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Abstract

Thanks to the low price, the use of a head-mounted device (HMD) equipped with a smartphone is currently a common set-up
for virtual reality (VR). Brain-computer interface (BCI) based on electroencephalography (EEG) is a promising technology to
enrich the VR experience. However, the effect of using HMDs on the acquisition of EEG signals remains still unknown. In fact,
the smartphone is placed close to the head where EEG sensors are located, thus the smartphonedAZs electronics may perturb
the acquisition of the EEG signal. In the present study, we compare the spectral properties of the EEG signal acquired on 12
subjects wearing a SamsungGear HMD equipped with a Samsung S6 smartphone turned on and off. Our study shows that
there is no significant difference in the spectral properties of the EEG in these two experimental conditions. We conclude that a
smartphone-based HMD is compatible with EEG technology. Some technical problems related to the concurrent use of a HMD

and an EEG-based BCI are also discussed.
CCS Concepts

eHuman-centered computing — Virtual Reality; Laboratory experiments; Interaction devices;

1. Introduction

Since the first Oculus device (Facebook, California, US), several
other head-mounted-devices (HMD) for virtual reality (VR) have
been commercialized, such as the SamsungGear (Samsung, Seoul,
South Korea) and the HTC Vive (HTC, Taoyuan, Taiwan). These
devices contain on-board electronics, thus we will refer to them
as "active". Other devices such as the Google CardBoard (Google,
Mountain View, US) consists of just a mask with lens in which we
insert a smartphone. These devices do not contain on-board elec-
tronics, thus we will refer to them as "passive" (Figure 1.).

Figure 1: SamsungGear (a) can be used in passive (inserting a
smartphone) or active (with on-board electronic supplied) mode.
The Google Cardboard (b) is a very simple passive HMD.

As compared to a personal computer (PC), a HMD liberates
the hands and in some conditions allows the user to move freely
in a restricted area. A disadvantage is that it can be uncom-
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fortable due to its weight and the fact that the user may expe-
rience motion-sickness [ANW*03, DL92, HR92, MS92]. Among
other well-known virtualization devices we may mention the CAVE
(Cave Automatic Virtual Environment) [CNSD*92], which is a
projection of a 3D environment on the walls of a cube-sized room
or alternatively displayed on large LCD screens. In contrast to
HDMs, with this system the user does not need to wear any equip-
ment. However, there is no difference in motion sickness using a
CAVE in comparison to an HMD [CKG16]. Moreover, the CAVE
is much less transportable and much more expensive, thus so far
CAVE systems have mainly concerned universities and corpora-
tions, whereas the enthusiasm of the general public has been tepid.

Electroencephalography (EEG) is a natural candidate to improve
VR immersion as it can replace and/or enhance the classical me-
chanical input channels by means of BraindASComputer Interface
(BCI) technology [BB00,Bay03,CLK*02,LLR*08,LRL08,Lot12,
RADEQ9]. A BCI introduces a direct communication channel be-
tween the brain and an external device, that is, the user can send
commands without resorting to the usual muscular pathways. It can
also provide physiological information about the mental state of
the user (concentration, fatigue and cognitive load, for example).
In this work, we focused on EEG-based BCIs because they are
portable, non-invasive, non-expensive and easy to set up in com-
parison to other BCI technologies such as those based on mag-
netoencephalography or magnetic resonance imaging. Tradition-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vriphys.20181064

22 G. Cattan & A. Andreev & C. Mendoza & M. Congedo / The Impact of Passive Head-Mounted Virtual Reality Devices on the Quality of EEG Signals

