triangle meshes generated for
generalized cylinders. Also, since trajectory visualization plays a
significant role in meteorology [RBS*18], we plan to integrate the
techniques presented in this work into Met.3D, an open-source 3D
visualization tool aimed at meteorological analyses [RKSW15].
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