
Vision, Modeling, and Visualization (2023)
T. Grosch and M. Guthe (Eds.)

Art-directable Stroke-based Rendering on Mobile Devices

Ronja Wagner1 , Sebastian Schulz1 , Max Reimann1 , Amir Semmo2 , Jürgen Döllner1 , and Matthias Trapp1

1Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
2Digital Masterpieces GmbH, Potsdam, Germany

Abstract
This paper introduces an art-directable stroke-based rendering technique for transforming photos into painterly renditions
on mobile devices. Unlike previous approaches that rely on time-consuming iterative computations and explicit brush-stroke
geometry, our method offers a interactive image-based implementation tailored to the capabilities of modern mobile devices. The
technique places curved brush strokes in multiple passes, leveraging a texture bombing algorithm. To maintain and highlight
essential details for stylization, we incorporate additional information such as image salience, depth, and facial landmarks
as parameters. Our technique enables a user to control and manipulate using a wide range of parameters and masks during
editing to adjust and refine the stylized image. The result is an interactive painterly stylization tool that supports high-resolution
input images, providing users with an immersive and engaging artistic experience on their mobile devices.

CCS Concepts
• Computing methodologies → Image-based rendering; Non-photorealistic rendering; Image processing;

1. Introduction

Painterly rendering denotes the artistic stylization of two-
dimensional visual media (e.g., images and videos) imitating the
style of using analog painting tools. According to Kyprianidis et al.
[KCWI13], the original approach by Aaron Hertzmann [Her98] is
classified as a Stroke-based Rendering (SBR) technique using lo-
cal, automatic brush stroke placement based on low-level image
characteristics. Painterly rendering is among the most popular Non-
Photorealistic Rendering (NPR) techniques and has been employed
in many applications [HGT13]. With the continuous development
of mobile graphics hardware, interactive high-quality image styl-
ization is becoming feasible and increasingly used in casual cre-
ativity apps [SDT∗16].

Problem Statement. Most of the previous approaches [Her98,
WD12] achieve painterly stylization by rendering and blending tex-
tured brushstroke geometry successively until the result sufficiently
approximates the input image. The limitations of such automatic
approaches are (1) the runtime performance is limited by the num-
ber of strokes required to cover an input image at a certain resolu-
tion and (2) there is little to no explicit control over design aspects
of brush strokes such as their size, density, curvature, or texture.
However, “art-direction” of the visual elements and aesthetics of
computer-generated imagery, preferably at different levels of con-
trol [Ise16], is argued to be of significant value to support a “full
design cycle” [Sal02].This involves providing artists, and users not
trained in the arts, with interactive tools for algorithmic support,
i.e., to bridge the gap between traditional artistic expression and
the capabilities of computer-generated imagery [Ise16].

Figure 1: Mobile application for painterly rendering using curved
brushstrokes.

To achieve this in the context of resource-limited mobile devices,
a sufficiently fast method for the synthesis and rendering of brush
strokes represents the foundation for editing at multiple levels of
control [SDT∗16] for high-resolution input images (Fig. 1).

Approach and Contributions. To approach the challenges above,
this paper approximates the original method of Hertzmann [Her98]
by combining techniques that are suitable for a Graphics Process-
ing Unit (GPU)-aligned brush stroke synthesis on mobile devices,
such as texture bombing for stroke placement, texture warping for

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/vmv.20231240 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0003-9023-773X
https://orcid.org/0009-0007-2421-5144
https://orcid.org/0000-0003-2146-4229
https://orcid.org/0000-0002-1553-4940
https://orcid.org/0000-0002-8981-8583
https://orcid.org/0000-0003-3861-5759
https://doi.org/10.2312/vmv.20231240


R. Wagner et al. / Art-directable Stroke-based Rendering on Mobile Devices

(a) Input Image I (b) Background Layer B (c) Base Brush Layer LB (d) Detail Brush Layer LD (e) Stylized Output O

Figure 2: Conceptual stage overview of the proposed painterly rendering technique.

rendering curved brush strokes, and multi-layer brush stroke ren-
dering. Similar to Lindemeier et al. [LSD16], the results are com-
posed of multiple base layers blended with details layers to pre-
serve the expression of high-frequency details. To accelerate stroke
placement, we use a texture bombing approach [Gla04] and apply
it at different grid resolutions successively. Texture bombing works
by placing strokes in a grid, offset randomly to avoid pattern arti-
facts – therefore only a constant number of neighboring grid cells
need to be taken into account for each fragment, which leads to
a runtime independent of the total stroke count. Our approach en-
ables the rendering of high-definition previews at interactive frame-
rates and supports tile-based processing for high-resolution outputs
up to 145 Mpx on mobile devices. Furthermore, our approach can
be configured by a wide range of design parameters and thus pro-
vides an SBR technique that allows to control various aspects of
brush strokes such as size, shape, texture, color, and placement to
achieve painterly aesthetics in an interactive way. Further, our tech-
nique can be spatially parameterized by an importance map com-
puted based on image features such as depth, salience, or facial
landmarks [WD12].

