Workshop on Virtual Reality Interaction and Physical Simulation VRIPHY'S (2017)
F. Jaillet and F. Zara (Editors)

Unified Simulation of Rigid and Flexible Bodies Using Position
Based Dynamics

M. Francu and F. Moldoveanu

University Politehnica Bucharest, Romania

, T—

—

Figure 1: From left to right: rigid boxes falling on ground, bunnies falling on a piece of cloth, a flexible cow falling on ground.

Abstract

In this paper we present a new position based approach for simulating rigid and flexible bodies with two-way coupling. This
is achieved by expressing all the dynamics as constraints and running them in the same solver. Our main contribution is an
accurate contact and Coulomb friction model based on a fixed point iteration of a cone complementarity problem. We formulate
the problem as a nonlinear convex minimization at position level and solve it using a new accelerated form of projected Jacobi.
We add elasticity to the constraints by means of regularization and show how to add more damping in a credible manner. We
also use this viscoelastic model to build an accurate position-based finite element solver for soft bodies. The novelty of this
solver is that it is no longer an approximation and it is based directly on the elasticity theory of continuous media.

Categories and Subject Descriptors (according to ACM CCS): Mathematics of Computing [G.1.0]: Numerical Analysis—
Numerical algorithms Computer Graphics [1.3.5]: Computational Geometry and Object Modeling—Physically based Modeling

1. Introduction

For the last decade position based dynamics (PBD) has been
successfully applied to the simulation of deformable bodies
[BMOT13]. This was possible due to the inherent nonlinearity of
the method in terms of satisfying constraints and the full implicit
formulation: not only the magnitude of the constraint forces are
considered implicit, but also their directions [Gol10]. These im-
plicit constraint directions ensure the unconditional stability of the
system, especially for materials with fast changing constraint gra-
dients and transverse oscillations, e.g. cloth or threads [TNGF15].

The main drawback of PBD is that it has no rigorous mathe-
matical model for contact and friction and thus it is almost never
used for rigid body simulations (with the exception of [DCB14]).
In our literature research we have not found any clear proof for the
convergence of a PBD-like method with unilateral constraints and
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friction. Because of this some authors choose to treat contacts as bi-
lateral constraints [Gol10] or approximate friction at the end of the
step [MHHRO7] (e.g. based on penetration depth [Jak01]) without
giving a sound recipe for mixing friction with the position correc-
tions. We address this issue in this paper and then demonstrate our
result with a working position based rigid body simulator.

The novelty of our simulator is that it not only offers accurate
treatment of contact and friction for rigid bodies, but it can also
simulate deformable bodies in a physically correct manner using
the finite element method (FEM) formalism. We base our approach
on the constraint regularization technique developed in [SLMO06]
and we express it at position level.
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1.1. Related work

There has been a wealth of work published on the subject of
rigid body simulation with contact and friction - for a survey see
[BETC14]. We note the advances made in the 90s by Baraff, Stew-
art and Anitescu. Given the drawbacks of penalty forces, Baraff
introduced the acceleration based linear complementarity problem
(LCP) method. This method had its problems too (related to im-
pacts and the Painlevé paradox) that were later solved by a ve-
locity based approach that allows discontinuities in the veloci-
ties, i.e. impulses. The new velocity time stepping (VTS) schemes
[AHO4] became very popular in computer graphics, games and
real time simulators. We take a similar approach in this paper,
but based on more recent work geared towards convex optimiza-
tion [TA11,MHNT15, ACLM11].

Traditionally in computer graphics deformable bodies have been
simulated using implicit integrators due to their unconditional sta-
bility properties. These have been applied not only to mass-spring
systems, but also to simulations using the finite element method
(FEM) [SB12]. Recently, the popular Backward Euler integrator
has been recast as an optimization problem [BML* 14] helping us
to gain new insights.

While initially constraint based methods were not considered
for simulating deformable bodies, this changed with the advent
of PBD [MHHRO7] and constraint regularization [SLMO06]. PBD
was originally introduced by Jakobsen for games based on molec-
ular dynamics methods and a nonlinear version of the Stewart-
Trinkle solver for rigid bodies [JakO1]. Goldenthal later showed
that PBD stems from the fully implicit integration of a constrained
system [Gol10]. Even though in theory constraints do not allow de-
formation for all the degrees of freedom (locking), in practice they
proved quite successful for simulating a wide range of objects (e.g.
cloth, hair, soft bodies - see [BMOT13] for a survey). We think this
is due to the fact that iterative solvers are not exact and thus make
the constraints softer.

The idea of a unified solver is not new and our simulator bears
maybe most similarity to Autodesk Maya’s Nucleus. Our results
are also along the line of more recent PBD work [?, MMCK14,
BKCW14, DCB14] and Projective Dynamics [BML*14]. In addi-
tion, a great job of emphasizing the role of nonlinearity for achiev-
ing stability was done in [KTS*14] and [TNGF15].

1.2. Contributions

We aim in this paper is to show that PBD is a physically sound
method. This is done in Section 2. Also, PBD can be used for both
rigid and deformable bodies with constraints, contact and friction in
a single unified solver. The advantages of this formulation include
better constraint satisfaction, unconditional stability and out of the
box two way coupling of rigid and elastic materials. Our new vis-
coelastic model permits us to incorporate soft constraints, damping
and FEM into PBD (more about applications in Section 3).

