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Abstract
  We present recent results from an EPSRC funded project VirTex (Virtual Textile Catalogues).
The goal of this project is to develop graphics and image-processing software for the capture,
storage, search, retrieval and visualisation of 3D textile samples.  The ultimate objective is to
develop a web-based application that allows the user to search a database for suitable textiles and
to visualise selected samples using real-time photorealistic 3D animation.  The innovation in this
work is the combined use of photometric stereo and real-time per-pixel rendering for the capture
and visualisation of textile samples. Photometric stereo is a simple method that allows both the
bump map and the albedo map of a surface texture to be captured digitally.  When imported into a
standard graphics program these images can be used to provide 3D models with a photorealistic
appearance. We have developed software that takes advantage of the advanced rendering features
of consumer graphics accelerators to produce bump mapped models in real-time. The viewer can
manipulate both viewpoint and lighting to gain a deeper perception of the properties of the textile
sample.

Categories and Subject Descriptors (according to ACM CSS): I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism; Colour, shading, shadowing and texture

_______________________________________________________________________________________

1. Introduction

  The photorealism of a computer-generated 3D
scene illuminated by light sources can be enhanced
in various ways.  At a simple yet effective level a
technique known as texture mapping is commonly
used to this end.  This involves  ‘pasting’ a digital
2D image onto a 3D object composed of polygons
to give it the appearance of having a textured
surface (Figure 1b). Photorealism is certainly
enhanced by doing so but an object rendered in this
manner appears unnaturally smooth.  Furthermore
the texture itself will be unreactive to changing
illumination conditions.
  The word ‘texture’ is of course usually associated
with rough or bumpy surfaces in the real world.
The appearance of such surfaces can change
dramatically when illumination conditions are
altered (Figure 2). It is important to model this
effect if scene photorealism is to be enhanced.  This
is especially true for animations in which a textured
object is moving relative to the light source.

Modelling the effect is essentially what is achieved
by relighting techniques whereby a texture is
reproduced under user-specified illumination
conditions using data derived from multiple images
of the texture under varying illumination.  Not all
relighting methods are suitable in this case,
however.  For example, Malzbender 6 introduced
polynomial texture maps as an effective way to
model luminance but it is the scene which is
reconstructed.  This method therefore does not lend
itself to mapping a texture onto a 3D object.
  Instead it is useful to think of a geometric object
and its texture as separate entities as with texture
mapping. In this case ‘bump mapping’ which was
introduced by Blinn 1 is the appropriate technique,
however.  A bump map is used to store information
about the topography of a texture in terms of its
surface normals.  Since normals are a key element
in lighting calculations this technique actually
allows the surface of an object to both appear rough
and also be reactive to changing illumination
conditions (Figure 1c,d).  Importantly this is

http://www.eg.org
http://diglib.eg.org


© The Eurographics Association 2003.

achieved without an increase in the geometric
complexity of the object itself.  The fact that both
the bump map and its integrated form, the
displacement map (Figure 3), are universally used
in computer graphics applications is also
noteworthy.
  In addition to the bump map, information
pertaining to the colour of the texture is also
required.  This albedo map, technically defined as
the ratio of reflected light to that incident on the
surface, must also be determined.  It can then used
as a texture map in the rendering process to achieve
a high degree of photorealism.
  Whilst it is possible to utilise both the bump map
and the albedo texture map in standard 3D
packages, rendering is not carried out in real-time.
However, for interactive applications real-time
rendering is a must.  Recent consumer-level
graphics cards from companies such as Nvidia, ATI
and 3Dlabs now provide real-time per-pixel
shading. The advanced rendering features of these
cards allows software to be developed which uses
the photometrically acquired bump and albedo
maps to provide real-time visualisation under user-
controlled illumination, pose and flex.
  In Section 2 the photometric stereo method which
is used to capture the data required to generate the
bump map and albedo map is described.  How these
maps which define the texture are utilised for real-
time visualisation is then considered in Section 3.
Conclusions regarding the whole process are finally
drawn in Section 4.

2. Determining the Requisite Information for a
Rough Surface

  Photometric stereo (PS) is a classic computer
vision technique for shape estimation which has
been extensively researched over many years and
which has found applications in diverse areas such
as surface inspection, classification and
recognition. Woodham’s 2 original algorithm is
based on reflectance maps which were introduced
by Horn 3.  Significantly, a reflectance map links
the surface orientation of an object to the irradiance
or intensity in its corresponding image.  Woodham
demonstrated that three images of a surface under
different illumination conditions are sufficient to
uniquely determine both the surface orientation and
the albedo – from the intersection of the three
reflectance maps. Since this method presents a
relatively simple way of obtaining the bump maps
and albedo maps of textile samples it has therefore
been utilised in our work for the VirTex project.