ally, BCIs have been conceived to control prosthesis or to provide
communication for people suffering from severe motor disabili-
ties [WW12]. More recently these interfaces have been proposed in
the context of gaming or simulation with the purpose of providing
an original way of interacting with the game and/or physiological
information about the mental state of the player [Lot12]. Previous
works suggest that the performance of BCI systems in VR is com-
parable to the performance of BCI looking at a normal computer
screen [BB00, Bay03,CLK*02,LLR*08,LRL08,Lot12,RADE09].
In [LLR*08, Lot12] the authors made a review of existing games
coupling VR and BCI, concluding that BCI-based VR games
are feasible. In particular: study [BBOO] has shown that the use
of HMD is possible with a BCI based on visual stimulation;
study [Bay03] made a comparison of a visual BCI in a virtual en-
vironment and a computer monitor, showing that there is no signif-
icant difference in the two environments; finally, study [CLK*02]
suggested that VR immersion helps concentration and proposed a
framework based on VR and BCI to treat people suffering from hy-
peractivity. All the studies above suggest that virtual reality can
yield better result, or shorter training time. Training time refers
to the calibration phase needed by machine learning algorithms in
BCI systems. Calibration engages time and cognitive resources of
the user. Depending on the BCI paradigm the training phase may
take minutes to weeks. In [RADEQ9], the authors compared the per-
formance of a training in a VR environment to a standard feedback
(e.g., the position of a bar on the screen varying with the userdAZs
performance). After a 3-weeks training, the authors demonstrated
that the training with VR led to a better performance: the authors do
not say in which extent the training can be shortened, but the error
rate decreased faster using VR feedback as compared to standard
feedback. Nonetheless, as pointed out in [Lot12], most BCI studies
have been carried out in laboratory conditions. The same authors
describe a game, already presented in [LRLO8], tested "out of the
lab", with promising but unsatisfactory results - only 25% of the
participants were able to control the interface. Thus, there is still
no evidence that a BCI-enriched VR system is practically possible
in real-world situations.

Although the literature suggests that the BCI performance in VR
environment is satisfactory, a natural question is whether the VR
device induces perturbations onto the EEG signal. In fact, as per
today, there is no way to know if the difference in performance
observed between the VR and non-VR conditions are due to the
different interaction modes or by instrumental differences. To an-
swer this question in this study we test whether the electromagnetic
noise produced by a smartphone inserted in a passive HMD affects
the EEG signal. To the best of our knowledge, no study has tried to
answer this basic, yet fundamental, question before. For the test we
have employed the SamsungGear in passive mode. This amounts to
just a mask with lenses, in which we insert a smartphone (Figure 1).
We have chosen this device because it is a very common set-up that
has gained the acceptance of the general public. We have recorded
EEG signals with 16 electrodes covering the whole scalp using the
same EEG device while wearing or not a passive HDM. We have
then compared the absolute amplitude spectrum of the signal for
frequencies between 0.5 and 36Hz, which is the frequency band-
pass of interest for all current EEG-based BCI applications. Our
results show that the amplitude spectrum is not impacted by the
use of a passive head-mounted-device.

2. Exposition

12 volunteers participated to the experiment (3 females), with mean
(SD) age 26.25 (2.63). Subjects were recruited at the University
of Grenoble-Alpes. Before the experiment, the subjects were in-
formed that they will be exposed to electromagnetic contamination
due to the proximity of a smartphone put in proximity of their eyes.
The experiment was conducted after the subject signed an informed
consent form.

EEG signals were acquired by means of an amplifier g. USBamp
(g.tec, Graz, Austria) and an EC20 cap with 16 electrodes (Easy-
Cap, Herrsching am Ammersee, Germany) placed according to the
10-10 international system (Figure 2). The electrical reference was
placed on the right earlobe and the ground was the AFZ electrode.
The amplifier was linked by USB connection to a PC where the data
were recorded by means of the software OpenVibe [RLG*10]. Data
were digitized at a sampling frequency of 512Hz with no digital fil-
ter applied. We used two identical smartphones in order to quickly
switch between the two experimental conditions. In both condi-
tions the subject wore the SamsungGear device. In one condition
the smartphone was switched-off and in the other it was switched-
on. Anything else in the two conditions was identical. Smartphones
used as VR devices were Samsung S6 running under Android OS
Nougat. The Specific Absorption Rate (SAR) of the smartphone
was 0.382 Watt/Kg (Head) and 0.499 Watt/Kg (Body).

Figure 2: In green, the 16 electrodes placed according to the 10-10
international system [CLNS5]. We used AFz (in yellow) as refer-
ence and A2 (in blue) as the ground.