Another goal we had in mind was to keep the computational
overhead to a minimum compared to existing methods. This is
why we chose our mathematical formulation to be expressible as
a matrix-free solver. We present a novel projected gradient descent

algorithm for nonlinear optimization in Section 4. The algorithm
is based on both the Jacobi and the Nesterov methods so it can be
parallelized. In Section 5 we continue to give some more details on
how to implement this solver (or a Gauss-Seidel one) for specific
examples like the frictional contact constraint or the FEM tetra-
hedron constraint. In the end we give some code implementation
notes and take a closer look at our results.

2. Mathematical model
2.1. Equations of motion

We start with the equations of motion for a general system of bodies
and, at first, we will also introduce bilateral constraints between the
bodies: general nonlinear functions equated to zero, describing for
example a bead on a wire or joints articulating rigid bodies. The
resulting equations can also be derived from Hamilton’s principle
and the principle of virtual work by using a Lagrangian augmented
by a special constraint potential: —y' ¥(q) [ST96]. They form a
special type of differential algebraic equations (DAE) [Lac07]:

My = fo + V¥(q)Y, (D
a=_(q,v), 2
¥(q) =0, (3)

where v € R”" is the generalized velocity vector, where 7 is the num-
ber of degrees of freedom of the system, q € R" is the generalized
position vector (where n’ > n is the optimal number of parame-
ters describing position and orientation),  is a general kinematic
mapping between velocities and position derivatives, M is the mass
matrix [BETC14], ¥(q) is a vector-valued bilateral constraint func-
tion, V¥(q) is its gradient (i.e. the constraint directions), Y € R™ is
a Lagrange multipliers vector enforcing the bilateral constraints in
(3) (m is the number of constraints), and ;. is the total generalized
force acting on the system (external and Coriolis).

In order to discretize the equations of motion we use the Implicit
Euler (IE) integrator.

M V) = o (g Y it )
ql+1 _ ql+/’lLVl+l, (5)
¥ =0, ©6)

where [ is the current simulation frame, /% is the time step (consid-
ered constant), and L(ql) is a linear kinematic mapping [BETC14]
with LTL = 1 (the identity matrix). The IE discretized equations
can be brought to a minimization form:

vt = argmin %VTMV — f’TV7 @)
W(q+hLv)=0
where f = Mv/ + hff(,, and the new positions come from (5).
We can recast (7) in terms of correction velocities Av = Vit g
instead of the new velocities:
minimize Av’ MAv subject to (g + hLAV) =0, (8)
where ¥ = M~ 'T and q= ql + hLV. If we denote Aq = hLAv =
qlJrl — { then we can express (8) as:

minimize 55 || Aq||3; subject to ¥(§ +Aq) =0, )
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where M = LML . This last formulation is the projection on the
constraint manifold method for solving DAE; this is the same as
the IE integration of constraint forces according to [Goll10]. This
derivation can also be extended to include unilateral constraints:
(IJ( ql +l) > 0.

2.2. Position based dynamics

The nonlinear optimization in (9) lies at the heart of PBD. It has a
quadratic objective and general nonlinear constraints and it is con-
vex. For the bilateral constrained case Goldenthal proposed the fast
projection method [Gol10]. This is a modified form of the sequen-
tial quadratic programming (SQP) strategy for solving nonlinear
optimization problems [WNO99]. The iterations (for equality con-
straints only) have the following KKT matrix form:

M — h*Hy, _h2Dk} (5‘1k+1> _ (—MAQk +h2DkYk)
D] 0 g1 —¥(qx) ’
(10
where k is the current iteration number, D = V¥(q) and H =
Vz‘P(q) is the second derivative of the constraint function (third
rank tensor). The matrix K = Hy was recently dubbed the "geomet-
ric stiffness matrix" and plays an important role in transverse sta-
bility [TNGF15]. The main drawback of (10) is that the upper left
block matrix is not easy to compute and invert, preventing us from
taking a Schur complement. That is why fast projection omits the
H term (along with simplifying the right hand side) and obtains a
series of smaller m X m linear systems. Stability is guaranteed in the
end by running many nonlinear iterations, similarly to [KTS™ 14].

The SQP angle comes in handy when adding unilateral con-
straints and iterations can no longer be expressed as linear systems,
but rather as quadratic programs (QPs). In essence, these QPs are
formed by taking the initial optimization problem (9) and lineariz-
ing the constraints around the current point qy.

