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Abstract
Cutting to music is a widely used stylistic device in film making. The usual process involves an editor manually adjusting
the movie’s sequences contingent upon beat or other musical features. But with today’s movie productions starting to lever-
age real-time systems, manual effort can be reduced. Automatic cameras can make decisions on their own according to
pre-defined rules, even in real time. In this paper, we present an approach to automatically create a music video. We have
realised its implementation as a coding framework integrating with the fmod api and Unreal Engine 4. The framework pro-
vides the means to analyze a music stream at runtime and to translate the extracted features into an animation story line,
supported by cinematic cutting. We demonstrate its workings by means of an instance of an artistic, music-driven movie.

CCS Concepts
• Computer systems organization → Real-time operating systems; • Applied computing → Sound and music computing;
Media arts;

1. INTRODUCTION

Game engines are no longer just about games. Recently, the popular
Unreal Engine caught everybody’s attention when its owning com-
pany Epic released a tech demo on the engine’s most recent fea-
tures. The associated short film ’The Matrix Awakens: An Unreal
Engine 5 Experience’ impressively underlines the capabilities of
game engines in making movies. The interest in this artistic usage
of game engines already emerged when the television series ’The
Mandalorian’ hit big in 2019. By replacing common green screens
with LED-walls and the use of real-time computations, the produc-
tion process has been augmented in many ways. First, actors are
much more immersed throughout the recording due to the live pro-
jection of the virtual surroundings on these LED-walls. Auxiliary
to that, the shooting can already be finalized without the need to
add the background later on. But creating cinematic shots in game
engines not only comes in handy as support for films starring hu-
man actors. It also expands the possibility of creating films such as
3D animations, VR 360° films and interactive movies.

To explore novel opportunities of game engines to support mu-
sic movie production, we created an automatic music-driven cut
framework for the game engine Unreal Engine 4 (UE4) [Gam98],
that integrates music analysis by means of the fmod api. The main
motivation was to create a video in real time, where every action,
look and cut of the scene is completely guided by a continuously
read music stream. Thus, our approach translates the musical in-
put to an animation story line, evolving the intensity of changes,
i.e. basic transformations such as translation, rotation and scaling

of objects and also their projections, boosted by cinematic cutting.
Cutting to music is a rather common technique, but mostly the cuts
have to be selected manually by a human editor. Thus, our sys-
tem automatically takes care of finding the specific points in time
when the beat drops, and of selecting the most interesting scenes
and views from the entire video material. At each run, a new re-
sult is produced, and the element of surprise is part of the desired
aesthetics.

We identified several, partially rather elaborate preceding works
that we could use to drive the approach that we present in this paper.
For example, there are sophisticated solutions for automatic cam-
era positioning or automated cutting. We will detail related works
in Section 2. But in order to arrive at an autonomous system such
as the one we envisioned, we realised that we would have to en-
gineer a novel technical solution. Our proposed solution delegates
the cinematic control to the music while sticking to common prac-
tice guidelines of framing the associated actions in the scene with
appropriate cuts and angles.

Our system can be divided into three parts: (1) The audio anal-
ysis component, (2) the cut system and (3) the view system. The
first provides the information that drives the other two, based on
a set of established cutting operations and manually provided Fo-
cal Points that capture interesting objects or views in the scene. An
overview of the entire system can be seen in figure 1. It shows the
flow of data that drives the system: Musical features of the sound
file, depicted on the left-hand side of the diagram (border with dou-
ble lines), are calculated in the first component. They determine the
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behaviour of the cut system (bottom, border with dashed line) that
makes the view (top, border with dotted line) transition to a new
favourable state as well as controls the behavior of the objects in
the scene. We will dive deeper into the explanation of the involved
functionalities in section 3.

At each frame, a currently played sound file is analyzed with re-
spect to the beat, frequency and amplitude. Each time a beat drops,
the cut system selects a different cutting operation depending on a
random component, the previous cut and the consideration of cin-
ematic principles. Next, a new camera angle is determined at ran-
dom. Lastly, the respective camera of a Focal Points can either be
fixed in its position or move along a pre-defined path as a dolly shot,
which is randomly decided as well. The view system then chooses
a new view into the scene based on the greatest level of activity
and cuts as directed by the cut system. To determine the level of
activity, we implemented a concept we call Focal Points, which is
a combination of a camera with a specific view on some objects,
whose movement and other changes are also controlled by the out-
put of the audio analysis. An example setup of such a Focal Point
can be seen in figure 2.