  Over the years the PS algorithm has been refined
and modified to cope with less than ideal conditions
such as when shadows, specularities or
interreflections are present 8,9,10,11,12,13. The three
image algorithm is still sufficient, however, to
recover the surface normals and albedo for a diffuse
surface with no shadows.  In this case Lambert’s
Law applies such that the intensity value of a pixel
is proportional to the cosine of the angle between
the illumination vector, l, and the surface normal, n,
of the corresponding surface facet scaled by the
����������	�
��� 
��������������������������������
��
product in equation 1.

)(),( nl •= ρyxi (1)

  The direction of the illumination vector which
points towards the surface facet is limited to that
within a hemisphere above the facet.  It is therefore
intuitive to define it in terms of polar coordinates
���������������������� ����
������������������ 
�������
parameters are equivalent to the angles of latitude
and longitude respectively and can be measured
with reasonable accuracy.
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 Three images are captured under different
illumination conditions in the PS algorithm and
thus provide three simultaneous equations which
can be written in the following form.
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or equivalently

Lni ρ= (3b)

It is therefore apparent that if both the intensity and
illumination vectors have been measured, then the
unknowns can be determined by inverting the
illumination matrix, L.

iLt 1−= (4)

where
t = n, and is the scaled surface normal.
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Rather than store the three elements of t =(t1,t2,t3)
T,

it is preferable to convert this data in order to
separate the albedo from the surface normal.
However, this does not imply the use of an extra
storage variable.  This is because the surface
normal n can be written in terms of two variables, p
and q, which are the partial derivatives of the
surface.
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These partial derivatives and the albedo are
calculated from the scaled surface normal t as
follows.
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For real-time per-pixel rendering, it is these three
variables which are used as input for our custom
3D application (Figure 4).

  It is noted that a standard consumer 3D
application was used initially in our work (Figure
1).  In this case the required input was a
displacement map (Figure 3) rather than a bump
map in terms of the partial derivatives.  This was
generated by a frequency domain integration.  The
method used in our work is similar to that presented
by Frankot & Chellappa 29.

2.1 Optimal capture conditions

  McGunnigle 5 proposed using illumination vectors
with a spacing of 90o������ �����
� ��� ����� ������� �
since this simplifies the scheme given by equation 3
to the extent that it can be solved directly.  More
recent work of ours 7 has shown that this orientation
is not in fact optimal at least for textile textures and
a slight improvement in accuracy can be realized by
using a spacing of 120o.  This was found to the case
both empirically and analytically.  Our work has
therefore employed the more general photometric
scheme by Woodham 2.

2.2 Laboratory equipment

  A digital camera by Vosskuhler (Model CCD-
1300C) was used to capture images of textures
under various lighting conditions.  A linear light
source approximately 1m in distance from the
textile sample was used.

3. Real Time Visualisation

3.1 The history of bump-mapping hardware

  As mentioned previously, bump-mapping was first
introduced by Blinn 1 in 1978, as a means of adding
detail by perturbing the normal vector just before
lighting calculations However, it was not until the
early 1990’s that bump-mapping hardware first
became available in research laboratories 17,18 then
on high-performance workstations 19, and on
consumer graphics hardware 28. Up until that time,
research had been directed at extending the
flexibility of software rendering systems 14,15,16.
With the availability of low-cost programmable
hardware, research has concentrated on
implementing both advanced lighting models 20,25,27

and software shading algorithms transparently on
graphics hardware 22,23,26.  Research has also led to
new extensions being specified 21,24.

Research into the rendering of knit-wear and cloth
materials has also been carried out 30,31,32,33. While
these methods make use of 3D rendering
techniques and achieve excellent photorealistic
quality, they do not run in real-time. With the lumi-
slice technique, a single frame can take anywhere
from 15 to 30 minutes to be rendered. Another
disadvantage is that this method requires the user to
specify the weave pattern used to construct the
material.

  There are several tasks required to visualise the
captured images. These include the conversion of
the image data into the internal data format used by
the graphics accelerator, the configuration of each
stage of the programmable graphics pipeline, and
the transmission of geometry through the graphics
pipeline.

3.2 The choice of graphics accelerator

  For this project, the NVIDIA GeForce Ti4600
graphics accelerator was selected, as these were
readily available from retailers and OEM’s. This
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was in line with the project objective of
implementing real-time rendering using currently
available consumer graphics hardware. The
specification for this project also required that 3D
models could be rendered using at least one local
point or directional light source at any time, using
both diffuse and specular components. The
programmable features of this card make these
goals achievable.