In practice it is often better to work with the dual formulations of
the QPs. This means working with Lagrange multipliers. Fast pro-
jection works with these dual variables too, as the solution to each
linear system is a set of Lagrange multiplier increments &y;_ ;. The
position displacements are then computed as 8q; | = thDk&{k 11
and the velocity corrections as 8vy | = hDydY, ;. In general it is
not true that ;| =, + 8y, 1, but it can be used as an approxima-
tion of the constraint force magnitude. The dual QP has the form:

minimizes, %SYT N &y+ 8y 1y

1)
subject to Y, + 8y € Yy,

where N, = th,ZI\_/rle, the residual r; = ¢(qy) corresponding
to ¢(q) = (¥(q),D(q)) and Yy is the feasible set of the Lagrange
multipliers (the whole real axis for bilateral constraints and only the
non-negative part for unilateral constraints). 8y, , | is the solution of
this QP and the update step is:

Q1 = Qi +Oqp 41, (12)
Vel = Vi + Vi1, (13)

where the initial guess is qo = q, vo = V. After running a certain
number of iterations or attaining a convergence criterion the new
positions and velocities (ql+1 , vl“) are given by the last solution.
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This whole process tries to solve the dual of the original pro-
jection minimization problem (9). This dual problem is hard to
express in a closed form due to the nonlinear and implicit re-
lation between the displacements and the Lagrange multipliers:
F(Aq,Y"") = MAq— B> V¥ (4 +Aq) = 0 [Gol10].

We can use various iterative methods to solve the dual of (9) with
added unilateral constraints. We are especially interested in pro-
jected gradient descent methods like nonlinear Krylov methods or
Nesterov’s method [MHNT15]. In fact, PBD can be seen as either
fast projection with a one-step Gauss-Seidel linear system solver
or as a nonlinear Gauss-Seidel minimizer. We adopt the latter view
and develop it further in Section 4. It is worth noting that neither
fast projection, nor PBD are guaranteed to bring down F to O after
a limited number of iterations [Gol10]. But they do a good job of
projecting on the constraint manifold and minimizing the objective
in (9), making them very close to IE integration.

2.3. Stiffness and damping

Regularization is a technique that replaces the lower right zero
block in (10) by a compliance matrix C~! which is made up of
small values (mainly on the diagonal) in order to perturb the orig-
inal problem and make it easier to solve [Lac07]. In what follows
we will show that regularization is also equivalent to softening the
constraints, i.e. replacing the constraint forces with elastic forces.

The optimization form of the IE integrator is in general:
minimize g ;?A_qTMA_q + Uint (q) + Uext (q), (14)

where Aq = q — ql —hv!, Upy and Uey are the potentials of the
internal and external forces respectively. In the presence of con-
straints ¢(q), we have two options to specify Uy, : as a constraint
potential energy Us = —y' ¢(q) or as a penalty term

Ue = 3¢(q) Ce(q), (15)

where C is a block diagonal stiffness matrix (not to be confounded
with the tangential stiffness matrix K = DCD’).

Using U, is equivalent to the position projection described
by (9) and analogous to the formulation of projective dynamics
[BML"14]. In the projection formulation the external potential is
absorbed into the unconstrained position q and velocity v. On the
other hand, Uk is an elastic potential and corresponds to the implicit
integration of elastic forces f. = —VU, = —DCe(q). If we make

the constraint force fo = —V U, = Dy equal to f. we get the new
regularized (or softened) constraints:
e(q)+C 'y>0. (16)
This amounts to using the following KKT matrix template in (10):
M —i’D
[DT ! } . a7

Although these results are mostly based on [SLMO06], we are new
in stressing the strong connection between implicit integration of
elastic forces and regularized implicit nonlinear constraint pro-
jection (recently a similar viewpoint was developed in parallel in
[MMC16]). Indeed, one can inspect the minimization in (14) and
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see it remains the same whether we are using a soft constraints (16)
potential or an elastic energy penalty term (15).

All we need to do in order to regularize PBD is replace the con-
straints with the ones in (16) and the matrix N with the Schur com-
plement of (17):

N=wD'M'D+C . (18)

This new formulation permits us to include stiffness into PBD. All
this without having to add a non-diagonal tangential stiffness ma-
trix to the mass matrix (like in [TNGF15]). This modification al-
lows us to simulate both rigid and deformable bodies (e.g. mass-
spring systems or finite element discretizations) and also soften
contacts between them.

Another of our contributions is to add damping in a physical
and credible manner to PBD. In general, we can do this by using a
Rayleigh dissipation function [Lac07]:

¢ = 3¢(q)Re(q), (19)

where ¢(q) = D'vandRisa positive definite matrix (often diag-
onal). This usually means adding a viscous drag force term, gener-
ated by the dissipative potential: f; = —Vy@ = —m¢é(q), where 1
is a damping coefficient. Very important to note is that these forces
act only along the constraint directions and so the damping does
not look unnatural.

Using the dissipation potential in (19) yields a new regular-
ization formula: ¢(q) + C~'Reé(q) + C~'y > 0, which in turns
gives a new KKT matrix and a new Schur complement: N =
h(h1 4+ C~'R)D'M~'D + C~!. We exemplify our result in the
case where the stiffness matrix is of the form C = k1 and for a
particular form of Rayleigh damping, i.e. R = n1 = pC, where
p =n/x. In the end the terms N and r in (11) get replaced by:

N=h(h+p)D'M 'D+C", (20)
r=c(q)+pD’v. 1)

Note that damping can also be applied in the case of infinite stiff-
ness kK — oo (i.e. C~! = 0) given that the ratio p remains finite.