2. Related Work

There are various approaches to painterly rendering expressed in
multiple styles, such as watercolor or oil painting. The reviews of
Hedge et al. [HGT13] and Nolte et al. [NMR22] provide a com-
prehensive overview of such approaches. Following Hertzmann
[Her03] and Nolte et al. [NMR22], painterly rendering algorithms
can be categorized by how they make decisions about the place-
ment of strokes. Generally, the problem of SBR can be approached
from the perspective of error minimization to the original image or
by following a “greedy” heuristic.

Approaches using error minimization require many iterations
of optimization using brute-force or random searches [Her01,
OH11, KCC06], gradient-descent [Nak19, ZSQ∗21, KWHO21],
or require training of deep neural networks using supervised
approaches [ZJH19, LLH∗21] or deep reinforcement learning
[GKB∗18, HHZ19]. Due to the high number of iterations and run-
time needed, these approaches are generally not suited for inter-
active applications. While recent approaches such as PaintTrans-
former (PT) [LLH∗21] can predict strokes in parallel on a per-layer
basis, they require a large amount of GPU memory even at low im-
age resolutions, which is not available on mobile devices.

Heuristics-based approaches directly compute the stroke place-
ment in a single pass using a representation of the image con-
tent, provided by edge detection or region segmentation. Low-level

edges are obtained from the image gradient commonly used to
guide strokes. Early works, such as Haeberli [Hae90], let users
place strokes, or position them in a regular grid, such as Litwinow-
icz [Lit97], and then clip and orient them according to low-level
edges. Hertzmann [Her98] proposes the use of longer, curved
strokes using B-splines that are oriented along the local gradi-
ent orthogonal. The painting process incorporates multiple layers
wherein broader strokes are drawn following the large-scale gra-
dients. Smaller, thinner strokes are then layered atop areas where
the broad strokes fail to encapsulate all the intricate details. Several
approaches use a similar layering strategy while varying the edge
placement strategy [HE04,KS04,SPY09,HFL11]. To better mimic
the human painting process, semantically more meaningful high-
level information can be incorporated. As such, segmentation has
been employed to provide levels of abstraction and to guide strokes
along object borders [ZZXZ09,LSD16]. Lindemeier et al. [LSD16]
propose using hierarchical segmentation of a given input image into
several regions, which are then further divided into layers, repre-
senting the content from coarse to fine details. We employ a similar
strategy of base and detail decomposition, which allows for more
precise control over the painting process. Collomosse et al. [CH02]
propose using calculated image salience to place smaller strokes
in more important regions while Wexler et al. [WD12] use impor-
tance sampling to place details along facial landmarks. In contrast
to previous approaches, our approach combines image salience, fa-
cial landmarks, and additionally scene depth to better separate the
foreground-background levels of detail into an importance map to
guide stroke placement. The weighting of these components can
be interactively adjusted by users to art-direct the level of stroke
details in various regions.

Several strategies have been devised to expedite the painterly
rendering process. For instance, Hertzmann [HP00] adapts
painterly rendering for videos by placing strokes only in those ar-
eas of the canvas with a significant change in a new frame. Muku-
dan et al. [MH08] propose a fast index-table-based region-labeling
approach for painterly rendering on mobile devices, while Fischer
et al. [FBS05] propose fast pointillistic rendering filters for aug-
mented reality applications. Our approach accelerates the rendering
by parallelizing stroke placement on the GPU using brush stroke
texture atlases sampled by texture bombing [Gla04].

Various approaches add interactive control mechanisms to
painterly rendering. These mechanisms include the integration of
hand gestures [GCI08] or touch-based controls [KY15] for finger-
painting, as well as the implementation of interactive stroke pro-
cesses to allow users to interactively modify stroke styles [ZZ11]
or simulate brush-canvas interactions [BL04]. Benedetti et al.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

174



R. Wagner et al. / Art-directable Stroke-based Rendering on Mobile Devices

3

Base Layers

(a) Grid 3

Base Layers

(b) Initial placement (c) Stroke offset

(d) Stroke Rotation (e) Stroke Coloring (f) Pass Result

Figure 3: Illustration of basic texture bombing stages during
stroke-based brush rendering.

[BWCS14] postulate a number of design guidelines for interactive
painting applications for novice users, and develop a painting sys-
tem according to these criteria where users draw strokes on a can-
vas, and the system provides guidance through a reference image.
Similar to theirs, our systems allow novice users to easily create
painterly images while at the same time allowing for creative flexi-
bility and achieving high-fidelity results. Specifically, in contrast to
most previous approaches, our approach allows interactive control,
even at high resolutions, over a range of parameters that influence
stroke placement and appearance as well as background rendering.