The following section 2 explores related work. In section 3, we
describe the functionality of our approach, with details on its pre-
requisites, the audio analysis, the cut system, and the view system.
A short description of a demo instance is given in section 4. We
discuss the results in section 5 and conclude with some possible
future enhancements in section 6.

2. RELATED WORK

Generally, our approach falls in the category of automated camera
systems, which have a wide range of application. They support, for
instance, real life physical systems such as sporting events, medical
procedures such as surgical simulations, or virtual cinematographic
productions, e.g. when producing a movie out of game play. Hence,
this is an extensively explored topic, but little research has been
done when music plays the determining role and camera-captured
visuals have to follow, and all in real time. The concept of realizing
this is bipartite. On the one hand, there is the technical component,
that we summarize under camera systems responsible for the timing
of cuts and the positioning of the cameras in the scene. On the other
hand, there is the design guideline, which is in charge of the cutting
style and the selection of views and therefore controls the action
that is visible in the final cut sequence.

2.1. MACHINIMA

The first-person shooter game Quake [Int96] lead to the produc-
tion of early cinematic movies created from game play already in
1996 [Low08]. The then upcoming trend in observing other play-
ers engage in a match brought up the demand for a better view of
the action from different perspectives. But as the viewers asked for
a live broadcast, it was not acceptable to edit recorded footage af-
terwards. Further, a simple look over someone’s shoulder was not
enough, diversified sights were required [Low08]. The principle of
Machinima, a combination of ’machine’ and ’cinema’ was born
[PJSH13]. Although initially only concerned with better watching

of online games, it quickly turned to a more general concept of de-
veloping cinematic sequences in game engines [MY09]. The main
challenge in doing so was to create visually appealing footage and a
narrative from scripted attributes such as dialogue, movements and
gestures [ER07]. Thus, it connects video games with some forms
of art [Pic06].

Over the years, four types of Machinima emerged [BBB∗06].
The first category comprises the purest form, being in fact inde-
pendent from game engines. These custom-built platforms are par-
ticularly strong in the field of camera control, the look of spe-
cific shots and lighting. Unfavorably, they are often limited due
to missing real time computations. An example software of this
classification would be Microsoft’s Virtual Stage [Tho00]. A sec-
ond Machinima group is formed by hybrid games. These involve
filming mechanisms built into an interface to simplify the final
production. Most of these applications include an editor, which
makes it convenient to work with. Although sometimes there are
issues with uneven libraries, there are various famous games built
this way like The Movies [Stu05], The Sims 2 [Max04] and Sec-
ond Life [Lab03]. Problems with additional libraries are also a
drawback of pure games, the third category. While they do not
actually provide built-in mechanisms for Machinima production,
it is still possible to use the technology, as can be seen in Halo
2 [Stu04] or World of Warcraft [Ent04]. The last class is made up
of modded games. Games such as Half-Life 2 or the Neverwinter
Nights’ Aurora Toolset [Bio02] demonstrate the feasibility of cre-
ating Machinima by using and modifying a game engine’s source
code to fit the system to the movie’s requirements [BBB∗06]. By
now, there are not only various Machinima game play movies, but
also plenty of well-established programs and frameworks to create
them [HZ12]. An exemplary system would be Zuzen by Munilla
and Young, a cloud-based service, that uses the UE4 to produce
cinematic videos [MY09]. To start the process, it requires a pre-
specification of the story and camera activity. First, the pre-defined
plan is converted into a set of parameterized function calls, which
are represented as so-called action classes. The execution of these
classes is done within the engine. The so rendered movie is then
recorded and can be downloaded via a http service. Zuzen further
relies on the application Darshak [UB07], an intelligent camera
planning system, which makes it possible to create individual cam-
era directives. The overall mechanism is controlled by a directed
acyclic graph [MY09]. Another cinematography software specially
developed for Machinima is CAMBOT by Elson and Riedl [ER07].
Their application replicates the film making process by reading
from a script with information on shot compositions, time-indexed
dialogue and gesture commands. This script gets divided into con-
secutive scenes, that compose the final movie, supported by cine-
matic knowledge from a third party library. The developer has the
additional option of defining constraints such as about the location,
blocking and view of objects in the scene [ER07].