2.4. Frictional contact

We illustrate in Figure 2 the ith particle contact point of a body with
a surface. One can identify a normal to the surface, n’, and any two
tangent vectors, s and t, so that together they form an orthonor-
mal frame. When switching to generalized coordinates these nor-
mal tangent directions become the vectors Dj,, D and D; [Ani06].
We can now present the discretized equations of motion for a con-
strained system of bodies with frictional contact:

M =) =1 Y (4D} + {iD} +4D})

o 22)
+h Y (V) + by,

i€Gp
ql+l _ ql +hLVI+], (23)
(gt =0,i€ G, (24)
0<®(q"™") Ly, >0,ie G, (25)
W)= argmin (V)T (D +¥D}). (26)

(V)2 +(v)? <uiv,

In continuous form these equations form a differential varia-
tional inequality (DVI) [TA11]. The novelty in our approach is
that we are using a full implicit Euler integrator instead of semi-
implicit/symplectic Euler and we keep the non-penetration condi-
tion at position level as a nonlinear unilateral constraint. This is
similar to the nonlinear scheme presented in Section 3.6 of [ST96].
The following notations were used: Gy is the set of active unilateral
constraints, Gp is the set of bilateral constraints, <I>i(q) is a unilat-
eral constraint function describing contact (i.e. gap function), D},
is the gradient of the constraint function: V@' (q' 1), v, is the La-
grange multiplier of the contact condition (25), i.e. normal reaction
magnitude, D§ and Df are the generalized tangent directions, Y’s and
% are the corresponding tangent Lagrange multipliers (i.e. friction
force components), and ,ui is the friction coefficient.

Equations (22)-(23) represent the IE integration step, corre-
sponding to (4)-(5). Equation (25) represents the Signorini con-
tact complementarity conditions and (26) the maximum dissipation
principle that synthesizes the Coulomb friction laws [BETC14].
The latter can also be stated as the condition that the total con-
tact force ¥y = (V,,Y},¥}) should reside inside the friction cone (see

Figure 2: Particle contact point with friction cone Y given by 6 =
arctanu and its polar cone Y° depicted below.
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Figure 2 for an illustration):

= {0+ 0D <4 @n

Note that the conditions (24) and (25) are strongly nonlinear which
make the problem hard to tackle. Also, the problem in (22)-(26) is
nonconvex due to the coupling between the friction and the normal
force.

In [AniO6] the DVI is linearized and convexified so that it can
be expressed in the end as a quadratic minimization problem with
conic constraints. We take this formulation and extend it to the fully
implicit and nonlinear case in (22)-(26):

minimize W (v) = %VTMv—f'Tv
subject to ®'(q'"1) — gl ||V || > 0,i € Gy, (28)
\Pi(ql-H) _ 071 c gB7

where ||V || = 1/ (DT v)2 4 (D)7v)2 is the magnitude of the tan-
gential relative velocity at the contact point. Our approach for solv-
ing this problem is to derive a new fixed point iteration that is equiv-
alent to a cone complementarity problem (CCP) at every iteration:

YP > —(hD}v+by) Lye Yy, (29)

where Y= (Y,,Yp) and by = (by 4,by p) - the first component cor-
responding to contacts by 4 = (®(qy) — hDZ,ka ,0,0) and the sec-

ond to bilateral constraints by p = ¥(qx) — hV‘I’,{vk. Y is the di-
rect sum of all friction and bilateral cones, Y° is the corresponding
polar cone and D is the concatenation of all constraint directions,
ie. D), = [D},|Di|D] and Dy = V¥'. You can consult [TA11] for
more details on notation and how (29) can be derived from a lin-
earization of (28) around (qy,Vvy). A proof of convergence can be
sketched, but is out of the scope of this paper. The CCP in (29)
can be solved using another fixed point iteration based on matrix
splitting (i.e. relaxation) with constraint projection, shown to con-
verge in [TA11]. After some k iterations the solution v can be
substituted for v/*1.

One drawback of the velocity based convexified smooth cone
approach is that it may produce normal impulse artifacts [Ani06]
but these manifest only for high slip speeds and friction coeffi-
cients [MHNT15]. Given that our approach is a fixed point iteration
very similar to the one in [ACLM11] (i.e. the velocity is updated at
every iteration) it may also converge to the solution of the original
nonconvex problem. However, in practice, when running fewer it-
erations one may choose to use a different friction model in order
to avoid potential artifacts. For example one can use the mixed LCP
polyhedral friction cone model [ST96] or another model like box
LCP friction [BETC14]. Note that both of these alternative friction
models manifest anisotropy.

Notice that the minimization in (28) can be easily reformulated
in terms of displacements 8q instead of velocities just as we did in
Section 2.1. This means that the frictional contact equations (22)-
(26) can be easily incorporated into the projection formulation in
(9) by using the constraints in (28). Therefore we can use the same
successive minimization approach used in PBD (11) to also accom-
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modate frictional contact by just making the distinction that Y; now
becomes a direct sum of cones.

3. Applications

The PBD framework with the added viscoelastic and friction mod-
els is a very versatile method that allows the simulation of both
rigid and soft bodies in the same solver loop. The advantages are
twofold: we do not need to combine constrained dynamics with im-
plicit integration of stiff elastic forces and we do not worry about
two way coupling as it comes for granted. The types of objects we
can simulate include particles, rigid bodies, mass-spring systems
(e.g. cloth, threads, soft bodies), linear FEM and other PBD spe-
cific methods [BMOT13].

