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Figure 1: Pathlines of the ABC flow. Left to right: Integrated using analytic, uncompressed, and BC6H compressed flow field data. The color
indicates the per vertex distance ε to the ground truth (left) relative to the maximum possible distance.

Abstract
The steady advance of compute hardware is accompanied by an ever-steeper amount of data to be processed for visualization.
Limited memory bandwidth provides a significant bottleneck to the runtime performance of visualization algorithms while
limited video memory requires complex out-of-core loading techniques for rendering large datasets. Data compression
methods aim to overcome these limitations, potentially at the cost of information loss. This work presents an approach to the
compression of large data for flow visualization using the BC6H texture compression format natively supported, and therefore
effortlessly leverageable, on modern GPUs. We assess the performance and accuracy of BC6H for compression of steady and
unsteady vector fields and investigate its applicability to particle advection. The results indicate an improvement in memory
utilization as well as runtime performance, at a cost of moderate loss in precision.

CCS Concepts
• Computing methodologies → Image compression; Graphics processors; • Human-centered computing → Visualization;

1. Introduction

Vector fields describing phenomena such as fluid flows are a com-
mon source of data in scientific visualization, originating from
various domains such as computational fluid dynamics, magnetic
fields, or gradient fields. Visualization techniques, such as parti-
cle tracing and topology extraction are already well established to-
day. Yet, measurement and simulation methods continue to create
datasets of ever-increasing resolution, and hence size. This leads to

several challenges to the visualization process: Limited memory of
hardware, in particular graphics processing units (GPU), limits the
amount of data that can be processed at a time. Although out-of-
core methods can be used when the data size exceeds the hardware,
this often comes at the cost of reduced interactivity and a higher de-
velopment effort. In the last two decades, GPUs have evolved from
graphics-specific hardware into general-purpose processors, capa-
ble of outperforming compute processing units (CPU) for special-
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ized numerical operations. As a result, they are increasingly used
for compute operations on visualization pipelines [BHP15]. Yet,
the on-board memory of GPUs is limited in size, fixed per model,
and does not grow at the same pace as compute power. Beyer et
al. [BHP15] even propose that technology will never catch up to
fit the entirety of sophisticated datasets into the GPUs memory at
once. Treib et al. [TBR∗12] showed, that in typical vector field vi-
sualization approaches, only 1% of the processing time is spent
on transforming the data into graphics while the remaining time
is spent on I/O operations of the GPU paging data from memory
or disk. Therefore, several approaches were introduced in order to
circumvent the memory limitations of GPUs [BRGIG∗14, BHP15]
such as using lossy compression of the data, which allows for sig-
nificant reductions in data size at the cost of accuracy. Noticeably,
modern GPUs provide explicit hardware acceleration strategies to
specifically handle compressed data without the need for involved
code development. Therefore, it sounds promising to leverage such
functionality also for scientific data. To the best of our knowledge,
this has not yet been explored within the scientific literature.

Therefore, in this work, we investigate if BC6H, a hardware-
accelerated block-based compression format widely supported by
modern GPUs, can be used to improve the utilization of limited
memory of GPU hardware for vector field visualization. In particu-
lar, we study the effect of using compressed vector fields in terms of
performance and accuracy and discuss the impact on the develop-
ment process of visualization tools. Particle advection is chosen as
a classical problem in flow visualization to assess the inaccuracies
introduced by the lossy nature of the compression format. We pro-
duce visualizations for a variety of 3D time-dependent flow data
sets with different resolutions and flow behavior. Using different
code and parameter choices, we benchmark the I/O and compute
performance, thus providing a thorough investigation of their im-
pact on the visualization results. Finally, we discuss these results
and derive, whether this technique represents a suitable candidate
to improve runtime in addition to memory usage without requiring
involved coding strategies.