2.2. CAMERA SYSTEMS

Automatic camera systems are mostly realized by optimization al-
gorithms that focus on camera path planning, occlusion culling and
parametric specification, taking cinematic rules into account.
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Figure 1: Overview of the framework.

2.2.1. Camera path planning

As early as 1994, Drucker and Zeltzer designed the walk-through
of a virtual museum with intelligent camera control [DZ94]. Their
system is based on analyzing the tasks required in a specific envi-
ronment. With information about orientation, navigation and even
unknown areas, the system prepares the presentation of the scenery
to suit the external observers. The automatic positioning of the
camera is based on an A*-search algorithm.

A more recent method comes from Meeder, who built the Aes-
thetic Camera to achieve virtual camera control in the context of e-
sports in real time [Mee20]. His approach integrates the five rules of
cinematography by Joseph Mascelli, namely paying heed to camera
angles, continuity, adequate cutting, close-ups and a fitting compo-
sition [Mas65]. A cost function revolving around the geometry of
the scene provides the basis for choosing the best camera location.
The optimization is performed by the Ceres Solver for minimizing
non-linear least squares to identify ideal decisions. The final im-
age is set by altering camera position and angle until a local min-

imum calculated by the cost function is met. Arev et al. applied
such an automatic system to the real life concept of social cam-
eras, which are carried by groups of people involved in the same
activity [APS∗14]. A trellis graph with all possible camera poses
is constructed, forming an objective function that maximizes cov-
erage of the important content in the scene. It is further weighted
with constraints on cinematic guidelines and style parameters. Dy-
namic programming is then used to estimate the joint attention of
all possible camera poses. Camera path planning is also widely ex-
plored in the context of unmanned aerial vehicles (UAVs). Smith et
al. developed a framework for urban scene reconstruction by scan-
ning the environment by UAVs [SMGH18]. To obtain the best pos-
sible images, a path is planned in two steps. First, scene data is
gathered by an initial nadir grid pattern with 80/80 image overlap,
that is transformed bit by bit into a complete nadir capture. The
actual environmental reconstruction from the images is supported
by Fuhrmann et al.ś MVE platform [FLG14]. Based on the result,
the view and path planning step can be performed. Starting with a
preset camera network, the system creates spherical histograms to
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determine the orientation that maximizes the view and thereby op-
timizes the 3D model of the scene. After several iterations of this
optimization, an objective function calculates the optimal positions
for the UAV to take pictures [SMGH18].

2.2.2. Occlusion

To avoid the visual blocking of important actions when automati-
cally cutting, Burg et al. implemented a GPU-based rendering tech-
nique to compute an anticipation map in toric space, which has
been adapted specifically for cinematic camera control [BLC20].
This map predicts occlusions for a continuous set of cameras and,
thus, serves as a basis for optimized camera support of user-specific
visual arrangements. Besides this technique from Burg et al. there
are several reactive systems that have been analyzed by Christie
et al. Most of these systems include ray casts from the cameras
to a particular object of interest, calculating any interference along
the way. An even better performance can be achieved by consid-
ering intersections between rays and bounding volumes, instead.
Real time computations can be achieved by projecting the bounding
boxes of potentially occluding geometry onto a discretized sphere
surrounding an object. The projections are then converted to global
space and negated to represent an occlusion-free view on the ob-
ject. Moreover, there are various target-tracking techniques as well
as the idea to render the scene in hardware stencil buffers with col-
ors associated to objects. An exceptional application to all methods
analyzed by Christie et al. is for virtual endoscopy.

To prevent mistakes when the operating field is obscured, auto-
matic camera systems can provide the best possible view [CON08].