3.1. Particle systems

In the case of particles the number of degrees of freedom per body
is 3, so for a single particle q becomes just the position x and v = Xx.
The position integration is also very simple:

NS N +hxl+17 30)
and the mass matrix is a diagonal matrix M = diag(m;13), where
m; is the mass of each particle and 13 the identity matrix. Usually
in PBD distance constraints are used:

W(x) = Ix; —x;|| = Lij, (31

where [;; is the rest length, to simulate threads and cloth
[MHHRO7]. We can also add contact constraints ®(x) > 0 and ac-
curate friction modeling as described in Section 2.4 in order to add
realistic collisions and self-collisions. Particle systems with only
contact and friction can be used to model very simple granular ma-
terial. Cloth models can be enhanced with shearing and bending
constraints and more damping along the cloth surface can be added
through our viscoelastic model. Bending constraints can be either
links connecting second order neighbors or can be more complex
functions involving 4 vertex stencils (2 neighboring triangles), e.g.
dihedral angle constraint [MHHRO7]. We could also add area pre-
serving or zero strain constraints per triangle in a more accurate
continuum based approach (in a similar vein to Section 3.3).

3.2. Rigid bodies

Rigid bodies add rotations to the mix. A single rigid body has 6
degrees of freedom: the generalized velocity has the same number
of components v = (x,®) where ® is the angular velocity, but the
generalized position has 7 components q = (x,&) where x is the
location of the center of mass and & € H is a unit quaternion. This
is because the 4 components of the quaternion § = (s,a) are the
minimum necessary to parametrize the orientation of a body R €
SO(3) in a nonsingular manner. The kinematic equation is:

&= 1E0(0,m), (32)

where o is the quaternion product that can also be interpreted as a
linear map acting on . This equation can be integrated through a
simple Euler method:

e =g 4 hgo (0,0, (33)
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SRS

Figure 3: Granular matter simulated using 5000 rigid spheres.

.

Figure 4: Simulation of 5000 rigid boxes falling on ground.

followed by a renormalization of the quaternion or directly using
an exponential map that keeps the result on the 4D unit sphere s3,
as described in Section 2.1 of [TA11].

When integrating the velocities note that the generalized force
also includes torques and the total force acting on the system also
includes centrifugal and Coriolis terms besides external interac-
tions. For more details about handling these terms as well as the
inertia tensors you can consult [BETC14].

Modeling contact and friction between two bodies can be done
by adding a gap scalar function along the contact normal direction
n;;: ®(q) =n;; - (x; + R;p; —x; —R;p;), where p; and p; are the
pair of closest points expressed in their respective local frames. The
derivation of the Jacobian, i.e. the normal generalized constraint di-
rection D, can be found in many places [BETC14], and Ds and Dy
can be built from it. Similarly a bilateral constraint representing a
spherical joint can be represented by a 3 valued vector function:
Y¥(q) = x; +R;p; —x; —R;p; = 0 (see Figure 5). A hinge con-
straint has only one value, this number representing the number of
unconstrained rotational degrees of freedom.

3.3. Finite element method

Following the approach in [SLMO06] and adapting it to our own vis-
coelastic PBD method (as described in Section 2.3) we can simulate
soft bodies using a linear finite element discretization, i.e. constant
strain tetrahedra. The elastic energy of an element has the form
U, = %V(q)e(q)TC£(q), where V is the volume of the tetrahedron,
€ is the symmetric strain tensor (linearized as a 6-vector) and C is
the stress-strain relationship matrix defined by two elastic parame-
ters [SB12]. Comparing this energy to the general form in (15), we
can identify the constraint function to be used:

¥(q) = VV(q)e(q). (34)

Remember that using the elastic potential energy U, =

Figure 5: Hierarchy of articulated rigid bodies.

%‘I—‘(q)TC‘P(q) in (14) is the same thing as implicitly integrat-
ing the forces arising from stresses [SB12]. But we will choose to
use the completely equivalent formulation in (16) instead. In other
words, our constraint tries to keep the strain of each element close
to zero (as for a rigid body) but the regularization of (34) will pre-
vent it from doing so by adding compliance to the system.

Each tetrahedron has 4 nodes, that we can consider as particles
(lumped mass approximation), totaling 12 degrees of freedom. In
the end, our nonlinear constrained dynamics approach will work
just as in the case of a particle system but using the above strain
constraint involving sets of 4 particles. For the strain function we
can use any material model we want; just like in [SLMO06] we use
the nonlinear Green-Lagrange strain, as it preserves the volume un-
der large deformations (in contrast to Cauchy strain). You can find
the Jacobian for the constraint in (34) in Appendix A. We empha-
size the fact that even though the the finite elements are linear, we
are using a nonlinear St. Vennant-Kirchoff elasticity model.

