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Abstract

In particle systems simulation, the procedure of neighbour searching is usually a bottleneck in terms of com-
putational cost. Several techniques have been developed to solve this problem; one of particular interest is the
cell-based spatial division, where each cell is tagged by a hash function. One of the most useful features of this
technique is that it can be easily parallelized to reduce computational costs. However, the parallelizing process has
some drawbacks associated to data memory management. Also, when parallelizing neighbour search, the location
of neighbouring particles between adjacent cells is also costly. To solve these shortcomings we have developed a
method that reduces the search space by considering the relative position of each particles in its own cell. This
method, parallelized using CUDA, shows improvements in processing time and memory management over other

“standard” spatial division techniques.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; 1.6.8 [Computer Graphics]: Types of Simulation—Parallel

1. Introduction

In the field of Computer Graphics, the use of particle sys-
tems for dynamic environment simulation is widely applied.
To obtain realistic simulations, particles must show a high
level of cohesion. This is because each particle belonging
to the system interacts with the closest particles or neigh-
bouring particles. The amount of neighbouring particles is
determined by a given distance, which is called influence ra-
dius. In terms of computing cost, the search of neighbouring
particles is one of the main bottlenecks of simulation, and re-
quires the correct techniques for the optimization of its pro-
cessing. Otherwise, the computational cost is prohibitively
increassed [GDNB10].

The most basic technique is the exhaustive search
[GDBOS]. It consists of calculating the distance between
every particle and the rest of the system’s particles, selecting
only those that are at the same or at a lower distance than the
influence radius. Although this technique allows to calculate
the neighbouring particles, it does not seem appropriate due
to its high computing cost, in the order of (’)(nz).

There are several techniques that can reduce this high
computing cost. These techniques operate mainly in stages:
spatial division and analysis—allocation. In the spatial divi-
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sion stage the space is divided in cubicles or cells, so the par-
ticles are associated to the cells according to their location.
In the analysis—allocation stage the distances between the
particles of each cell and the adjacent particles are checked,
in order to assign the neighbouring particles from the influ-
ence radius. For these techniques to be operational, it is ne-
cessary that the cells are organized in a sorted structure. Tree
structure [Ben75] and hash function structure [IABT11] are
the two most common structures. Tree structure basically
consists in subdividing the space into decreasingly arranged
hierarchies, allowing tracking each cell and their adjacent in
a relatively short period of time. On the other hand, a hash
function is used in hash sorting to obtain an integer, ideally
a unique number, from the centre of each cell. Thanks to the
hash codes obtained, an organization allowing the quick lo-
cation of each cell and their adjacent is established. It should
be noted that the techniques based on hash demand the inner
particles of each cell to be associated to their own hash code.

Both techniques are comparatively appropriate to manage
the neighbouring search, and both show satisfactory results.
Nevertheless, two features in the hash sorting stand out over
the tree structure. The first one is the static structure gener-
ated, which does not require to be recalculated at every step
of the simulation. The second one is that the calculation of

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vriphys.20151339

102 D. Morillo et al. / A More Efficient Parallel Meth. For Neighb. Search Using CUDA

each particle’s hash code is performed individually, making
it suitable for its parallel processing [LHO6].

There are different parallel programming architectures.
Notable among these is CUDA technology, developed by
NVIDIA, embedded in graphics processing units (GPUs).
The cornerstone of this technology is that there are a high
number of processing cores. Each processing core can exe-
cute many tasks in parallel at high speeds. Taking advantage
of the computing power offered by CUDA in neighbouring
particles search reduces the computing costs, making real
time simulation feasible [RBG™ 12, Kno09] even when an ex-
haustive process is used [GDBO0S].

Despite the advantages of CUDA, the GPU memory man-
agement affects the efficiency of the neighbouring particles
search, as the access to very dispersed data slows the process
down. There are two ways to optimize the memory manage-
ment: the first one is the use of techniques controlling the
memory dispersion of information. The second one is re-
ducing the information flow during processing as much as
possible.

In this article we present a new technique that meets these
two limitations, while we achieve to reduce the comput-
ing cost of neighbouring particles search. This technique is
based on the division of space in cubic cells using a hash
function to tag them. It uses the relative location of each par-
ticle inside the cell to reduce the amount of adjacent cells
where neighbouring particles are searched for. Thus, the in-
formation consulted is as minimal as possible.