3. Method

Our approach consists of several conceptual stages, shown in Fig. 2,
which are configured by parameters summarized in Tab. 1. We first
give an overview of these in the following and then expand on im-
portant aspects of the main stages.

Input Image I: The image to be stylized (Fig. 2a). Our approach
supports raster images without (RGB) and with associated depth
information (RGB-D) that can be taken into account during
painterly stylization.

Background Rendering B: The background image (Fig. 2b) is
rendered first and represents a basis for the subsequent base and
detail brush layers. Since the background may not be completely
covered with brush strokes, high image frequencies are removed
by applying an aggressive smooth filter followed by color quan-
tization [WOG06] with ψ quantization levels (e.g., 10 in the
shown examples).

Base Layer Rendering LB: This layer represents coarse brush
strokes for the stylization (Fig. 2c). During three rendering
passes, coarse brush strokes scaled by the grid-size σi (Sec. 3.1)
are added to the background using texture bombing [Gla04].

Detail Layer Rendering LD: Similar to the previous layer, detail
brush strokes are added to the final base layer using two addi-
tional passes. The probability of detail brush stroke occurrence
is controlled by an importance map (Sec. 3.2).

Output Compositing O: In the final stage, the resulting layers are
blended with canvas textures (Sec. 3.3). Due to the nature of our
approach, the result of the painterly stylization process (Fig. 2e)
can be of significantly higher resolution than the input image.

Table 1: Overview of the major parameters provided by our
painterly rendering technique.

Parameter Domain Description

β [1,max(w,h)]⊂ N Blur radius for background
ψ [1,256]⊂ N Quantization level for background
κ [0,1]⊂ R Focus depth for depth processing (MD)
λ [0,1]⊂ R Threshold for depth processing (MD)

ωS [0,1]⊂ R Salience strength for important map MI
ωD [0,1]⊂ R Depth strength for important map MI
ωF [0,1]⊂ R Landmark strength for important map MI

τ [0,1]⊂ R Brushstroke transparency
µ [0,1]⊂ R Color variance for brush strokes
γ [0,2]⊂ R Brushstroke curvature
σ [0,1]⊂ R Brushstroke size
ξ [1,5]⊂ R Detail amount for detail layer

ζ [0,1]⊂ R Canvas strength for compositing
η ]0,2]⊂ R Canvas scale for compositing

Figure 4: Curve fitting using the orientation field

3.1. Base Layer Rendering

Similar to an artist’s workflow [HE04], the base layer is represented
by coarse strokes layered atop each other to approximate the back-
ground of an image. We use three passes of stroke placement us-
ing texture bombing, where the brush size decreases in each pass.
Fig. 3 illustrates the texture bombing process for one pass: based
on a grid resolution, the initially placed brush strokes are offset us-
ing a randomized 2D vector per grid cell and rotated according to
the direction obtained from a smoothed local orientation estima-
tion [KD08]. The orientation field is sampled again at each end of
the rotated brushstroke (Fig. 4). The difference between these ori-
entation samples and the brushstroke orientation then determines
the curvature of the brushstroke used in Sec. 3.5.

The grid size is proportional to the brush size parameter σ and
adjusted on a per-pass level, yielding σi. We found that three passes
with grid sizes σ0 = 0.7σ,σ1 = 0.8σ,σ2 = 0.95σ result in sufficient
background coverage.

During layer rendering, a random texture from the brush texture
atlas (indexed by idB) is used that can vary per grid cell (Sec. 3.4).
The texture coordinates are warped prior to sampling in order to
simulate curved brushstrokes (Sec. 3.5), color interpolation with
color variation is performed (Sec. 3.4) and the result is blended (τ).

3.2. Detail Layer Rendering

Especially for the overall aesthetics of portraits, it can be important
for the user to maintain facial features by using finer details during
stylization. For historic reference, Fig. 6 shows an oil painting that
uses different Level-of-Detail (LOD) for the background and face
as well as the hands of the person. While previous approaches place
details implicitly by iterative refinement, our approach allows detail

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

175



R. Wagner et al. / Art-directable Stroke-based Rendering on Mobile Devices

(a) Input Image I (b) Salience MS (c) Depth MD (d) Landmarks ML (e) Importance MI (f) Output O

Figure 5: Constituents of the importance map MI used to control the level-of-detail during painterly stylization of an input image I to an
output image O. MI is a combination of a saliency mask MS, a transformed scene depth MD and an optional face landmarks mask ML.

control using an importance map MI that is generated by combining
the following data computed during preprocessing (Fig. 5):

Image Salience MS: Salience refers to what is noticeable or im-
portant in an image. High values of samples sMS indicate higher
importance. A salience map can be computed using approaches
reviewed by Borji and Itti [BI13]. In our prototype, we use the
attention-based salience mask feature provided by the Apple Vi-
sion framework [App23].