4. Accelerated Jacobi

Most authors prefer to solve the dual problems in (11) to attack-
ing directly the primal formulation in (9). We focus on nonlinear
numerical optimization solvers and a multitude of such methods
exist (e.g. SQP, see Section 2.2) [WN99]. However, we will restrict
ourselves to projected gradient descent due to its simplicity and
popularity among constraint based dynamics engines. Relaxation
methods (Gauss-Seidel, Jacobi, successive over relaxation - SOR)
are coordinate descent methods and rely on matrix splitting. Gauss-
Seidel/SOR is widely used due to its robustness to solve modi-
fied LCPs [BETC14], the convexified problem [TA11] and PBD
[JakO1], but it is quite hard to parallelize (through graph coloring).
The most popular parallel alternative is Jacobi. More recently, ac-
celerated projected gradient descent (APGD or Nesterov’s method)
has been proposed [MHNT15], though it was only applied to the
linearized velocity approach. And this is also the case for conju-
gate gradient (CG) and minimum residual. In our experience the
conjugate residuals (CR) algorithm [Saa03] has a more monotonic
convergence than CG and we prefer it for low iteration counts. We
argue in this paper that all these methods can be extended to their
nonlinear variants (e.g. nonlinear CG). Taking inspiration from the
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nonlinear forms of CR, APGD and Jacobi we propose the iterative
scheme:

YVep1 = proj (v, — o[diag(N)] 't — By 18y,), (39

6:(1-6;)
024011

6](,/9%+4) with 69 = 1 (according to [MHNT15]). The actual

spectral radius p(N) does not need to be computed, as it can ap-
proximated from the count of incident constraints to a body.

where @ < 1/p(N), Byy1 = , and Oy = %(—6,% +

The cone projection operator is the same as the one described
in [TA11]. One can recognize in (35) a modified version of Jacobi
that is accelerated using a momentum term just like in APGD in
order to increase the convergence rate closer to Gauss-Seidel, while
keeping the scheme order independent and parallelizable. Also, the
scheme is nonlinear as the residual ry is computed using updated
constraint function values and gradients. You can find a pseudocode
outline of the scheme in Algorithm 1.

Unconstrained step to q, V
qo=q,vo=V
for k = O:maxlIter-1 do
Compute ¢(qy) and Dy
Compute the residual ry, - see eq. (11)
Update Lagrange multipliers using (35)
Compute constraint force increment D&y, | |
Update both positions and velocities using (12)-(13)
end for
Algorithm 1: Nonlinear projected gradient descent constraint solver
using a Jacobi approach (instead of the accelerated form in (35) one
could use a standard Jacobi update step).

5. Constraint solver

In this section we focus on computing the constraint force. This
force can be applied either directly after it was computed (in a
Gauss-Seidel fashion) or after traversing all of the constraints (Ja-
cobi fashion). The Jacobi scheme in Algorithm 1 is not complete
because we are not explicitly expressing the Jacobians and con-
straint functions involved for each type of constraint. We skip the
distance constraint (31), as its description is ubiquitous in all PBD
papers [MHHRO07, JakO1] and we consider extending it to the Ac-
celerated Jacobi method is trivial.

Contact only has been tackled in the past either by instanta-
neously considering it as a bilateral constraint or through a crude
complementarity approach. Friction on the other hand has had no
solid mathematical framework to rely on and we believe that our
nonlinear fixed point CCP iteration is the first. You can find our
pseudo-code for frictional contact between rigid bodies in Algo-
rithm 2. Note that we identify the two bodies by the indices 1 and 2
and a contact pair is fully determined by a world normal n and the
closest points between the two bodies a; and a; - each expressed in
their respective frame. Contacts between rigid bodies and surface
triangles (e.g. from cloth) are handled in a similar way, just that we
distribute the impulse to the triangle vertices using the barycentric
coordinates of the contact point. For a granular material example
using rigid spheres see Figure 3. For FEM we are basically solv-
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Input: contact pair (n,a;,ap), B, old force v, increment &y
pi =Rja;,p2 =Roay
Compute normal residual r, =n- (x; +p; — X2 — p2) (gap)
Compute normal diagonal term dj, of matrix N
Y = clamp(y, — ﬁrn — B&Yn,0,00),yr =0
vi2 = (Vi + 01 X p1) — (V2 + @y X pp) (relative velocity)
vr = Vi3 — (n- vp)n (tangential relative velocity)
if vz # 0 then
Compute tangential residual rr = ||vr|| (slip speed)
Compute tangential direction T = vy /vy
Compute tangential diagonal term dr
(Y, Y1) = project(yr — zig-rr — Bdvr.¥n)
end if
Output: contact force Y= (Yu,Yr), i.e. f =yn+7y7t

Algorithm 2: Pseudo-code for computing the normal and friction
forces between 2 rigid bodies in contact. Can be used with either a
Jacobi or a Gauss-Seidel approach (0 > 1, = 0).

ing constraints involving each linear tetrahedral element. You can
find the pseudo-code for such a constraint involving 4 particles or
nodes in Algorithm 3. It is based on Sections 2.3, 3.3 and Appendix
A.The output of the procedure consists of the 4 forces that will be
applied to the tetrahedron vertices. Note that we solve for all the 6
Lagrange multipliers in a block matrix fashion using a direct solver.