After this introduction, the article is structured as follows:
In Section 2, we will describe the most relevant research
in the field of neighbouring particles search. This research
shapes the environment in which our technique is originated.
In Section 3, we will describe the foundations of CUDA
architecture, focusing on its capabilities and limitations, as
they are important to the development of our technique. In
Section 4, we will describe the foundations of the standard
technique for cell space division, like the one used by Simon
Green in [Gre10], and hash function tagging, while we prove
the limitations of this technique. Thus, we will establish the
conceptual environment in which our technique is based on,
and we will discuss the progress it provides. In Section 5, we
will describe the proposed technique, its capabilities and the
bases for its implementation in CUDA. In Section 6, we will
show the progress obtained thanks to our technique. To do
so, we will compare our technique with the standard spatial
division technique [Gre10]. Finally, in Section 7, we will talk
about the conclusions obtained after analysing the collected
results.

2. Related Works

In the dynamic simulation of particles systems, the most
used techniques for neighbouring particles search are based
on space division. Bentley et al. [Ben75] develops one of the

pioneers techniques based on a tree structure covering the
entire simulation space. Several improvements to the model
proposed by Bentley have been developed to optimize the
performance of this technique. Kumar et al. [KZNO8] de-
scribe tree structures overcoming some limitations of the
original proposal, as the node divisions used are always
axis—aligned. Nevertheless, even though the tree structure
has been widely used, it shows some disadvantages if paral-
lel processing is to be implemented, specially when the tree
has a large number of levels and it requires to be continu-
ously recalculated in the simulation [PDC*03].

In parallel implementation, the most effective methods
are those which discretize the simulation space into cells of
equal size. Harada et al. [HSKO7] relate each particle with
the container cell by coordinate texture. Thus, each cell is
coded by a pixel and is assigned to three-dimensional com-
putational space. Ihmsen et al. [TABT11] propose a particles
tagging technique by hash function. Garcia et al. [GDBO08]
study this technique and stress two main features: the rapid
access to memory data and the ability to be parallelized.

Most current research is focused on formulating the opti-
mal hash function to guarantee the uniqueness of each hash
code with no excessive computing costs involved. Miiller et
al. [MPGO03] or Teschner et al. [THM*03] present a func-
tion based on exclusive logic operations in which large prime
numbers are involved and require to be modulated. Although
it is very used, it may involve collision problems within the
results due to the modulation of the values [Cay12]. A more
appropriate formulation is proposed by Fan et al. [FWZS11]
where the hash function reduces the possible hash collisions
as it does not require modulation.

In models of cell-space discretization that use a constant
influence radius, an appropriate size of the cells is needed so
the efficiency of the process is not affected [WBKO07]. How-
ever, Wroblewski et al. [WBKO07] develop a detailed study
on the optimal size of the cells for other techniques which
do not necessarily use a constant radius, specifically using a
constant number of neighbours for each particle. His conclu-
sions show that the values for the cell side size fall between R
and 2R, where R is the influence radius. In a similar research
approach, Viccione et al. [VBCOS] sets an sorting criterion
for neighbouring search, not just the cell containing the par-
ticle, but the 26 adjacent. This technique offers satisfactory
results but it is insufficient, as it has to search for every ad-
jacent cell. Ihmsen et al. [TABT11] discretizes the space in
cells whose size is the same as the influence radius R. In his
proposal, he assesses the value of each cell, suggesting that
increasing the cell size produces better results.