2. Related Work

Lossy compression methods for scientific visualization have
been investigated in several works [CPW∗19, TBR∗12, LMG∗18].
Among these, GPU-driven applications appear to benefit drastically
from reduced I/O when operating on large datasets. The highest
benefit from decompression is achieved when applied late in the vi-
sualization pipeline, most preferably in a local manner on element
access [BRGIG∗14]. A widely used approach in reducing data size
at the expense of quality is transform coding. Often occurring as
discrete wavelet transform (DWT), the main idea is to reconstruct
the input signal via a combination of weighted basis functions.
This method is typically lossless by design but can be made lossy
when only a selection of the original basis functions is used for
signal reconstruction. While these approaches allow for a variable
compression-quality tradeoff, their non-deterministic compression
ratio typically forbids random access in the compressed volume
which thus needs to be decompressed completely before access. To
ease this, DWT is often applied to a bricked representation of the
input volume. An in-depth overview of wavelet transform in the

context of 3D turbulent flows is given by Rinoshika et al. [RR20].
Treib et al. [TBR∗12] presented a technique, where a 3D turbulent
flow is first subdivided into equally sized bricks with some overlap
to correctly interpolate at brick boundaries. GPU-accelerated DWT
is then applied to the individual bricks whose coefficient stream is
encoded by run-length (RLE) and Huffman coding. This led to an
average compression rate of 32 : 1, reducing I/O time at the price
of decompressing the data on the GPU. Li et al. [LGP∗15] investi-
gated different discrete wavelet transform (DWT) strategies in the
context of turbulent flow data. Their test data was 256GB of turbu-
lent flow for which they could achieve compression ratios ranging
from 8 : 1 to 512 : 1 but with a high cost of introduced reconstruc-
tion time. Hoang et al. [HKB∗18] explored different approaches
to reduce the filesize in the context of data visualization, especially
for isosurface extraction and gradient field visualization. Using sev-
eral datasets, they found that a wavelet representation achieved the
best results for task- and data-independent encoding. Liang et al.
developed an error-bounded and feature-preserving lossy compres-
sion technique for vector fields in [LGD∗20]. They applied a cus-
tom algorithm for on-the-fly and offline compression which used
an interchangeable lossy compressor. Using the lossy SZ compres-
sor, they achieved a 7.48 : 1 compression ratio for 3D vector data
while preserving all first-order critical points where the Jacobian of
the vector field is not equal to zero vector. Another approach for
lossy compression is tensor decomposition. Tucker decomposition
coins a popular approach in this field where the input data is consid-
ered a higher-order matrix which is decomposed via Singular Value
Decomposition to a smaller approximation [LMG∗18]. Ballester-
Ripoll et al. [BRP16] applied Tucker truncation in combination
with thresholding for lossy compression on multidimensional data
focused on 8-bit CT scans. This approach, however, showed high
element access times per tensor. Deep learning methods such as the
use of convolutional neural networks (CNNs) are used as means to
reduce the size of the flow field before analysis and increase the
performance of the overall process. Kim et al. [KAT∗19] presented
a generative network explicitly designed to reconstruct fluid ve-
locities, achieving fast visualizations and high compression. Glaws
et al. [GKS20] presented a convolutional autoencoder able of fac-
tor 64 in-situ data compression, explicitly designed for 3D turbu-
lent flow simulations. A detailed overview of other approaches in
this area is given by Liu et al [LJW∗22]. Making use of such net-
works is a promising field recently gaining popularity. As of now,
however, these approaches are still less deterministic in behavior
than other, more traditional methods and typically rely on training
the neural network on the dataset first. Quantization schemes, e.g.,
scalar quantization or more complex vector quantization, remap
values or groups of values such that their quantized representation
has a smaller memory footprint. They tend to have limited com-
pression capabilities and are therefore often composed with other
techniques, e.g., uniform scalar quantization for encoding the coef-
ficients of DWT coded data [LMG∗18].

Reiterating current literature shows that most solutions require
involved algorithms and development efforts to gain performance.
Here, we want to investigate if similar results can also be achieved
by relying on the built-in hardware support for accessing com-
pressed textures.
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3. Implementation

Followingly, we first describe the BC6H encoding and its proper-
ties, give a brief overview of the comparative cudaCompress en-
coding, and explain the applied visualization method.

3.1. Encoding

All existing GPU-native compression schemes are a form of block-
based compression and are mostly used for encoding integer scalar
fields in the context of scientific data [BRGIG∗14]. For an encoding
to be considered a suitable candidate for the given visualization
method, two core specifications need to be fulfilled:

• Native support for encoding floating point data
• Support for hardware-accelerated decompression on modern

GPUs

Currently, these requirements reduce the set of qualifying encod-
ings to BC6H and ASTC as both are designed for high-quality
floating-point data compression. The hardware support for ASTC
is limited to weaker mobile GPUs and integrated graphics with
smaller and slower video memory while dedicated GPUs support
BC6H only. As, in our experience, the target group for scientific
visualization software predominantly relies on desktop computers
with dedicated GPUs, we decided to build our investigation on the
BC6H compression method. The performance of the BC6H com-
pression is compared against cudaCompress, a DWT-based encoder
that was developed by Treib et al. [Tre14b] and is specifically tai-
lored towards the compression of scientific data in the context of
large scale visualization and the application on GPUs.