The experiment took place in a small experimental room (around
2m square). Subjects were asked to sit on a desk in front of screen
at a distance of about 50 cm. In order to mimic real-world usage
we did not employ any instrumental noise-reduction device such
as a Faraday cage. The EEG cap and the Samsung Gear were then
placed on the subject. We continuously swapped the smartphones
into the Samsung Gear. In both condition the screen of the smart-
phone was black and a purple marker was stuck on the left part
of the screen in both devices (Figure 3). Having one marker might
seems unnatural as one eye is looking at something that the other
cannot. However, in a pilot study it was established that it was dif-
ficult for the subjects to reproduce stereoscopic vision with two
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markers because small differences in shape and position between
the two markers were unavoidable. Additionally, there was a tiny
white line on the center of the switched-on smartphone to mark
separation between left and right part of the screen on the running
smartphone. This line was hidden by the Samsung Gear when the
smartphone was put into it. The luminosity of the screen was com-
parable in the two conditions. Subjects were asked to focus on the
marker and to listen to the music that was diffused during the ex-
periment (Bach Invention from 1 to 10 on harpsichord). The music
was presented via the speakers of a personal computer. The marker
and the music were introduced to homogenize the mental activity
of the subjects during EEG recording. In addition, fixating the pur-
ple marker aimed at minimizing eye movement artifacts.

The experiment comprised 10 blocks. There were five blocks
in the condition switched-on and five blocks in the condition
switched-off. Each block consisted of one minute of EEG data
recording with the eyes opened. Hence, a total of 10 minutes were
recorded for each subject. The sequence of the 10 blocks were ran-
domized prior to the experiment for each subject using a random
number generator featuring no autocorrelation. This experimental
design allows the use of an exact randomization test for testing hy-
potheses [EOO07].

Save raw data to

electrodes
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Figure 3: Experimental setup.

Data analysis was implemented in MATLAB (Mathworks, Nat-
ick, MA, USA). As pre-processing, we applied a 4th order forward-
backward IIR' Butterworth filter in the bandpass region 0.5-36Hz.
Then we used a forward-backward IIR notch filter at SOHz with a Q
factor equal to 35. Butterworth and notch filtering are both common
standard pre-processing for EEG analysis. The range of 0.5-36Hz
was chosen because it includes the overwhelming majority of EEG
energy and all frequencies of interest for traditional BCI, while the
notch filter removes the power line noise from the signal. The cen-
tral 40 seconds of each block were used for ensuing data analysis
and to avoid instabilities of the signal due to switching smartphone
in the HMD. Artifacts were removed from the signal. We inspected
the signal visually using Icon Software? to make sure that all chan-
nels recorded proper signal. We then cut each block in adjacent
segments of 2s and we applied an automatic artifact rejection pro-
cedure with Fieldtrip [OFMS10] to reject segments with artifact.
An automatic procedure was preferred in order not to introduce a
systematic bias.

Artifact rejection with Fieldtrip consists in a z-transform of the
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filtered data, averaging it over channels (here electrodes) and a
threshold for the accumulated z-score set to 4.0. As an exclusion
criterion for the analysis, we rejected a block if it presented less
than four 2s valid segments, that is, if more than 60% of this block
was corrupted by artifact. However, this criterion was never ful-
filled. For each block, the average (SD) number of 2s segment
retained for all subjects was 8.2 (1.97) for condition smartphone
switched-on, and 8.47 (1.6) for condition smartphone switched-off.
We assessed by mean of a within subject one-way ANOVA that
the number of artifacted segments did not differ in the two exper-
imental condition (p > 0.05, Figure 4). The test ANOVA is used
here to determine whether there is a significant statistical differ-
ence between the mean of the number of artifacted segments in the
switched-off and switched-on condition.

For each block, the average amplitude spectrum was computed
by Fast Fourier Transform (FFT), averaging for each block the ab-
solute amplitude spectrum across the retained segments. Figure 5
shows the amplitude spectra averaged over all subjects, for elec-
trode Fpl, CZ and Oz.
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experimental conditions

Figure 4: Box-plots of the number of artifacted segments in the
two experimental conditions.