Input: tetrahedron (Xg,Xp,X2,X3)

Compute shape matrix Dy = [X] — Xo|X2 — Xo|X3 — X0]
Compute deformation gradient F = D;D,, !

Compute Green strain € from the matrix %(FTF —13)
Compute strain Jacobian J (see Appendix A)
Compute local system matrix N = My’ +C!
Solve Ny+e=0

Output: internal forces f = J7y = (fo,f1,12,£3)

Algorithm 3: Pseudo-code for computing the internal forces inside
a tetrahedron. Here a block Gauss-Seidel approach is employed.

Figure 6: A rubbery dragon falling on stairs and hitting against
rigid bodies (Young’s modulus E = 0.5 GPa and Poisson ratio Vv =
0.2); simulated using the FEM constraint solver in Algorithm 3.



56 M. Francu & F. Moldoveanu / Unified Simulation of Rigid and Flexible Bodies Using PBD

6. Implementation

All of the above algorithms were implemented in C++ in a unified
manner such that all constraints were solved at the same time and
in the same solver. For this we used a single common list of bodies
that could have each a maximum of 6 degrees of freedom. This list
was split into groups, each group having a different meaning (e.g.
cloth, rigid body system or FEM soft body) and different types of
constraint lists. Some constraint types were specific to only one
group (e.g. link constraints for cloth), others were common among
several groups (e.g. contact constraints) and the rest were specially
designed for coupling between groups (e.g. rigid body vs. triangle).

In terms of constraint solving we used mainly two approaches:
Gauss-Seidel and Accelerated Jacobi. We further optimized the lat-
ter using OpenMP parallel for loop directives. You can find the
speed-up factor in comparison to Gauss-Seidel in Tables 1 and 2.
Measurements were done on a dual core laptop CPU (i5-3317U)
and a quad core desktop CPU (i7-3770).

Gauss-Seidel | Accelerated Jacobi | Speedup

2000 boxes 140 ms 90 ms 1.55x
50x50 cloth 6.3 ms 2.7 ms 2.33x
100x100 cloth 27.5 ms 19 ms 1.45x

Table 1: CPU time (for one simulation frame) comparison be-
tween Gauss-Seidel and accelerated Jacobi nonlinear constrained
dynamics solvers (dual core).

| Gauss-Seidel | Accelerated Jacobi | Speedup

2000 boxes 82.5 ms 40 ms 2.06x
100x100 cloth 15.4 ms 3.5 ms 4.4x
150x150 cloth 36.3 ms 15 ms 2.42x

Table 2: CPU time (for one simulation frame) comparison be-
tween Gauss-Seidel and accelerated Jacobi nonlinear constrained
dynamics solvers (quad core).

Collision detection was done using both Bullet [Coul0] and our
own triangle mesh tests. We implemented our own code because
we needed continuous collision detection when performing tests
versus cloth or for self-collisions. We accelerated these tests using
OpenMP loops and a variant of dynamic AABB trees.

Most of the simulations in this paper were done in an offline
manner and then exported as Alembic geometry caches to Au-
todesk Maya and rendered using Pixar RenderMan. Still, the simu-
lator was written with real-time in mind and a lot of the scenarios
ran at interactive rates, some even at 60 Hz. Generally we used a
timestep 4 = 16 ms, gravity g = —9.8m/f2 and 10 to 50 itera-
tions or more for our iterative solvers. For elastic bodies we used a
Young’s modulus £ = 0.5 GPa and a Poisson ratio below 0.2. The
masses of cloth and the soft bodies were raised up to around 10 kg
in order interact smoothly with rigid bodies of unit mass or less.

7. Results

As you can see from the pictures (Figures 1 to 6) we were able
to simulate a broad range of objects, both rigid and elastic. The

il

Figure 7: Friction coupling between a rigid box and a deformable
torus. From left to right: the initial position, our friction model and
PBD velocity postprocessing friction (u=0.3).

novelty of our approach is that we can simulate all of them in the
same constraint based solver and in this way obtain accurate and
stable two way coupling almost out of the box.

In looking at our results we relied a lot on visual inspection. This
was done especially to see if the system remained stable, which is
quite hard to determine numerically. We focused more on the nov-
elties we brought to these simulations: the coupling between rigid
bodies and elastic materials (Figure 1 - middle and Figure 6), the
PBD-like nonlinear approach to frictional contact and rigid bodies
(Figure 1 - left), the nonlinear constraint based approach to vis-
coelasticity and the finite element method (Figure 1 - right) and the
accelerated parallel Jacobi solver. All of these behaved robustly in
our experiments. In Figure 7 you can see an experiment comparing
our friction model with the simple velocity postprocessing step de-
scribed in [MHHRO7]. You can see in the middle that our method
leads to a stable configuration, while on the right the torus slips and
eventually looses contact with the box.

In order to test the accuracy of our smooth cone friction model
we conducted the following experiment: a rigid box on a horizontal
plane was given an initial sidewards velocity of 5 m/s. The theo-
retical result for the distance traveled until full stop is given by the
formula d = ;—0 In our case for u = 0.1 this value is 127.551m.
We used for comparison the box LCP friction model [BETC14].
When the direction of the push was aligned with one of the tan-
gential axes both models gave a numeric result around 127.17m.
However, when pushed along the first bisector the box only moved
for 89.78m in the box model (v/2 less), while in the case of our
model the result stayed roughly the same as before. This proves
our model is more accurate as it is fully isotropic.