BC6H Compression BC6H is a block-based compression that
reaches high encoding/decoding rates on GPUs due to special de-
coding chips. It is designed to encode HDR three-channel color
spaces with an internal precision of 16 bits and a mantissa length of
10 to 11 bits depending on whether a sign bit is necessary. The basic
idea behind BC6H is to spatially subdivide the data into 4x4-sized
2D blocks with a fixed memory footprint of 128 bits and encode
each block individually. This design enables random-access traver-
sal of the data as the position of an encoded texel can be computed
and only needs the respective block to be decompressed. Inside a
block, each texel is replaced by an interpolant weight with lim-
ited precision which can be used with additionally saved color end-
points to reconstruct the former values. This block-based approach
might introduce discontinuities when transitioning from one block
to another. BC6H employs additional measures like partitions to
reference different color gradients per weight and multiple encod-
ing modes to best describe the input data. The computational com-
plexity lies in finding the best mode, partitioning, and color end-
points to best describe the content of the respective block which is
often solved by an iterative process encoding the data and compar-
ing it using some error function. Due to this nature, this is a lossy
compression that effectively achieves constant 6 : 1 compression ra-
tios for 3-channel half-float data. Any more precise floating-point
data will be converted to half float before compression.

cudaCompress The cudaCompress compression library was de-
veloped by Treib et al. [Tre14b] for efficient large scale visualiza-

tion on GPUs in 2014. It uses a combination of DWT, Huffman cod-
ing, and RLE to achieve a high compression ratio at only a small
cost in precision for floating point data or even no cost for inte-
ger data. The implementation is based on C++ and CUDA to allow
efficient utilization of the GPU. Contrary to BC6H, the cudaCom-
press encoding needs to be decompressed completely before it can
be used for integration. This implies the presence of auxiliary data
buffers which need to allocate enough memory to hold the uncom-
pressed data and the need to brick the data into smaller subvolumes,
e.g., individual time-slices, to circumvent too high memory usage.
Depending on the chosen approach, halo regions around the sub-
volumes containing information about the neighboring subvolumes
are necessary to allow interpolation at the border regions, reducing
the compression efficiency. These problems are common to com-
pression techniques used for scientific data.

3.2. Data Compression

Applying BC6H compression to existing data is made very easy,
as several open-source compression frameworks are available. The
NVIDIA Texture Tools Exporter [NVI21] proved to be the best-
achieving candidate concerning quality and coverage of the official
BC6H specification. We consider this a pre-processing step that is
often not as time-critical compared to efficient loading and visual-
ization. Nonetheless, several parameters influence the compressed
data: The time spent on finding a good encoding of the data is tuned
via five presets ranging from “fast” to “highest”. At the time of
the experiments, the implementation supported CUDA-accelerated
compression up to the “medium” preset. As the availability and
achievable quality of BC6H are strongly implementation depen-
dent and may improve in the future, we are interested in both the
“medium” and “highest” presets as they were the best available
presets for GPU- and CPU-based compression. We input 32-bit
floating-point data to the encoder which is then transformed to 16-
bit floating-point precision first and subsequently encoded which
leads to a total file size reduction ratio of 12 : 1.

For the cudaCompress encoding only the C++/CUDA imple-
mentation by Treib [Tre14a] exists. Using the library is less easy
as the exposed parameters require a certain level of domain knowl-
edge for the applied compression techniques at the benefit of more
control over the compression. Meaning, the encoding is steered
more directly via the quantization step size and the number of
decomposition levels, compression iterations, and huffman bits.
We use default values of the implementation for each parame-
ter in our approach except for the number of huffman bits for
which we need to choose either 14 bits or 16 bits, depending on
the dataset. The achievable compression ratio of cudaCompress is
hardly predictable and dependent on the chosen parameters, as well
as the dataset itself, but is capable of a file size reduction ratio of
100:1. Also, contrary to BC6H, it can encode and reconstruct 32-bit
floating-point data with a small error owed by the lossy compres-
sion.