The spectra in Figure 5 are very similar in the two conditions,
presenting the same spectral profile. The only noticeable difference
is the peak at 11Hz, which is more pronounced in the switched-
off condition as compared to the switched-on condition at the Oz
electrode. To test the null hypothesis that the amplitude spectra
do not differ in the two experimental conditions we performed
two-tailed univariate randomization tests [EO07], t-max multiple-
comparison randomization tests [NH02] and cluster-based random-
ization tests [MOO7]. The latter two tests are commonly used in
EEG neuroimaging because they allow to correct for multiple com-
parisons, i.e., they ensure that the probability to commit even one
type I error is below the predefined alpha level, which as usual in
this study we set to 0.05. Furthermore, they adapt to any degree
and form of correlation among the hypotheses, which is desirable
since EEG data is highly correlated across adjacent frequencies and
adjacent electrodes, thus other ways to account for the multiple
comparison problem may result in unduly conservative tests. All
tests were within subjects. In total, there were 16 electrodes and
71 frequencies going from 0.5 to 36 Hz in steps of 0.5Hz. Thus,
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Figure 5: Amplitude spectrum of the Fpl (up), CZ (center) and Oz
(bottom) electrodes in the two experimental conditions.

the number of tests is 1136 (16 * 71). We used the implementation
of Ehinger for randomization tests® , Groppe for t-max test* , and
fieldtrip ( "ft_freqgstatistics" function in the MATLAB toolbox) for
cluster-based test [OFMS10]. Results are shown in Figure 6. Fig-
ure 6-a shows that the non-corrected p-values for all subjects are
uniformly distributed between 0 and 1, as expected under the om-
nibus null hypothesis. Figure 6-b and 6-c show that the corrected
p-values are concentrated between 0.9 and 1. Taking together, the
results demonstrate that there is no significant difference between
the two experimental conditions.

3. Discussion

In this study we found that the amplitude spectrum of the EEG
is no impacted by the concurrent use of a passive HMD equipped
with a commercial smartphone. This finding is consistent with be-
havioral results reported in the introduction showing that when us-
ing this kind of device, the performance of a BCI is equal or bet-
ter compared to using a PC [BB00, Bay03, CLK*02, RADE09].
Our study, however, has a number of limitations. First, the sub-
jects were asked not to move during the entire experiment, so as
to avoid all instrumental and biological EEG artifacts related to
movement. This is not representative for a normal use scenario.
Indeed, sometimes in the Virtual Reality context users may move
freely and even walk around a room. In our experiment the sub-
ject was sitting on a chair. Previous studies suggest that EEG is not
analyzable without appropriate signal filtering in locomotion con-
text [LGMF12, GGBS* 10, GGMF10].

Also, in VR, gyroscopic imprecision may make the virtual scene
slightly move around [BCO03, SN15] because the gyroscope of the
virtual device is imprecise and has an amount of drift. This effect
can force the user to move the head/body to follow the virtual scene.
Thus, we expect that this gyroscopic imprecision may introduce
movement artifacts in the EEG due to head movement, which are
not related to electromagnetic noise. We did not observe this in
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Figure 6: Histogram of p-values for the randomization tests (a,
non-corrected), t-max test (b, corrected), cluster-based test (c, cor-
rected).

the present study though. In the case where the BCI application is
based on visual stimulation (such as P300 and Steady-State Visual
Evoked Potential - SSVEP), the target stimulus also moves with the
virtual scene because of the gyroscopic imprecision. We wonder if
the fact that this target is moving produces higher or lower target
detection. On a 2D-screend application, [SGK11, GSK13] suggest
that Event Related Potential (ERP) detection based on P300 is also
efficient when the target is moving. Concerning SSVEP stimula-
tion, reference [LAL11] suggests that ERP detection on a moving
target is possible in a virtual world. Consequently, we expect that
a gyroscopic drift will not affect the performance of BCI applica-
tion based on visual stimulation, if this drift do not force the user
to compensate virtual world rotation by moving the head.