2.2.3. Cutting

Christie et al. set up a framework for weighting shots and cuts for
cartoons [CLR12]. The shot score is based on Hitchcock’s princi-
ples [Hit07], whereas the score for transitions originates from other
common practices in film and television. The score is calculated
as the sum of different ratings for specific actions, visibility and
the composition of the characters. The action score is diminished
by actions missed in a given fragment, visibility is defined by the
overlapping area between projected bounding boxes and generally,
shots are favored in which the actors are given more space rela-
tive to the whole image frame. In the transitions, continuity plays
an important role. Screen continuity stands for the preference of
transitions which maintain the actors’ eyes at the same screen lo-
cations, gaze continuity penalizes camera flips, that cause appar-
ent reversals in actors’ gaze directions and lastly, motion continu-
ity penalizes, if the actor’s motions are reversed. Furthermore, the
duration of shots is weighted to stick to the cinematic principles.
The eventual selection of a view is done by traversing a graph con-
structed from all of this information with a best-first search for the
lowest cost path [CLR12]. A real life application of a cut system
has been explored by Kaiser et al. [KWK∗12]. They created a tech-
nique for live event broadcasts called FascinatE, which serves as
a virtual director getting input in the form of gestures that pro-
voke zooming, panning, pausing or adjusting volume. FascinatE
is able to analyze the surroundings and detect persons, salient re-
gions, and audio events. A production scripting engine makes it
possible to automatically select the best camera and the most rele-
vant action at any time. This rule-based approach is co-acting with

some constraints on cinematic principles, which are implemented
in form of a production grammar which determines the cameras’
placement, whether they are moving or static as well as their zoom,
size and speed. It also describes when and how to cut. This system’s
greatest drawback is its restriction to a single point of view and a
non-adjustable focus. Another automatic camera control approach
was realized by Jhala and Young [JY05]. Their work tackled is-
sues such as an occlusion-free view, the selection of ideal camera
positions and angles, as well as the calculation of a view’s clar-
ity with respect to spatial and temporal coherence. However, their
work focusses on supporting narrative and dialogues. To this end,
a movie’s story line has to be specified beforehand in form of an
action sequence. Its combination with further annotations of story
and characters is captured in an abstract data tree, which allows
for path planning, which in turn informs a succession of camera
directives, representing the cinematic schema. The calculation of
an optimal path is based on matching local nodes and sub-trees
with desirable features of the narrative. The system is supported by
Mimesis [YRB∗04], a service-oriented architecture for intelligent
control of narratives in virtual environments [JY05].

As much as individual aspects of the approaches outlined in this
section can support a music-driven cut system, they cannot be di-
rectly used for this purpose. In order to guide the cinematic per-
formance, e.g. determining the cuts’ parameters as well as their
frequencies [CLR12], several of the presented techniques require
extensive information about the narrative [PJSH13, JY05, ER07],
occurring actions [DZ94], dialogues [HCS96], or game play events
[Mee20]. These are not the decisive elements we want to consider,
but rather we aim at a cinematic performance driven by music. The
continuous nature of the latter mentioned game play events aligns
best with our goals. Yet, the proposed approaches partially caused
disorientation and breaks in presence [Mee20]. For our approach,
the problem of occlusion shots as in [CON08,FLG14] did not play
a significant role, either. As we aim at capturing sets of moving ob-
jects, temporarily and partially occluded views are not avoidable,
but they mostly do not obfuscate the views, either. Likewise, intel-
ligent path planning algorithms that rely on static environments, as
for instance presented in [SMGH18], can also be omitted within
our project. Overall, the preceding works mainly informed our ap-
proach with respect to (1) the need and concrete realisation to en-
code cinematic guidelines, and (2) the design of a decision making
component to drive an artistic camera control.