3.3. Integral Line Computation

We developed a prototype particle tracer in C++ and Vulkan de-
signed to load the entire dataset into video memory before start-
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ing the integration process, i.e., no out-of-core loading was imple-
mented. A dataset is stored on the GPU as a set of 3D textures
where each texture stores a single timestep using either compressed
BC6H or uncompressed 16/32-bit floating point texture formats.
Hardware-accelerated texture sampling is used to efficiently inter-
polate the data within single time slices. However, texture sampling
is performed with less spatial precision on most GPUs, leading to
larger errors compared to manually interpolating neighboring val-
ues. In the following, the former will be called implicit interpola-
tion while the latter will be called explicit interpolation. For com-
pressed BC6H data, initial tests indicated a performance benefit of
using 2D texture arrays instead of 3D textures, even when perform-
ing implicit interpolation. This limits the hardware-accelerated in-
terpolation to the x,y-plane while performing manual interpolation
in the z and t dimensions. For uncompressed textures, this was not
the case, thus, implicit interpolation for BC6H will utilize 2D tex-
ture arrays while implicit interpolation for uncompressed textures
will use 3D textures. Additionally, in the case of uncompressed tex-
ture formats, the data for one time slice was split across three tex-
tures, one for each component of the vector, as GPU hardware does
not support 3D textures with 3-component formats. An alterna-
tive approach would be to use 4-component texture formats, how-
ever, this would waste 25% of memory which is critical in memory
bandwidth-bound applications and was slower in our tests. Inte-
gration was performed solely on the GPU using compute shaders
where each thread is assigned a single particle which it traces un-
til it terminates by reaching either the target length or by colliding
with the field boundaries. The employed integration method was
Runge-Kutta 4th-Order with fixed stepsize in conjunction with lin-
ear interpolation in each spatial and temporal dimension.

4. Experimental Setup

ABC Small Tangaroa Half Cylinder
Resolution 225× 250× 200× 151 300× 180× 120× 201 640× 240× 80× 151
FP32 Size 20.38GB 15.63GB 22.26GB
BC6H Size 1.73GB 1.30GB 1.85GB
cC Size 151MB 186MB 236MB
Seeding Density 25× 25× 15 20× 25× 15 25× 25× 12
Path Lines 9375 7500 7500
Stepsize ∆t 0.01 0.01 0.01
Steps 15,100 20,100 15,100

Table 1: The investigated datasets with core descriptors and ap-
plied integration parameters.

Three datasets describing time-dependent 3D vector fields at 32-
bit floating point precision were investigated within the scope of
this work. An overview of each dataset’s core descriptors and the
applied integration parameters are given in Table 1. All investigated
datasets had time-varying characteristics which introduced a very
high memory demand. The Tangaroa and Half Cylinder denoted
datasets both exhibited an overall relaxed flow except for a local-
ized region of strong turbulence. The Tangaroa dataset describes the
airflow distortion caused by turbulence around the research vessel
Tangaroa [PSS04]. The second dataset refers to an incompressible
flow around a Half Cylinder [BRG19]. Finally, we use the analyt-
ical ABC Flow to compare the effects of compression against a
true solution. The selected region shows five cylindrical vortexes

with especially dynamic behavior between shared vortex bound-
aries. Using the formula provided by Shi et al. [STW∗08], we used
an ABC flow field with A =

√
3 · 0.05t · sin(π ·0.01t), B =

√
2,

C = 1 and s = 0.05.

To investigate the impact of the compression on runtime and ac-
curacy, we compute several standard metrics during and after the
integration of path lines at fixed and evenly distributed seeding lo-
cations in every dataset. This is done for BC6H compressed, as
well as uncompressed data with the parameters listed in Table 1.
This process is repeated 100 times to compensate for fluctuations in
performance due to system work and allow for standard statistical
analysis. Performance is described by measuring compression, I/O,
and integration times. To further provide a comparison to existing
solutions, we implemented the cudaCompress approach by Treib et
al. [TBWW15] and recorded the same metrics. As cudaCompress
encoded data needs to be fully decompressed on the GPU before it
can be used, we process it similarly to uncompressed data.