Scene Depth MD: In the case of RGB-only input image, the pre-
processing stage uses MiDaS [RLH∗22] to compute relational
depth information based on color values (Fig. 5c). In case the
depth data is provided by the device depth sensors, it is usually
of lower spatial resolution than the respective color image. For it,
the depth map is up-sampled to the color image resolution using
joint-bilateral upsampling [KCLU07].

Landmarks MF : Samples of the facial landmark mask sMF indi-
cate regions that should be rendered at highest LOD, such as
eyes, mouth, eyebrows, or skin in general. In our prototype, we
triangulate and render landmark points provided by the Apple
Vision framework.

Figure 6: LOD of face
and hands compared to
the background (Elizabeth
Nourse, “Self Portrait”).

Given the respective weights ω that
can be controlled by the user, the
combination of the above data into
the total importance map MI is com-
puted by

sMI =
ωDsMD +ωF sMF +ωSsMS

max(0.01,sMD + sMF + sMD)
.

The values of MI determine the
probability that a stroke is being
placed in a grid cell. The grid size
computation is similar to the base
layer. For the first detail layer, the
detail amount ξ is multiplied to σ, and the second detail layer al-
ways has 2 times as much detail as the first one.

3.3. Tile-based Rendering & Compositing

Mobile devices often use tile-based rendering and processing to
optimize performance and power efficiency by dividing the render
destination into a grid of smaller regions (tiles) that are processed
separately. To account for this, the stylization technique must be
computed using a fixed overlap per tile to ensure seamless tile-
compositing. Since texture bombing only requires access to a con-
stant number of neighboring cells, it is therefore suited for tile-
based rendering. To process some tile A of the original image, the

technique needs access to section A itself as well as its original im-
age coordinates and an overlap area A′. A′ is a border around A
whose width is the grid size for texture bombing multiplied by the
number of surrounding cells needed in each direction. Therefore
splitting an image into tiles of size A, each with processing size
A+A′, yields the same stylized result as if processed at once.

For compositing, a user can choose between different back-
ground textures that can be randomly tiled for high-resolution out-
put to avoid tiling artifacts [Bur19] and finally blended over the
brush layers using a multiply operator.

3.4. Brush Set Texture Atlas Generation

(a) Scan of acrylic brush strokes

(b) Computed normal map

(c) Color attenuation map

(d) Smudge map

Figure 7: Stages of brush tex-
ture atlas generation.

For effective representation and
access, each set of brush stroke
variations characteristic for styl-
ization is stored as an individ-
ual RGBA texture atlas [Wlo05].
Fig. 7 illustrates the stages of
the brush texture generation pro-
cess. Using scans of real-world
acrylic brush strokes (Fig. 7a), a
gray-scale brush texture is cre-
ated. Based on this, normal maps
are derived (Fig. 7b, contrast en-
hanced for visibility) using partial
derivatives. Further, a luminance
offset map is computed (combin-
ing a vertical gradient and con-
trast enhancement) that models
the attenuation of color within a
brush stroke (Fig. 7c). Using fur-
ther level adjustments, a smudge
map is created that models the
thickness of the applied paint (Fig. 7d). The final texture atlas com-
bines these textures: the first combines normal map (as RGB com-
ponents) and gray-scale texture (as A component), the second com-
bines luminance offset map (as R component) and smudge map (as
G component). The resulting texture atlases and canvas textures
are organized using a 2D texture array, in which slices are indexed
during sampling (idB and idC). The sampling of the indexed brush
texture atlas is performed according to Glanville [Gla04].

3.5. Rendering of Curved Brush Strokes

To align individual brush strokes to local image features and en-
able an organic look, brush strokes are rendered curved according
to the smoothed local orientation estimation [KD08] derived from

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

176



R. Wagner et al. / Art-directable Stroke-based Rendering on Mobile Devices

Figure 8: Coordinate transformation for brush texture warping.

the input image. Specifically, this can improve accuracy in image
areas with curved features. Hertzmann‘s approach uses Splines for
representing curved brushstrokes [Her98]. However, that is not ap-
plicable to texture bombing techniques. Instead, texture coordinate
warping prior to sampling the brush set textures is applied.

In the following, we describe the warping of the top half of the
brush texture – the other follows analogously. The warping function
should fulfill three requirements: (1) the length of the brushstroke
should not be affected by warping (necessary for texture bombing),
(2) the transition between the two curved texture halves should be
seamless, i.e., the tangent of the warped brushstroke at the seam
s (see Fig. 8) should align with the stroke orientation, and (3) the
function is parameterized by the angle α between the brushstroke
direction at its tip and the y-axis – i.e., the local orientation esti-
mation at this position. To achieve this, the warping function wraps
the texture around a circle whose center C aligns with the texture’s
horizontal axis of symmetry, transforming vertical lines into arcs.
All horizontal lines align with the radii of the circle and remain the
same length after the transformation. In order for the center line
(magenta in Fig. 8) to remain the same length (1) and the direction
of the tip of the brushstroke to be defined by the input α (3), we
can then derive the following equations for the radius of the circle:
α/2π = h/2π(h+ r), where the length of the arc with angle α is half
the texture size h and h+ r is the distance between the center line
and the circle center, 2π(h+r) is the full circumference. From that,
r = h/α−h = h((1−α)/α) follows.