3.3 The choice of programming API

  In order to gain access to the advanced rendering
features of the graphics accelerator, it is necessary
to make use of one of the two graphics API’s
presently available: OpenGL or DirectX. OpenGL
is an open standard targeted at the scientific, CAD
and entertainment software markets, while DirectX
is an API targeted exclusively for the entertainment
software market. As the goal of this project is to
develop cross-platform software, the OpenGL API
was chosen for this application.

3.4 The use of OpenGL extensions

Before we describe the design of the algorithms
used for the graphics accelerator, we will describe
the capabilities of the card in greater detail.  One of
the most useful features of the latest OpenGL
specification is the ability to replace the
transformation, lighting and the rasterisation stages
of the graphics pipeline with custom programs. The
following extensions were used in the application.

1. Multi-texturing
2. Texture cube-map
3. Vertex programs
4. Register combiners

3.4.1 Multi-texturing

  The multi-texturing extensions provide the
graphics accelerator the ability to generate the
texture colour data from the combination of two or
more textures simultaneously. Used alone, this
extension only allows the programmer to
implement additive or subtractive blending.
However, when used with register combiners, it is
possible to combine the colour values using more
complex mathematical expressions.

3.4.2 Texture cube-mapping

  The texture cube-mapping extension gives the
graphics accelerator the ability to implement a
spherical lookup function based on the value of a
single 3D coordinate. Input to such a function can
include texture co-ordinates, normal vectors,
reflection and refraction vectors. Another use is to
implement vector normalisation, where any vector
of arbitrary length can be converted into a unit
length vector.

3.4.3 Vertex programs

  The vertex program extension allows the user to
replace the existing OpenGL transformation and
lighting stages with a custom transformation stage.
This is required to implement the bump-mapping
algorithm. The output from the vertex program and
multi-texturing extensions is passed to the register
combiner stage.

3.4.4 Register combiners

  The register combiner extension allows the user to
implement per-pixel calculations without having
handle the scan-line rasterisation of each triangle.
The register combiner stage is comprised of a
number of arithmetic multiplexor units, each of
which can accept input from a previous stage or
from constant registers. The output is generated
from various mathematical functions including
vector multiplication, addition, linear scaling and
power-of-two scaling. The Ti4600 graphics
accelerator supports a maximum of eight register
combiner units. Applications of register combiners
include blending, addition and dot product
calculations used for per-pixel specular lighting and
bump-mapping.

3.4.5 Other Extensions

There are many other OpenGL extensions that are
available, but offered far more functionality than
required by this application. A good example is the
texture shader extension that allows the user to
implement complex calculations by combining the
inputs and outputs of texture units together.
Examples of such calculations typically include
combined diffuse and specular environment cube-
mapped texturing and using the output of one
texture unit as the input to another. Unfortunately,
as our texture acquisition algorithm cannot acquire
reflection or specular data, at this time, it is not
possible to take advantage of the features that this
and other extensions offer.
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3.5 Design of the graphics pipeline

Section two described how we obtain the partial
derivatives and albedo using photometric stereo.
Before loading the data in the graphics accelerator
we need to use the pre-processing algorithm to
calculate the outward normals used to define the
bump-map.

This section now describes how we use this data to
implement per-pixel bump-mapping in hardware.
Implementation of the graphics pipeline requires
four separate stages to be designed:

1. The pre-processing stage
2. The vertex transformation stage
3. The per-pixel lighting stage
4. The rendering stage

3.5.1 Design of the pre-processing stage

  Using the photometric stereo method, the initial
texture data is in the form of a set of monochrome
images in floating-point format. The first image
defines the albedo texture map. The other two
images define the P and Q partial derivatives of the
surface with respect to each axis. The first image is
converted for use by the graphics hardware simply
by scaling and converting the image data from 32-
bit floating point down to 8-bits. Conversion of the
two gradient images is achieved in the following
way.

Given the values of gradient it is possible to
calculate the equivalent angle in radians for each
pixel:

)(tan)(tan

)(tan)(tan

11

11

dy

dz
q

dx

dz
p

q

p

−−

−−

==

==

φ

φ  (8)

  From these two angles, it is possible to calculate
the partial derivatives of the surface, and the
normal vector from the normalized cross product of
the two values:

T
pp ))sin(,0,(cos( ) φφ=p’ (9)

T
qq ))sin(),cos(,0( φφ=q’

q’p’n ×=

It should be noted that while an equation used to
derive the outward normal n has been given in (5),
this value is not actually calculated until required
for rendering. The main reason for doing this is to
save on storage space and transmission bandwidth
for networked applications.