Two workstations were used within the scope of this work. The
preprocessing stage, which mainly consists of compressing the in-
put data, happened on a powerful workstation with two Intel Xeon
E5-2680v3, an NVIDIA Quadro RTX 6000 with 24GB video mem-
ory, and 128GB DDR4 system memory. The visualization part of
this study was performed on a regular desktop PC with a single Intel
Core i9-10900X, an NVIDIA RTX 3090 with 24GB video memory,
32GB DDR4 system memory, and an SSD. We provide our applica-
tion and error calculation as open-source code available at https:
//github.com/VRGroupRWTH/bc6h-integrator.

4.1. Error Metrics

As integral lines were chosen as a standard visualization problem,
we investigate the geometric error by aggregating the unique tra-
jectory pairs between the source and compressed representation
into curve similarity metrics. The most apparent approach is to
measure the average and maximum Euclidean distances between
each unique vertex pair of two corresponding trajectories. How-
ever, this measure does not account for the similarity curve shapes
as the compared trajectories may follow a similar path at differ-
ent velocity magnitudes. This effect can be mitigated when taking
time-parameterization along the trajectory into account, e.g., to al-
low matching a single vertex along one trajectory with multiple
others on the second trajectory if this provides a lower distance
cost compared to strictly relying on the given input series of points.
Concerning a time-aware error alternative, we, therefore, measure
the similarity of trajectories by the distance under Dynamic Time
Warping (DTW) and Fréchet Distance [EFV07]. DTW is a sum-
based measure that calculates a semantic average distance between
two curves if divided by the number of matches. It matches each
point along an input trajectory with the closest one on the com-
pared trajectory adhering to certain heuristics, i.e., a guaranteed
comparison from the first until the last input vertex and respect-
ing the monotonic increasing nature of time for indexing the ver-
tices during comparison. Similarly to DTW, the Fréchet Distance
adheres to certain heuristics which guarantee to start comparison
from the first vertex until the last while respecting time progres-
sion, not taking past vertices into account for matching. Addition-
ally, we applied the Clamped Divergence Rate introduced by Treib
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et al. [TBWW15]. It computes the rate at which two trajectories
diverge instead of their distance and is clamped when a certain dis-
tance ∆s is met. The ∆s limits the impact a critically diverged tra-
jectory has on the obtained error, as it is not tied to the field error
anymore once it diverged too much from the ground truth. Here,
the ∆s was set to the same value as the authors of the Clamped
Divergence Rate, equal to the grid spacing.

5. Results

In the following, we present and analyze the results of our experi-
ments. While visually, the resulting visualizations are very similar
as shown in Figure 1, there are significant differences in the process
that the data points out. First, we investigate possible performance
gains by looking at the impact of data transfer and data access on
computation times. After that, we analyze the error introduced by
the compression.

5.1. Performance Analysis
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Figure 2: Average complete integration time for all path lines.

BC6H
Dataset Medium (GPU) Highest (CPU) cudaCompress
Half Cylinder 108.2 3204.6 49.5
Tangaroa 135.0 2474.2 48.5
ABC 170.2 4339.6 52.2

Table 2: Time in seconds needed to compress the vector field data.

Table 2 shows the time demand of dataset compression for both en-
codings and both BC6H presets. The BC6H encoder used only of-
fers a CPU-based compression at the highest quality preset, which
introduced a significant initial overhead, while medium quality pre-
set and cudaCompress encoding can be performed much faster on
the GPU. The cost of CPU-based compression arced above one
hour for the ABC dataset, marking it unsuitable for a fast preview
of the input data in a compressed representation. The GPU-based
compression achieved a significantly faster encoding in less than 3
minutes for the same data. The implementation of the cudaCom-
press encoder performed fastest, needing less than half the time
than the GPU-accelerated BC6H encoding. Generally, for BC6H
the encoding time was very dependent on the capability of the
encoder to find a good solution. When looking at measurements
taken on the compressed data, two results are clearly visible in the
recorded data: A strong increase in performance during integration
as well as in I/O operations when using BC6H compression. Figure
3 shows the time spent on file and memory I/O. Unsurprisingly, it
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Figure 3: Time spent on file and memory IO for the different
datasets and formats as well as the decompression in case of cu-
daCompress.