Using this radius, the transformation of the input texture coordi-
nates (x,y) to (x′,y′) is computed as follows. Let α

′ be the angle
between the x-axis and the line from (x,y) to the circle center C (see
Fig. 8). The relation to y′ is α

′/α = h− y′/h, y′ being the length of the
arc with angle α

′ at the center line of the brush stroke. We can use
trigonometric functions in the orthogonal triangle defined by (x,y),
C, and α

′ to determine x′ by sin(α′) = h− y/r + 2h− x′, where h− y
is the length of the opposite side of the triangle (relative to α

′) and
r+2h− x′ the length of the hypotenuse.

3.6. Color Variations and Interpolation

luminance =α

color at brush center
color at brush tip

BCCA

Figure 9: Color interpolation.

The entire color processing
is performed in L*a*b color
space. To add plausible varia-
tions that would occur during
the application of real brush
strokes, we perform color vari-
ation and interpolation during
brush rendering. First, Fig. 9 shows how the color CO of a single

brush is mixed using two colors CA,CB sampled from the input im-
age I according to the value of the attenuation map α as follows:
CO =CA · (1−α)+CB ·α.

µ = 0 µ = 0.25 µ = 0.75 µ = 1

Figure 10: Color variation.

In addition to that, both
of the sampled colors can
be varied with respect to
their tone. This facilitates
the painterly impression,
especially in uniform-colored
image regions. Fig. 10 shows
the impact of applied color
variation strength µ control-
ling the interpolation between
the original sampled color CO
and its variant CV = C0 +R, with R being a random value, thus,
C =CO +µ ·R.

4. Results and Discussion

We implement our proposed technique based on iPadOS using
Swift, UIKit, CoreImage, CoreML, and Metal APIs. However, the
implementation method is not device-specific and can be trans-
ferred to other high-end mobile devices.

4.1. Exemplary Results

Fig. 11 shows exemplary results obtained using the proposed
painterly technique. The average editing time for each image was
approx. 1 min. By using different brush stroke textures (e.g., acrylic
or pastel chalk) in combination with settings on stroke lengths, cur-
vature, color variations, and blending, a multitude of different styl-
ization can be achieved. Our interactive rendering technique pro-
vides immediate visual feedback and enables users to iterate fast
on different stylization alternatives as well as to control the overall
and local appearance in certain image regions such as background
or foreground. By providing an effective user interface suitable for
mobile devices, it facilitates casual creativity applications.

4.2. Performance Evaluation

Table 2: Input image resolutions
for runtime performance mea-
surements in pixels (px).

Resolution Width Height ∑ Mpx

HD 1280 720 0.92
FHD 1920 1080 2.07
UHD-1 3840 2160 8.29
UHD-2 7680 4320 33.18
Hi-Res 9600 5400 51.84

System & Setup. We test the
application performance using
the following setup on two Ap-
ple iPad Pro 11" devices: (1)
A1980 (1st Generation, 2018)
equipped with an Apple A12X
Bionic and 4 GB RAM. and
(2) A2377 (3rd Generation,
2020) equipped with an Apple
M1 and 8 GB RAM. For the comparison with Hertzmann et al.
[Her98] and PT [LLH∗21], we use a test machine with an AMD
Ryzen Threadripper 1920X 3.5 GHz, a Nvidia RTX 3090, and
48 GB RAM. We perform runtime analysis using images of dif-
ferent resolutions (Tab. 2).

Results. Fig. 12 shows the runtime performance results. One can
observe that the runtime performance scales with the image res-
olution. While the overall performance depends on the respective
output resolution, thus, the number of overall brush strokes placed,

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

177



R. Wagner et al. / Art-directable Stroke-based Rendering on Mobile Devices

A B C

D E F

Figure 11: Exemplary editing results obtained with our system demonstrating the use of different brushstroke textures (e.g., pastel texture
(D) and oil color (A, B, E)) and sizes (e.g., coarse (B) and fine (C) strokes), curvature (e.g., low (D), medium (A), high (E)), color variation,
as well as blending settings (e.g., semi-transparent (A) to opaque (C)); ranging from detailed (A) to coarse impasto (B, E), more abstract
stylizations (D, F). Separate curved brushstrokes are especially noticeable in (E).