 The resulting vector is then scaled and biased for
compression into an 8-bit signed RGB colour value.
However, with future graphics accelerators such as
the GeForce FX, it will be possible to use the
floating-point data directly.

3.5.2 Vertex transformation

  The transformation of vertex information is
implemented using a vertex program, as this is the
most efficient way of implementing the algorithm.
A detailed explanation of this algorithm is
described in “Efficient Bump Mapping Hardware”
19.
  Rendering a bump-mapped model requires that the
two additional direction vectors (tangent normal
and binormal) specifying the local tangent space for
the vertex are sent along with the outward normal,
vertex and texture coordinates
  For each vertex, the location and direction of the
current light source is transformed into tangent
space. This allows the half-angle vector between
the eye vector and the outward normal to be
calculated. This vector must also be normalised
before being used in the lighting equation. This is
achieved by using two texture cube maps to
implement vector normalisation. As per-pixel
lighting is required, the lighting equation is
implemented in the register combiner stage.
  To allow the texture coordinates to match the
scale of a 3D model, two texture matrices are used
to transform the texture coordinates prior to
rendering.

3.5.3 Per-pixel lighting

  Per-pixel lighting of the graphics pipeline is
implemented using the register combiner unit of the
Ti4600 graphics chip. The lighting model used by
this implementation incorporates ambient, diffuse
and specular components.

At this point, the following texture data is
available:

1. Pixel colour of the base texture
2. Light source direction normal
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3. Half-angle normal
4. Encoded 8-bit RGB normal from the bump

map texture

  The register combiner units are used in the
following way. The first register unit is always used
to calculate the dot products between the light-
source direction normal and, the half-angle and
bump map normal. The second register combiner is
always used to implement the diffuse colour
calculation. The remaining six register combiner
units are used as required to raise the dot product
result to the corresponding specular power. The
final register combiner unit is used to combine the
ambient, diffuse and specular lighting values
together.

3.5.4 Rendering stage

  For this project, Bezier patches were chosen as the
basic geometric primitive. There were two reasons
for this decision. The first reason was that
animation and CAD users have used these in the
past. The other reason is that the evaluation stage of
this primitive can easily be modified to calculate
the required tangent space coordinates.
  The base texture and bump map texture are loaded
into the graphics accelerator texture memory as 8-
bit RGBA textures. The alpha channel of the base
texture is used to define a transparency map, while
the alpha channel of the bump map texture is used
to modulate the specular term of the lighting model,
and so define a gloss map. In order to implement
trimmed surfaces, the regions of the patch that are
removed are made invisible by setting the alpha
channel to zero. Two other texture units are used to
implement the normalisation stage using an
environment cube-map.
  One of two vertex programs is used to render the
patch using either a directional or local point light
source.
  Each patch of the geometric model is evaluated in
software and sent to the graphics accelerator using
the NV_vertex_array_range extension.

3.5.5 Human-Computer Interaction

  To allow the user to view the model with as much
freedom as possible, the user interface has been
designed to allow the user to control the position of
the model, light sources and camera independently.
The operations supported include rotating the
model, rotating and zooming both the camera and
light-sources. All objects can be allowed to rotate

automatically, to brake automatically, or to only
rotate whenever the user moves the mouse.  Light
sources are rendered as a sphere in order to give the
user feedback as to where the light source is located
and moving.

4. Conclusions

  In this paper, we present a method of
photometrically acquiring the image of a rough
surface in terms of a bump map and a texture map.
We have used the acquired data to implement real-
time rendering of textured 3D models. With high
performance graphics capability rapidly becoming
available on consumer level hardware, this
technique can easily be used to create virtual
catalogues accessible by standard web browsers.
This technology could also be applied to CAD and
CAGM to allow designers to rapidly prototype
designs in virtual reality.
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Figure 4: Textured Bezier patch with a knitted
textile bump map texture
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(a) (b) (c) (d)

Figure 1 : Virtual mannequin (a) geometric model lit  from bottom left, (b) texture mapped lit from bottom left, (c) bump
mapped lit from bottom left, (d) bump mapped lit from top left.  Each rendered in approximately 1 second using Micrografx
Simply 3D.

Figure 2 : Effect of change in illumination conditions on the appearance of a knitted textile. Arrow indicates direction of
illumination.

Figure 3 : Displacement map obtained by integrating the bump map. Corresponding area of the textile also shown.
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