scales with the size of the data and favors the compressed over the
uncompressed data, which is why cudaCompress significantly out-
performs BC6H, due to the higher compression ratio shown in Ta-
ble 1. Once the data is stored on the GPU, cudaCompress needs an
additional decompression step which is not needed for BC6H. This
not only drastically increases processing times as shown in Figure
3, such that when adding I/O and decompression times, data com-
pressed with cudaCompressed performs slower than BC6H but still
faster than raw 16-bit floating point values. As the decompression
of BC6H textures is hardware-accelerated and happens locally dur-
ing texture access only, this introduced no measurable overhead,
which is a major advantage of this compression method. It also
means that if uncompressed cudaCompress data exceeds the GPU
memory, involved streaming strategies have to be applied. Figure 2
shows the average time spent on pathline integration. The observed
speedup of using BC6H in the integration depended on the inves-
tigated dataset and ranged from factor 11.14× up to 23.28× com-
pared to integration using the original data. Even if compared to
raw 16-bit floating-point precision data, which equals the precision
of BC6H, the encoded representation achieved a 7.7× faster result.
The nature of cudaCompress encoded data does not allow for any
further comparison than to stage BC6H against raw floating-point
precision performance. This already indicates that the BC6H archi-
tecture achieves an additional acceleration of the integration next
to the IO reduction. Due to the combination of both faster I/O and
integration times, the process of creating a path line visualization
for the Half Cylinder data set could be reduced from two minutes
down to a second. The choice of explicit or implicit accelerated lin-
ear interpolation had a significant impact on the integration times
as well. If the slightly more precise explicit interpolation is favored,
the integration time grew by a factor of 3.41× compared to implicit
interpolation.

Dataset FP32 FP16 BC6H
Half Cylinder 3 4 10
Tangaroa 3 4 10
ABC 5 5 15

Table 3: Empiric optimal number of parallel threads for best inte-
gration performance.

Particle advection is trivially parallelizable as the individual tra-
jectories do not depend on each other. However, as the algorithm’s
performance is primarily limited by memory bandwidth and not
compute power it is not feasible to trace a trajectory with every
available hardware thread in parallel. Doing this causes more cache
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invalidation and results in weaker performance compared to using
fewer threads which we could also observe in our application. Re-
ducing the data size through compression not only reduces video
memory requirements but also reduces the required memory band-
width and improves caching behavior. In our application, we ob-
served that we could use more threads when integrating datasets
that were compressed using BC6H compared to raw datasets. Ta-
ble 3 shows the number of threads that lead to the best result dur-
ing our integration benchmarks. This clearly shows a significant in-
crease when using smaller data, which contributes to its improved
performance.

5.2. Accuracy Analysis

The results of the proposed error metrics for the presented data sets
are summarized in Figure 4, showing distances aggregated over all
computed trajectories. As noted in Section 4, implicit interpolation
in z-direction could not be performed for encoded data because of
the chosen data structure. Implicit temporal interpolation was im-
possible due to the lack of a native temporal data structure for tex-
tures. However, favoring the texture array over other data structures
that allow implicit interpolation in the z-dimension still proved to
be faster and offered a higher precision when translating the world
position to the field position in our tests. As we only had an analytic
solution for the ABC dataset and used presampled data as ground
truth for all other observations, we obtained and differentiated the
error introduced by linear interpolation for the ABC field only.

An observation common across all datasets is the decrease in ac-
curacy growing with the density of turbulence in the source data.
The ABC dataset being the most turbulent flow field investigated
indicates that linear interpolation already introduces a notable error
in the integration. While cudaCompress shows a comparable error
for all metrics, BC6H performs significantly worse. While Figure 1
shows that the overall flow is still preserved, it produces more stray
trajectories, especially in highly dynamic regions. Using the “high-
est” instead of the “medium” preset for compressing the dataset
only had a small impact on the resulting error. The ABC and Half
Cylinder datasets even preferred the medium preset when consid-
ering the maximum vertex error, DTW, or Frechet distance.

6. Discussion

The conducted experiments aimed to shed light on the question of
how a GPU-native compression format performs in the domain of
vector field visualization. Particle tracing with line integration was
chosen as the visualization setup due to its commonness in that
domain and the ability to effectively catch and progress any error
introduced by the chosen integration method. As mentioned in Sec-
tion 3, BC6H was investigated instead of ASTC which was the only
other viable candidate for float vector input data. Although ASTC
compression allows for more configuration options in their specifi-
cation and is a valid competitor to BC6H, it is not widely supported
on discrete desktop GPUs if at all. To enable comparison to non-
native GPU encodings that benefit from optimizations for scientific
data we selected cudaCompress from a wide range of options, as it
was developed specifically for the use case of large-scale visualiza-
tion on GPUs.