Several research take advantage of the abilities of GPU
parallel processing [Cudl2, SGS10]. We will focus on
CUDA technology, as it provides a higher performances,
taking into account that this technology is linked to the use
of NVIDIA hardware -which is not the case of OpenCL-
. However, parallelization using CUDA may involve prob-
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lems in memory management, specially errors related to
cache [IABT11]. To overcome this barrier, Goswani et al.
[GSSP10] develop a research describing the problem of the
memory overhead. To reduce it, they propose using a z—
indexing technique to sort the information into the memory.
Likewise, Dominguez et al. [DAM13] carry out an exhaus-
tive description of the bottlenecks that appear in the neigh-
bouring search process. They set a relationship between the
particles position and the cell that contains it. By this rela-
tionship, each particle is tagged with its container cell. To
reduce the memory overhead, they propose using a sort-
ing of the particle’s tag. Several sorting algorithms have
been developed together to those which group the informa-
tion stored in memory. Relevant algorithms are Bitonic Sort
[PSHL10], Sample Sort [LOS10], among others [Akl14].
The most recent version of Radix Sort [SHG09, Hwul 1] is
one of the most used due to its high speed, sorting the data
without taking into account the previous sorting. This can
decrease the efficiency, as it misses the previous sorting.
Another way of facing problems related to memory man-
agement is using specific memory types which are able to
access data in a more efficient way. Rozen et al. use tex-
ture memory, located in the processor (chip) cache offering
a great spatial locality [RBAOS].

3. CUDA

CUDA (Compute Unified Device Architecture) is a comput-
ing model developed by NVIDIA. It uses the GPU parallel
processing capacity to obtain a great computing power, sup-
porting different programming frameworks. It can be used in
a wide range of graphic software by NVIDIA, starting from
GeForce 8 series (Tesla architecture).

CUDA structure is hierarchically organized for both pro-
cessing elements and memory. Processing elements are:
multiprocessors, cores and threads, while memory types are:
global memory, shared memory and local memory. Within
the processing elements, each multiprocessor is composed
of several CUDA cores containing groups of threads of exe-
cution. Each thread will access its own local memory, which
cannot be accessed by any other thread of the same group.
If threads of the same group need to share information dur-
ing processing, the shared memory must be used. Compara-
tively, the writing and the access to the shared memory data
is slower than the local memory, so it can slow the processing
down.

The processing is performed in groups of 32 threads,
called warps [Micl2]. A warp is the minimal data unit
handled by a multiprocessor, optimizing the amount of op-
erations and improving performance. In addition, not only
threads of the same group can share information, the differ-
ent groups can also exchange data using the global memory.
The importance of global memory is essential, as the size
of thread groups is limited and requires the synchronization
between different groups to achieve an optimal and massive
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parallelism [Cud12]. This synchronization can only be car-
ried out in the global memory, where access to information
slows the processing down.

To optimize the performance in CUDA implementations,
the limitations of its architecture regarding memory man-
agement and GPU execution flows must be borne in mind.
For an optimal memory management, the data stored in the
global memory must be very close [TABT11]. This limitation
is related to cache, so as more information is transferred to
the cache for every data request, the fewer requests and the
quickest parallel processing [Ros13]. This is essential when
all threads execute the same parallel request, as the accesses
to the data stored in the shared memory need to be consec-
utively set, that is, they need to be coalesced accesses. The
most usual method to avoid memory data disaggregation is
the use of sorting algorithms. The process starts with a dis-
persed memory layout, in which every data must be linked
to a tag to be sorted.

Considering a sorting criterion, tags -and so data- are
sorted so as the information is consecutively set. There are
several sorting algorithms: [SHG09, Hwull], with Radix
Sort [MG10] being the most efficient. On the other hand,
CUDA execution flow depends on the processing of condi-
tional instructions executed in the same warp, as they in-
troduce different routes of execution. As CUDA goes over
these routes in a consecutive way [Cud12], an excessive use
of these instructions reduces the level of parallelism of the
functions using them [FSYAQ7].

4. Neighbouring Search

Neighbouring particles search using standard spatial divi-
sion is based on the fact that all particles have their neigh-
bours inside the cell containing them and, eventually, in ad-
jacent cells. The standard method considered will be the one
used by NVIDIA [Grel0]. In this context, the particle’s in-
fluence radius needs to be associated to the cell size.

For this technique to operate, it is necessary to establish a
many—to—one connection between the particles and the cells
containing them, as well as determine a sorting criterion
among different cells. The usual way to meet this require-
ment is hash function tagging. This way, the cells and the
particles are univocally tagged and related, as shown in Fig-
ure 1. Besides, the hash codes associated to cells allow us to
set the sorting structure.

Descriptively, this technique can be divided into two
stages: spatial division and analysis—allocation.