In Figure 8 you can see a comparison between the velocity based
approach and our nonlinear position based method. Our conclusion
is that for low iteration counts the methods are indiscernible but
the balance tips in our favor for larger numbers of objects. The
price for having less penetration is more violent contacts, i.e. very
high velocities are needed to correct large initial penetration errors.
These can be addressed through smaller time steps, larger collision
tolerances or contact damping (which may introduce extra penetra-
tion for the same number of iterations). Still, position projection is
a valid way of doing rigid body simulation with many gains at a
marginally bigger computational cost (under 10%). Velocity time
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Figure 8: VTS (blue) vs. PBD (red): plot of penetration depths
(constraint error L2 norm - vertical axis) over time (under 400
frames - horizontal axis). Simulation scenario: 2000 rigid boxes
falling on ground (12x15x12 cm, 10 iterations, u = 0.3, VTS stabi-
lization factor y=0.4).
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Figure 9: Convergence plot of Gauss-Seidel (blue), Accelerated Ja-
cobi (green) and Jacobi (red). At each iteration we measured the
constraint error and plotted its evolution until the solver is halted
prematurely after 50 iterations.

stepping is still a very powerful method but from our experience it
cannot be integrated in a stable manner and in the same solver with
position based methods. However, velocity projection can be used
with success as an initial step before position projection, enforc-
ing better projection on the phase space constraint manifold. This
works well especially for contacts, whereas for bilateral contacts is
acts more as a damper.

The convergence rate of Accelerated Jacobi is depicted in Figure
9. The experiment was done in Matlab using 100 disks falling in a
2D box. We took the constraint error (penetration depth) L2 norm
and normalized it against the maximum attained by each solver.
Then we averaged each normalized error for each iteration number
over 200 frames and obtained this plot. You can see clearly that
Accelerated Jacobi performs much better than traditional Jacobi. In
general, Accelerated Jacobi and Gauss-Seidel are comparable, with
one out-performing the other depending on the context, but never
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Figure 10: Comparison of damped (blue, p = 10h) and normal
(red) simulation of hanging cloth (30 x 30 grid).

too far from each other. We thus obtained a parallel contender to
sequential Gauss-Seidel.

For testing our damping method we let a piece of cloth hang from
two corners and observed the oscillations. As you can see in Figure
10 the kinetic energy of the undamped cloth keeps oscillating for a
long time while the damped one goes to zero quite fast.

8. Conclusions

The main contribution of this paper is to introduce a mathemati-
cally sound formulation of position-based dynamics (PBD) relying
on nonlinear convex optimization. This allows us to rigorously in-
clude contact and friction into position projection solvers for the
first time. We demonstrate a working rigid body simulator using
our novel CCP fixed point iteration scheme. The fully implicit and
nonlinear scheme allows stable two-way coupling with deformable
bodies. For soft bodies we present the a physically correct FEM
solver using constraint regularization and PBD solvers. We add
credible damping that only acts along constraint directions. We also
derived a new accelerated form of the Jacobi solver that can com-
pete against Gauss-Seidel and has the advantage of being parallel
and unbiased.

Our position projection solver for contact and friction has some
drawbacks that we hope to address in the future: violent im-
pacts and possible convexification artifacts. Still, we preferred the
smooth friction cone approach because it is more physical (i.e.
isotropic) and can be expressed as a convex minimization (although
the original problem is nonconvex).
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Appendix A: Jacobians for constraint based FEM

The constraint function is ¥(x) = v/Ve, where V is the tetrahe-
dron volume and x is made up of the four tetrahedron vertices:
X0,X1,X2,X3. There are 6 constraints corresponding to the 6 unique
values making up the symmetric strain tensor. These can be split in
two: a normal part and a shear part. Let A be a helper matrix of the
same dimension as the Jacobian (6x12). It too can be split in two
3x12 matrices A, and Ay and the normal one is:

An=1[A) Al A2 A, (36)

where A}, = diag(y;), y1 to y3 are the rows of a matrix X and
Yo = —Y¥1 —¥2 — ¥3. The matrix X is the inverse of the initial shape
matrix Dy. We are assuming linear finite elements, i.e. tetrahedra of
constant strain. For shear we define a similar helper matrix:

1
A=A A A AT (37)
where
, 0 yi Yiy
As=|yiz 0 il (38)
iy Yyix 0

The normal and shear Jacobians of ¥ are then:

1
Jo=VVAF + ———eqVV, (39)
2y/(V)
where o € {n,s}, F = DX is the deformation gradient, €, =
(€11,€22,€33) and & = (€23,€13,€12). The gradient of the volume
is then a 12 component row vector consisting of the following par-

tial derivatives:
vV a9V oV oV

where
%:é(xz—xo)x()g—xo), @1)
% - é(x3—x0)><(xl ~ %), 42)
57‘/3 = é(?ﬂ —Xp) X (X2 —Xo), 43)
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