The first observation across the chosen datasets was BC6H’s er-
ror susceptibility to regions with lots of dynamic behavior. For ex-
ample, the ABC dataset created the most dynamic trajectories and
showed to be the worst-case scenario for both encodings and linear
interpolation itself. While cudaCompress performed similarly er-
roneously during interpolation, BC6H introduced an error that was
larger by one magnitude across all metrics. This error already sug-
gests traces to BC6H’s architectural design, where a single block
region describes 16 3D vectors approximated via 2 pairs of 3D
vectors, leading to hard limitations when this region also contains
dense turbulence. Prior investigations of the datasets, 2D image
representations also showed few random block artifacts in other-
wise smoothly encoded regions which additionally suggest a non-
optimal implementation of the applied encoder, which also con-
tributes to the perceived errors. The Tangaroa and Half Cylinder
datasets contained large areas of laminar flow around a strictly con-
tained turbulent subarea and exhibited the lowest error scores for
BC6H which, however, still remained a magnitude greater relative
to cudaCompress and linear interpolation. The spatial distribution
of the error indicates that highly laminar flow could be preserved
well and the error is constrained to regions of strongly diverging
vectors. Due to the lack of an analytical solution for these two
datasets, the selected ground truth for comparison inherited the er-
ror from linear interpolation and constrained the expressiveness of
these findings.

When analyzing the Medium and Highest encoding preset of
BC6H, it shows that the optimizer of the chosen encoder could
not reliably find a better encoding under all metrics. In the case
of the ABC dataset, the true error is even higher in the case of the
presumed higher encoding across all metrics except the divergence
rate. A more thorough investigation is needed to see the effect of
the encodings. Concerning performance, a massive overall reduc-
tion in runtime could be achieved by applying BC6H compression.
The achieved speedups of near factor 39× enabled interactive ex-
ploration of the data and reduced waiting times for the completion
of an integration run from 9 seconds down to 250 milliseconds. As
the achievable performance was primarily memory-bound, the re-
duction of file size was most responsible for the speedup of BC6H
compression. The compute stage itself could also be cut down by a
factor of 3× in the most expressive scenario.

When compared to similar studies, other approaches regularly
investigate more conservative methods which use adaptive encod-
ings that result in different file sizes depending on locally encoded
data regions [GK11, TBWW15]. This benefits by restricting the
memory reduction in regions where the precision loss would be too
great and vice versa. Resulting in a generally more precise recon-
struction, this design also comes with a cost. E.g., these encodings
typically are unable to perform random access traversal on the com-
pressed data volume since the flow field position can’t be mapped
to its encoded position without an accompanying lookup structure.
Additionally, they require larger streams of data to be decoded first
and have them copied into another data buffer before. To counter
the need to decompress the complete data volume in the GPU’s
limited video memory, the source data is often bricked into smaller
regions before compression. This, on the other hand, increases the
file size as each block then requires the data of neighboring blocks
around at its boundaries to correctly encode these neighboring re-
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Figure 4: Accuracy of the pathlines generated based on compressed and uncompressed datasets. The ground truth for the ABC dataset was
the analytic solution while the ground truth for all other datasets is the sampled 32-bit floating point with explicit interpolation. The plots show
the RMS of the average vertex error, maximum vertex error, DTW, and Frechet distance as the percentage of the maximum possible distance
defined by the diagonal through the three-dimensional domain. The final row shows the divergence rate defined by Treib et al [TBWW15].
Each plot shows the error metric for 16 and 32-bit floating point numbers (FP16 and FP32), BC6H compression using the highest and
medium preset (BC6H-H and BC6H-M), and cudaCompress (cC) for implicit and explicit interpolation (blue and red respectively).

gions without any discontinuities. Thus, while BC6H has a fixed
compression ratio and limited accuracy due to internal precision
and design, it accelerates the decompression by the lack of transla-
tion procedures in the Compute Shader. The cost of BC6H is more
imminent if compared to other fast encodings like cudaCompress.
In the most dynamic scenario, the trajectories of BC6H are off by
up to 0.4% under the DTW average measure. This is significantly
greater than the error of linear interpolation or cudaCompress but
may be acceptable in certain scenarios, as the trajectories are still
near the true trajectory.