Figure 12: Runtime performance in milliseconds for two mobile
devices (A1980, A2377) and different image resolutions (Tab. 2).

the impact of computing data for the importance map depends only
on the input image resolution. Thus, with larger images, the impact
is negligible. However, for small input resolutions, it represents a
major part of the total execution time. During editing, our prototype
renders at a preview resolution of 1632px× 918px, and any inter-
mediate results are cached. Tab. 3 shows a superior runtime perfor-

mance comparison of our approach (using the A2377 device). For
Hertzmann et al., we use four layers and a minimum brush size of
four. For PT, we use the slower serial prediction, as with parallel
prediction, their approach runs out of GPU memory even for High
Definition (HD) resolutions. When adjusting parameters, a preview
is rendered that enables immediate visual feedback. The preview
rendering performance (computed at approx. HD resolution) sig-
nificantly improves on the respective runtime performance of the
full pipeline (Tab. 3), resulting in rendering times of on average
0.1 s. This performance gain is achieved by caching of computed
inputs, in particular of importance map components.

Table 3: Runtime comparison, all
times in seconds (N/A denotes
out-of-GPU memory).

Resolution [Her98] [LLH∗21] Ours

HD 3.96 25.42 0.28
FHD 8.00 25.46 0.33
UHD-1 29.30 N/A 0.79
UHD-2 133.74 N/A 2.75
Hi-Res 153.82 N/A 4.37

Memory Consumption. The
prototypical app has a storage
size of 1.23 GB on the iPad.
The memory consumption of
our prototype scales linearly
with the amount of pixels of
the input image. For an im-
age of spatial resolution of
1920px × 1080px, the mem-
ory usage is approx. 330 MB. The final export step increases the
memory usage to 650 MB. Thus, the application has a reasonable
memory footprint. Overall main memory consumption is a limit-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

178



R. Wagner et al. / Art-directable Stroke-based Rendering on Mobile Devices

(a) Input (b) Curved SBR [Her98] (c) PT [LLH∗21] (d) InstructPix2Pix [BHE23] (e) Ours

Figure 13: Comparison between the curved-brush Stroke-based Rendering (SBR) approach of Hertzmann [Her98], the feedforward stroke-
predicting PaintTransformer (PT) by Liu et al. [LLH∗21], the Stable-Diffusion [RBL∗22]-based InstructPix2Pix [BHE23], and Ours (with
default parameters for better comparability).

ing factor regarding the maximum output resolution, i.e., A1980
achieves approx. 75 Mpx and A2377 approx. 145 Mpx.

4.3. Qualitative Comparisons

We compare our results with the original approach of Hertzmann
[Her98] and PaintTransformer (PT) [LLH∗21], a state-of-the-art
deep-learning-based approach for stroke prediction. Our technique
effectively approximates Hertzmann’s while introducing a nuanced
brush texture that softens its pronounced edges. Similarly to ours,
PT differentiates between salient objects and the background us-
ing brushstroke size. However, it fails to orient strokes in align-
ment with local edges, and the superimposition of detail layers may
result in grid-like patterns. Compared to Hertzmann [Her98] and
PT [LLH∗21], our approach may introduce blurring of some fine
image features, such as trees or glasses, which can be remedied by
tweaking the brush size and detail layer parameters, namely focus
depth, depth threshold, and the strengths of each importance map
component.

We also compare to InstructPix2Pix [BHE23], a Stable-
Diffusion- [RBL∗22]-based approach for prompt-based image edit-
ing (Fig. 13), and stylize the input according to the instruction
“make it an impasto painting with thick strokes”. While the results
demonstrate a good integration of strokes with the content, creative
control remains constrained; for instance, prompts to modify stroke
thickness according to image content or preserve the input color
scheme is not recognized by the model. Additionally, the resolu-
tion is substantially limited (below HD on our desktop test system)
due to GPU memory constraints.

4.4. Limitations

A major limitation of our approach represents the brush stroke
length that depends on grid resolution per layer. Since stroke place-
ment is performed based on noise, transferring the approach to
the video domain will require temporally coherent noise and fur-
ther studies. Further, one can observe “chaotic” appearance in ar-

eas with high flow variance. This impacts especially the appear-
ance of small facial features in portraits, such as eyes or mouth
(Fig. 14a). To counterbalance this, an additional detail layer can be
applied (Fig. 14b).

5. Conclusions & Future Work

(a) (b)

Figure 14: Additional detail
layer to convey the eyes.

This paper presents an art-
directable brushstroke render-
ing technique for mobile de-
vices that enables interactive
control over the stylization
by offering a wide range of
parameters as well as re-
specting image features such
as saliency, depth, and facial
landmarks for level-of-detail
control. To achieve interactive
rendering, the proposed technique is implemented using the GPU
capabilities of modern mobile devices. Our current work can be im-
proved on conceptual and technical levels. Additional control can
be achieved by enabling importance and flow maps directly modi-
fiable by users using brush metaphors. To improve overall quality,
a more elaborate stroke simulation could be added. Since our ap-
proach relies on noise distribution we plan to evaluate the impact of
different noise types. Besides potential performance optimization,
we plan to transfer our approach to the video domain.