The drift problem is part of the positional tracking that does not
use sensors placed in the environment. Indeed, the gyroscope and
the accelerometers used in commercial smartphones are not in gen-
eral sufficiently accurate to establish the position and orientation
in a 3D space. A solution to this problem is to use the smart-
phone’s camera and combine image analysis with gyroscope and
accelerometers data. Sensor Fusion for positional tracking is an
active field of research [CMPC06, DDVPR 14, LBFS14, SSHP15]
tightly linked to VR applications, since the exact user position and
orientation are needed to reproduce as accurately as possible user
movements in virtual world. Considering the present popularity of
VR devices, the industry has considered the problem and already
announced new products in this domain such as the Google Tango
(Google, Mountain View, US), the Zed Stereo Camera (Stereo-
Lab, San Francisco, US) and the Bridge Headset (Apple, Cuper-
tino, US).
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BCI paradigms that use visual stimulation could introduce sig-
nificant differences between the right and the left camera. In Virtual
Reality, the stereoscopic vision is simulated by using two different
cameras, one for the left eye and the other for the right eye, that
render the virtual world from a different perspective. Then, left and
right cameras are rendered on the left and right part of the physical
screen - the smartphone’s screen is split in two. We have found that
there is a delay in the range of 10 to 100 ms between the stimuli
on left and right part of the screen. The delay was measured by
placing a photodiode in the middle of the two parts of the screen
and lightening at the same time a group of pixels placed in front
of these two photodiodes. We were able to determine the moment
when a group of pixel light-on and compute the delay by measuring
the absolute difference in time of these moments. The delay was 13
milliseconds for a Huawei MT7-L09 (Huawei, Shenzhen, China),
a mid-range smartphone that is not specialized for VR, and 74 mil-
liseconds for the Samsung S6. The 13 milliseconds delay for the
Huawei smartphone could be caused by the time required to up-
date the pixels on the screen when updating the texture! . For the
Samsung S6 additional factors seems to play a role. The difference
between the two smartphones we have observed show that there is
large variability between the display of commercial smartphones
and that not all of them can render in a fast and precise manner.
Besides hardware concerns, the internal low-level implementation
of the graphical engine of the Android OS should be investigated in
more details to understand the reasons of these delays. The question
is important, because a very large delay could lead to the percep-
tion of two stimuli instead of one. So, the ERP could change as a
function of this delay leading to higher or lower accuracy as com-
pared to the use of a computer screen.

Another relevant question is whether stereoscopic vision may in-
fluence ERP. This is supported by [ABM*17] and [Frm*16] who
have shown that ERP shape may vary with the perception of depth.
This is also well assessed in [MHK17], where the authors have
built a classifier based on ERP capable of recognizing stimuli that
occur at a different depth. However, this experiment employed an
Oculus Rift (Facebook, CA, US), which is very different from the
device we have used in the present study. To our knowledge, the
impact on the ERP due to the delay between textures drawing for
right and left camera in a stereoscopic vision has not been suffi-
ciently studied, thus it needs further attention, in particular if the
VR is emulated by a smartphone.

Considering all these aspects, we wonder if target recognition
on visual-stimulation-based BCI systems coupled with a Sam-
sungGear is as accurate as suggested by previous studies. Indeed,
as reported in the introduction, the 4AIJout of the labdAl usage has
not been sufficiently studied. Yet, such real-world usage is the nat-
ural one for a low-cost device such the SamsungGear. Finally, in
order to compare the classification accuracy of BCI systems with
and without VR, as done in the aforementioned studies, it would
be appropriate to employ modern classifiers such as neural net-
works [CG11, LCL*07], random forest [SSFMP15] and Rieman-
nian geometry [Conl3,CBB17].

4. Conclusion
We have tested the effect of the SamsungGear head-mounted-
device equipped with a smartphone on the quality of the EEG sig-
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nal. We answered this question by comparing the EEG amplitude
spectrum when the device is switched-on and when it is switched-
off. After applying the appropriate filtering and artifact rejection,
we performed the analysis using three kinds of statistical tests. The
analysis shows that there is no influence of the virtual reality device
on the EEG amplitude spectrum.
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*Notes

Section 2

1. Infinite Impulse Response

2. https://sites.google.com/site/marcocongedo/software/icon
3. https://github.com/behinger/permtest

4. http://fr.mathworks.com/matlabcentral/fileexchange/29782-
mult-comp-perm-t1-data-n-perm-tail-alpha-level-mu-reports-seed-
state-

Section 3

1. An example of LCD screen refreshing in slow motion :
https://www.youtube.com/watch?v=wts8f1bNnbo
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