In the spatial division stage, the size for each cell is set.
Wroblewski et al. [WBKO7] develop a study on the opti-
mal size of each cell, dividing the simulation space in non-
overlapped connected cells. Then, the centre of each cell is
located and an integer value is obtained using a hash func-
tion. This ideally unique value “tags” the cell; the same hash
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Figure 1: Representation of the tagged cells and particles

value is used to tag the particles contained within the cell.
This way, a one—to—many relationship between the cell and
the particles contained in it. To avoid a memory overflow,
only hash codes of the cells containing particles must be
stored in memory.

In the analysis—allocation stage, the occupied cells are
checked. The distance inside every cell is calculated, that is,
the particles associated to the same hash code. If the distance
is the same or lower than the influence radius, the particles
are neighbours, but not the only ones. As the influence radius
defines a closed sphere centred on the particle and the cell is
generally cubical, it is necessary to complete the neighbour-
ing search in adjacent cells.

As tagging particles and neighbour allocation are inde-
pendent processes for each particle, this technique is eas-
ily parallelized, making it possible to use CUDA. However,
CUDA’s architecture limitations regarding memory manage-
ment must be kept in mind, specially those related to data
dispersion in memory, which reduces the number of coa-
lesced memory accesses. This limitation has an impact on
the hash function selected, as the results obtained may cause
data dispersion. This is enhanced by the necessity of search-
ing neighbouring particles in adjacent cells, which is 27 in
the three—dimensional case. The reason for this limitation is
that the hash values in the neighbouring cells will be sepa-
rated from the memory and the process will slow down.

This is why a hash function that induces the minimal dis-
persion possible is required, as well as developing a method-
ology reducing the amount of adjacent cells to a given mini-
mum amount in which to search neighbouring particles. Our
technique pursues that goal, as we explain in the following
section.

5. Proposed Model

We present an efficient technique for neighbouring parti-
cles search, optimized for its implementation in CUDA. It
is based on the spatial division of non-overlapped connected

cells, using the relative location of each particle inside the
cell to reduce the amount of adjacent cells where neighbour-
ing particles are searched for.

As every technique based on spatial division, there are two
different stages. In the spatial division stage we develop a
standard spatial discretization in cubic cells of equal size.
The cells are tagged using a hash function. We use the same
hash function to tag particles in order to pair particles with
the cells containing them. In the analysis—allocation stage,
we determine the relative location of each particle inside the
cell containing it. This relative position will allow us to sig-
nificantly reduce the process of searching in adjacent cells.
Thus, the cache miss rate is reduced, meaning a refinement
of accesses to global memory, which is the slowest in pro-
cessing [LCT14].

The algorithm 1 describes the main steps needed for the
implementation of our proposed technique. In sections 5.1
and 5.2 we will carry out a more detailed description.

Algorithm 1 Neighbour search process.
Require: The space must be segmented in cells of length e.
Each cell is tagged with hash function 1.
Ensure: Each particle has retrieved all its neighbour parti-
cles and knows their positions.
Input: Particles’ positions, Influence Radius.
1: for Each particle do
2:  Evaluate its hash code, which coincides with the hash
code of its cell.
3:  Tag the particle with its cell’s hash code.
4: end for
5: Sort hash codes
6: for Each particle a do
7:  Determine which octant contains the particle.
8:  Calculate the subset of searchable cells Ny ;.
9:  for Each particle bcontainedinacell fromNy,; do

10: Calculate the distance between a and b.
11: if (distance <= influence Radius) then
12: b is neighbour of a

13: end if

14:  end for

15: end for

5.1. Spatial Division Stage

In spatial division, the cells size has an impact on the ef-
ficiency of the process [WBKO7]. In our case, as we will
show in section 6, the optimal value is obtained for cells
with a e = 2R edge length, that is, cells of V = SR> size.
Given this size, we discretize the space clockwise order, that
is, we first discretize in X direction, then in Y direction, and
finally in Z direction, see Figure 2. Considering that CUDA
thread blocks reach the instructions in a similar way that sin-
gle instructions do on linear code, the distance between data
makes the nested X — Y — Z loop the most useful structure
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Figure 2: Segmentation order.

for our purpose. This fact is valid whenever a clockwise seg-
mentation order is used, ie., X Y —-Z,Z—X —Y or
Y—->Z-X.