Acknowledgments

We thank the anonymous reviewers for their feedback to improve
the paper and Frank Rupprecht for his technical support. This work
was partially funded by the German Federal Ministry of Education
and Research (BMBF) through grants 01IS18092 (“mdViPro”) and
01IS19006 (“KI-LAB-ITSE”).

References
[App23] APPLE: Vision documentation, 2023. Accessed: 2023-09-01. 4

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

179



R. Wagner et al. / Art-directable Stroke-based Rendering on Mobile Devices

[BHE23] BROOKS T., HOLYNSKI A., EFROS A. A.: Instructpix2pix:
Learning to follow image editing instructions. In Proc. CVPR (2023),
pp. 18392–18402. 7

[BI13] BORJI A., ITTI L.: State-of-the-art in visual attention modeling.
IEEE TPAMI 35, 1 (2013), 185–207. 4

[BL04] BAXTER W., LIN M.: A versatile interactive 3d brush model. In
12th Pacific Conference on Computer Graphics and Applications, 2004.
PG 2004. Proceedings. (2004), pp. 319–328. 2

[Bur19] BURLEY B.: On histogram-preserving blending for randomized
texture tiling. Journal of Computer Graphics Techniques (JCGT) 8, 4
(2019), 31–53. 4

[BWCS14] BENEDETTI L., WINNEMÖLLER H., CORSINI M.,
SCOPIGNO R.: Painting with bob: assisted creativity for novices. In
Proc. UIST (2014), pp. 419–428. 3

[CH02] COLLOMOSSE J., HALL P.: Painterly rendering using image
salience. In Proceedings 20th Eurographics UK Conference (2002),
IEEE, pp. 122–128. 2

[FBS05] FISCHER J., BARTZ D., STRASSER W.: Artistic reality: Fast
brush stroke stylization for augmented reality. In Proc. VRST (2005),
p. 155–158. 2

[GCI08] GRUBERT J., CARPENDALE S., ISENBERG T.: Interactive
stroke-based NPR using hand postures on large displays. In Short Pa-
pers at Eurographics 2008 (2008). 2

[GKB∗18] GANIN Y., KULKARNI T., BABUSCHKIN I., ESLAMI S. A.,
VINYALS O.: Synthesizing programs for images using reinforced adver-
sarial learning. In Proc. ICML (2018), pp. 1666–1675. 2

[Gla04] GLANVILLE R. S.: Texture bombing. In GPU Gems: Pro-
gramming Techniques, Tips and Tricks for Real-Time Graphics. Addison-
Wesley Longman, 2004. 2, 3, 4

[Hae90] HAEBERLI P.: Paint by numbers: Abstract image representa-
tions. In SIGGRAPH ’90 (1990), pp. 207–214. 2

[HE04] HAYS J., ESSA I. A.: Image and video based painterly anima-
tion. In Proc. NPAR (2004), pp. 113–120. 2, 3

[Her98] HERTZMANN A.: Painterly rendering with curved brush strokes
of multiple sizes. In SIGGRAPH ’98 (1998), p. 453–460. 1, 2, 5, 6, 7

[Her01] HERTZMANN A.: Paint by relaxation. In Proceedings. Computer
Graphics International 2001 (2001), IEEE, pp. 47–54. 2

[Her03] HERTZMANN A.: A survey of stroke-based rendering. In Com-
put. Graph. Appl. 23 (2003), IEEE. 2

[HFL11] HUANG H., FU T.-N., LI C.-F.: Painterly rendering with
content-dependent natural paint strokes. The Visual Computer 27 (2011),
861–871. 2

[HGT13] HEGDE S., GATZIDIS C., TIAN F.: Painterly rendering tech-
niques: a state-of-the-art review of current approaches. Computer Ani-
mation and Virtual Worlds 24, 1 (2013), 43–64. 1, 2

[HHZ19] HUANG Z., HENG W., ZHOU S.: Learning to paint with
model-based deep reinforcement learning. In Proc. ICCV (2019),
pp. 8709–8718. 2

[HP00] HERTZMANN A., PERLIN K.: Painterly rendering for video and
interaction. In Proc. NPAR (2000), p. 7–12. 2

[Ise16] ISENBERG T.: Interactive NPAR: What Type of Tools Should We
Create? In Proc. NPAR (2016), Expressive ’16, p. 89–96. 1

[KCC06] KANG H. W., CHUI C. K., CHAKRABORTY U. K.: A unified
scheme for adaptive stroke-based rendering. The Visual Computer 22
(2006), 814–824. 2

[KCLU07] KOPF J., COHEN M. F., LISCHINSKI D., UYTTENDAELE
M.: Joint bilateral upsampling. ACM Trans. Graph. 26, 3 (jul 2007),
96–102. 4