An additional impact to be mentioned is the applied encoder.
Here, the NVIDIA Texture Tools Exporter [NVI21] which builds
upon the NVIDIA Texture Tools [CN20] was used to encode the
data into BC6H, but other open source candidates like Intels ISPC
Texture Compressor [Int22] or AMDs Compressonator [AMD22]
also provided implementations of BC6H encoders. All encoders
use a quality measure to control the encoding effort, which, e.g.,
in the case of the ASTC encoder, is the Peak Signal-to-Noise Ra-
tio (PSNR) metric [Arm22]. The PSNR metric is specifically tuned
toward image quality and it is not clear which measure was im-
plemented for the encoder which was applied to our studies. It is,
however, highly possible to better retain features of the flow field if
a custom encoder optimizing for vector fields is employed. Espe-
cially in consideration of the avoidable blocky artifacts which could
be observed in the image representation of the datasets, a more sta-
ble implementation alone suggests better results. The mentioned
internal precision of 16bit half float with only 10 or 11 bits for the
mantissa is, however, a major drawback. The smaller representable
maximal value is probably negligible, but losing 12 bits of preci-
sion in the mantissa can be considered quite major. To eliminate
the error introduced by the smaller precision, we also sampled and
evaluated 16-bit precision datasets. In the case of the ABC dataset,
we observed lower error ratings in aggregated representation for

the 16-bit datasets compared to the full 32-bit precision. This is a
phenomenon we could not explain as no changes in the experimen-
tal setup between these two cases were made except for the data
format. This needs to be evaluated in further studies.

In the light of specifically tailored encodings like cudaCompress,
the applied BC6H encoding performs significantly worse concern-
ing precision and compression ratio. It does, however, show signifi-
cant speedups for the integration itself and more compute-heavy vi-
sualizations can benefit from this. The possibility to hold the com-
pressed dataset in the VRAM for caching purposes, without the
need for out-of-core decompression, is a huge advantage with re-
spect to interactive visualization and incentivizes a more in-depth
analysis under a broader range of parameters. The most potential
for better performance for a GPU-native encoding is to be expected
in two directions. First, a custom encoder with vector-optimized
heuristics and more stable results has the potential to greatly ben-
efit the results. Further, Vaidyanathan et al. [VSW∗23] published
a preprint of a next-generation GPU encoding that elevates the use
of neural networks for compression. While this specific publication
yet only covers integer-based datasets, they achieved promising re-
sults with respect to accuracy which is to be expected to map to
floating-point-based datasets in the future as well.

7. Conclusion

In this work, we investigated if the hardware-accelerated BC6H
format can be used to overcome memory limitations and improve
performance of vector field visualization. To do so, we applied a
number of error and performance metrics on a variety of time-
dependent vector fields and provided a compact study on possi-
ble parameter and interpolation impact. We showed that using this
widely-supported compression, allows for several performance im-
provements without the need for involved coding strategies, as the
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format is widely supported on modern GPUs. For one, these im-
provements include faster data transfer due to the reduced memory
gained from the 6 : 1 compression rate. Further, our experiments
showed, that the hardware-accelerated texture access drastically
increased particle tracing performance on BC6H-compressed vec-
tor fields. While these are promising results, we also showed that
there is a noticeable error introduced by the compression. While
all tested error metrics showed an introduced deviation from the
original values, we were also able to show that the accuracy of the
format is highly correlated with the complexity of the dataset, with
smoothly varying regions being less prone to error than highly tur-
bulent ones. Based on these findings, we conclude that BC6H rep-
resents a simple-to-implement technique to reduce data transfer and
access, improving computation times and allowing even large data
sets to be processed efficiently that would normally not fit on the
GPUs memory or can now be used on GPUs with smaller memory.
The loss in accuracy, however, is clearly noticeable in applications
such as particle advection with long integration times, where small
errors accumulate quickly, such that we discourage the use of the
compression when high accuracy even after long integration times
is needed. Overall, we established BC6H as a tool to trade accu-
racy for memory and runtime performance in the context of vec-
tor field visualization. In the future, we want to investigate custom
error functions for encoding vector fields, which could further im-
prove the accuracy. Although BC6H is capable of optimizing for
angular error, the implementation is limited to normal maps, rather
than general vector fields. Another direction is packing 32 and 64-
bit numbers to short floats to overcome the channel limitations of
BC6H. Comparison of BC6H to alternative formats also remains as
future work.
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