The next step is tagging each cell using a hash function.
We use the function

Hash(x7y,z) = Ztrunc € €x + Ytrunc € + Xtrunc (1
where €, and €y are the number of subdivisions in x and y di-
rection respectively, and Xrrunc, Ytrunc and Zrrune are the trun-
cated coordinates of each particle that satisfy the equation
2.

ﬂJ &(ex, —1) Vj=1,2,3;

R @

Xjtrunc = L
where X1 truncs X2 truncs> X3 trunc refer to Xtruncs Ytruncs Ztrunc and
€y, &x, and &y, refer to €, €y and € respectively.

The expression 1, based on the hash function formulated
by Fan et al. [FWZS11] guarantees the uniqueness of the
hash codes obtained and favours the close cells to be asso-
ciated with hash codes close to memory. Once the cells are
tagged using hash codes, the next step is determining the
amount of particles contained in each cell. In order to do so,
we use the equation 1, so the cells and particles are paired.
To avoid a memory overflow, only those cells containing par-
ticles must be stored in memory.

When updating the particles information, it must be borne
in mind that the data are not generally stored in memory
in a sorted way. This has a negative impact in the perform-
ance of subsequent accesses, as multiple memory requests
are needed to obtain all the information. Even the particles
contained in the same cell (and so with the same hash code)
may be disaggregated.

One of most used methods to improve performance con-
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sists on sorting computed data according to their correspond-
ing hash code. This is because CUDA architecture strongly
depends on memory information transfers, obtaining sig-
nificant improvements of performance by minimizing the
amount of accesses.

There are several sorting algorithms which are appropriate
for parallel implementations, but in this case we will use the
Radix Sort algorithm from NVIDIA’s library [HBOS] to sort
the hash codes list, as it is one of the fastest algorithms for
the problem posed.

We have not selected the z—indexing technique because, in
spite of giving better results in terms of proximity of the cells
in memory, the cells are sorted using a different criterion
which is costlier than ours in terms of computational costs.
As the sorting process is a significant part of this algorithm,
the advantages and disadvantages of z—indexing pretty much
cancel each other out.

Now the first stage and the considerations related to opti-
mizing performance are described, it is time to continue with
the description of the second stage, in which we locate the
particle inside each cell and the selection of adjacent cells
where neighbouring particles are searched for.

5.2. Analysis—-Allocation Stage

To locate the relative position of each particle inside the cell,
called C, we use perpendicular secants located in the middle
of each side, that is, ¢/2. Thus, eight octants of equal dimen-
sions are obtained, called C/ Vi=1,...,8. We define a local
origin on this breakdown, called O, occupying the minimum
vertex of the cell, that is, O = (Xmin,Ymin, Zmin)> See Figure
3. It is remarkable that the original cell keeps its size for the
rest of operations, the division made is “virtual” and it is only
used to set the relative location of each analysed particle.

From each octant limit, we can distinguish the relative po-
sition of each particle. This process is carried out by compar-
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Figure 3: Relative particle positions inside the cell. The dashed contour indicates the adjacent cells where the neighbour particles

must be searched.

ing the particle’s coordinates and the secants position, that is

Xjmin L Xj < Xjmin+(e/2)

Vji=1,23
Xjmin+(€/2) <xj < Xjpin+e } /

where x; = x, x =y and x3 = z are the particle coordinates.

Located the particle into the octant, we select the cell ad-
jacent to search neighbour particles. From spatial division
order, described in section 5.1, the cell’s range to trace is
fixed by:

(xxl.Rs(jfl)a,(cfl) <celly; < Bx_,.RS(jfl)sgfl)
where 8 is the Dirac delta function, cell, ; is the cell increased
in x; direction and oi; and By; are coefficients that satisfy:

(Xxj=0; szl if ij[nﬁxj'<xj'mm+(€/2)
(Xxj:—l; Bj:O if ijin+(e/2)§)cj§x]'mm+e

This way, the amount of adjacent cells to be tracked is
significantly reduced, see Figure 3. Despite the extra calcu-
lations needed to locate the particles, this is balanced out
with the reduction of cells where search is performed, as we
will show in section 6.