[KCWI13] KYPRIANIDIS J. E., COLLOMOSSE J., WANG T., ISENBERG
T.: State of the "art”: A taxonomy of artistic stylization techniques for
images and video. IEEE TVCG 19, 5 (May 2013), 866–885. 1

[KD08] KYPRIANIDIS J. E., DÖLLNER J.: Image Abstraction by Struc-
ture Adaptive Filtering. In Theory and Practice of Computer Graphics
(2008). 3, 4

[KS04] KOVÁCS L., SZIRÁNYI T.: Painterly rendering controlled by
multiscale image features. In Proceedings of the 20th Spring Conference
on Computer Graphics (2004), pp. 177–184. 2

[KWHO21] KOTOVENKO D., WRIGHT M., HEIMBRECHT A., OMMER
B.: Rethinking style transfer: From pixels to parameterized brushstrokes.
In Proc. CVPR (2021), pp. 12196–12205. 2

[KY15] KANG D., YOON K.: Interactive painterly rendering for mobile
devices. In Entertainment Computing - ICEC 2015 (2015), p. 445–450.
2

[Lit97] LITWINOWICZ P.: Processing images and video for an impres-
sionist effect. In SIGGRAPH ’97 (1997), pp. 407–414. 2

[LLH∗21] LIU S., LIN T., HE D., LI F., DENG R., LI X., DING E.,
WANG H.: Paint transformer: Feed forward neural painting with stroke
prediction. In Proc. ICCV (2021), pp. 6578–6587. 2, 5, 6, 7

[LSD16] LINDEMEIER T., SPICKER M., DEUSSEN O.: Artistic Com-
position for Painterly Rendering. In Vision, Modeling & Visualization
(2016). 2

[MH08] MUKUNDAN R., HAN C.: A Fast Algorithm for Painterly Ren-
dering on Mobile Devices. In Theory and Practice of Computer Graphics
(2008). 2

[Nak19] NAKANO R.: Neural painters: A learned differentiable
constraint for generating brushstroke paintings. arXiv preprint
arXiv:1904.08410 (2019). 2

[NMR22] NOLTE F., MELNIK A., RITTER H.: Stroke-based render-
ing: From heuristics to deep learning. arXiv preprint arXiv:2302.00595
(2022). 2

[OH11] O’DONOVAN P., HERTZMANN A.: Anipaint: Interactive
painterly animation from video. TVCG 18, 3 (2011), 475–487. 2

[RBL∗22] ROMBACH R., BLATTMANN A., LORENZ D., ESSER P.,
OMMER B.: High-resolution image synthesis with latent diffusion mod-
els. In Proc. CVPR (2022), pp. 10684–10695. 7

[RLH∗22] RANFTL R., LASINGER K., HAFNER D., SCHINDLER K.,
KOLTUN V.: Towards robust monocular depth estimation: Mixing
datasets for zero-shot cross-dataset transfer. IEEE TPAMI 44, 3 (2022),
1623–1637. 4

[Sal02] SALESIN D. H.: Non-photorealistic animation & rendering: 7
grand challenges. Keynote Talk at NPAR (2002). 1

[SDT∗16] SEMMO A., DÜRSCHMID T., TRAPP M., KLINGBEIL M.,
DÖLLNER J., PASEWALDT S.: Interactive image filtering with multiple
levels-of-control on mobile devices. In SIGGRAPH ASIA 2016 Mobile
Graphics and Interactive Applications (2016). 1

[SPY09] SEO S., PARK J., YOON K.: A Painterly Rendering Based on
Stroke Profile and Database. In Computational Aesthetics in Graphics,
Visualization, and Imaging (2009). 2

[WD12] WEXLER D., DEZEUSTRE G.: Intelligent brush strokes. In
SIGGRAPH Talks (2012), p. 50. 1, 2

[Wlo05] WLOKA M.: Improved Batching via Texture Atlases. In
ShaderX3. Charles River Media, 2005, pp. 155–167. 4

[WOG06] WINNEMÖLLER H., OLSEN S. C., GOOCH B.: Real-time
video abstraction. ACM Trans. Graph. 25, 3 (jul 2006), 1221–1226. 3

[ZJH19] ZHENG N., JIANG Y., HUANG D.: Strokenet: A neural painting
environment. In Proc. ICLR (2019). 2

[ZSQ∗21] ZOU Z., SHI T., QIU S., YUAN Y., SHI Z.: Stylized neural
painting. In Proc. CVPR (2021), pp. 15689–15698. 2

[ZZ11] ZHAO M., ZHU S.-C.: Customizing painterly rendering styles
using stroke processes. In Proc. NPAR (2011), p. 137–146. 2

[ZZXZ09] ZENG K., ZHAO M., XIONG C., ZHU S. C.: From image
parsing to painterly rendering. ACM Trans. Graph. 29, 1 (2009), 2–1. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

180