The described process is applied to solve the most general
case, see Figure 3a, nevertheless two more cases exist. In the
first case, the particle is located in a secant plane, see Figure
3b Here, the adjacent cells to be searched are those in the
intersection of the ones associated to adjacent octants. The
second case has the particle located in the intersection of
both secants planes, see Figure 3c. This is the simplest case,
since we only need to search the neighbour particles into its
own cell.

Once the subset of candidate cells is filtered, we continue
to determine if the distance between the analysed particle

and each particle contained in the subset is lower than the
influence radius. If so, we allocate those particles as neigh-
bours.

6. Results

Here we are going to develop a set of tests to show the im-
provements provided by our method. The first test will show
the increase in time when looking for neighbouring parti-
cles in adjacent cells. In the second one we will measure
execution times for different values of cell size, both for the
standard implementation and our proposal. Both tests will
be made taking into account increasing numbers of particles,
from 1000 to 200000

Using this range of the numbers of particles, the neigh-
bouring particles that we are obtained are shown in Table
1. These values are related with the influence radius and it
should be the same for all cell size.

To do these tests we have implemented a particle sys-
tem simulation in CUDA, where particles interact with each
other by means of a force limited by the influence radius
that are inversely proportional to the distance between them-
selves. In addition, the particles are subject to the standard
gravity force. For temporal integration, we use the second-
order Euler Method. Our GPU is an NVIDIA GTX780. This
method has similar characteristics to the one developed by
Green [Gre10]. However, the CUDA Samples code is not de-
signed for performance testing, so the results would be dif-
ferent. Nevertheless, it’s possible to implement this method
over the samples code in order to easily check the improve-
ments in any system that supports CUDA.

The parameters’ values used in our tests are the following:
particle mass m =3 - 1074 kg, force proportionality constant
k =3600N/m and time step Ar =2 - 10~*5. We will work
with three different edge lengths: 2R, 2.52R and 4R, with R
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1000 | 2000 | 5000 | 10000 | 20000 | 50000 | 100000 | 200000
| Neighbouring Particles 10 13 17 21 30 41 50 62

Table 1: Neighbouring particles associated to each particules number that are used in our implementation.
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Figure 4: Graphs of processing time to each direction increment.

as the influence radius. While Wroblewski et al. [WBKO07]
work with cell edges of up to 2R length, other methods could
need a larger cell size; this also allows us to work with
a smaller array of cells, which makes the sorting process
faster.

6.1. Temporal Dependency in Adjacent Cell Searching

In this test, we will show the increase in execution time when
looking for neighbouring particles in adjacent cells. First we
measure the time taken to look for neighbours in the original
cell. Next, we search in cells which are only adjacent in a
single coordinate; first X, then Y and Z. We enforce the adja-
cent cells to contain the same number of particles in order to
ensure the tests’ coherence. The results obtained are shown
in Figure 4

This test justifies the order of division and the hash func-
tion used, as the increase in execution time is linear, no mat-
ter which position is occupied by the adjacent cells.

6.2. Temporal Dependency of Cell Size

This test will show the times obtained by varying the cell
size. We will compare the execution times between our pro-
posal and the standard division model. This comparison will
show the improvements obtained over the standard imple-
mentation, as can be seen in Figure 5

7. Conclusions

In this paper we have analyzed the main features regarding
neighbor search through spatial division by cells. We have
highlighted the most relevant items that affect the compu-
tational costs when CUDA architecture is used. From these
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items, we have developed a method to improve the efficiency
of standard spatial division techniques. We have carried out
a set of tests to show the improvements by our technique.
From these results we can conclude that:

e The use of orthogonal division by clockwise rotation, to-
gether with a non—normalized hash function, highly di-
minishes memory data dispersion. Consequently, the pro-
cessing time is decreased. We have deducted this conclu-
sion from the experiments whose results are shown in Fig-
ure 4.

o We have used the relative particle position to improve the
search into adjacent cells. Despite the added operations,
we have improved efficiency because the processing time
is decreased. Comparatively, the improvement is in the
range of 85% and 115%. These improvements are shown
in Figure 5.

e From the implemented dynamical model, we have shown
the best results are obtained when the regarded cells have
a size whose edge is equal to double of the influence ra-
dius. This conclusion is backed up by the results shown in
the Figure 5.
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