3. FRAMEWORK DESIGN

The music-driven cut framework we propose is comprised of three
parts (fig. 1). Its data basis is provided by (1) the audio analysis
component. It extracts and makes available the frequency, ampli-
tude and beat of a read input file or stream. (2) The cut system
makes decisions based on the provided data. It decides which cut-
ting technique, angle and camera movement are chosen and how
the respective choices are parameterized. At the same time, a new
location to cut to is chosen by (3) the view system. To put all of this
into effect, the features of the UE4 engine, especially its Cinematic
Camera component and the concept of Level Sequences were uti-
lized together with the fmod api [Tec95] for conducting the audio
analysis. The output of our system after completing its configura-
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Figure 2: Initialization example of a Focal Point.

tion can be experienced by simply pressing the play button in the
UE4. Each time, a new film is created. The resulting movie then can
either be recorded by a third party screen casting application or di-
rectly generated within the UE4 by writing to the master sequence
of the scene. In this section, we will detail the three components of
our proposed framework and their technical realization.

3.1. PREREQUISITES

Two basic design decisions need to be taken to provide a stage for
the framework we propose. Aside from the choice of a song, the
scene where the cinematic story unfolds, has to be arranged up-
front. For this, different Focal Points have to be setup in the envi-
ronment, one being labelled the default to which the view system
can fall back if not other information is available. They can be con-
sidered virtual cameras linked to and focusing on specific objects.
In the UE4 engine, Focal Points can, for instance, be setup as Cin-
ematic Cameras linked to one of a set of available “audio”-enabled
objects, which we refer to as audio objects. Dependent on which of
the audio objects a Focal Point is linked to, it requires a definition
of its relationship to other Focal Points. This includes the “Con-
trast” property, which is a list of all Focal Points with audio objects
that look or behave contrary to the audio object assigned to the spe-
cific Focal Point. Likewise, there is a “Match” property, with a list
of Focal Points with similar audio objects. Focal Points may further
be expanded by a set of different dolly shots. In UE4, these can be
realized by means of so-called Level Sequences, which provide a
rich toolbox to animate arbitrary data attributes. The provided de-
grees of freedom for setting the stage allow for a wide variety of
individual cinematic looks and story lines. In order to avoid cutting
to a humdrum view or inanimate objects, only those Focal Points
that target objects undergoing significant changes are considered as
cutting targets. To this end, activity thresholds can be associated
with individual animated properties.

Focal Points can also be marked as ’highly active’, if the objects’
changes are particularly interesting, e.g. when an object has started
moving for the first time. Such highly active Focal Points are prior-
itized in the selection process.

3.2. AUDIO ANALYSIS

Throughout the entire movie making process, our framework an-
alyzes the music stream to extract the amplitude, the frequency
and the beat at every frame. It can distinguish different channels,
which makes it possible to individually keep track of specific in-
struments or themes. Therefore, in order to make sure the system

Figure 3: Blueprint example for a camera call by the beat.

is properly prepared, the developer needs to add one music file for
each channel (the raw .wav format is currently supported). Differ-
ent files/channels may also be joined and fed into a single, compos-
ite channel. In order to detect the musical features, a virtual fmod
project is created when starting the playback. Within a so-called
fmod bank, a dedicated channel is setup for each provided file. For
the analysis, digital signal processors (DSP) are utilized, which al-
low for raw pulse code modulation samples to be processed in order
to alter the sound, or in the given case, obtain information. A DSP
is assigned to each channel. It considers a specified bucket size to
sample the audio spectrum in several frequency domains. Its col-
lected data can be polled on-demand. The underlying concepts of
this audio analysis are introduced in [BL10]. We adopted the im-
plementations from [Cla16] and [BF18], made them work together
and adapted them to our needs.

To simplify the setup and work flow for designers, we made the
functionality of the audio analysis available in UE4’s blueprints,
i.e. its visual programming environment. There, we provide a high-
level access to the music definition, beat detection, amplitude and
frequency analysis. The only necessary input for a retrieving ana-
lytical information is the channel number and the bucket size. The
received values can then be used to alter and modify the objects in
the scene or just to trigger a cut. In this context it is imperative to
prohibit too fast cutting sequences solely dependant on the music.
Cutting every second, for instance, would be quite irritating to the
viewer. Our system includes a default minimum waiting period of 3
seconds, that addresses this problem. Yet, the developer is allowed
to adjust this waiting period as he or she requires. To add some
further variability, the designer can specify a set of maximal view
durations that will be randomly applied at runtime.

3.3. CUT SYSTEM

The cut system starts as soon as supplied with the analytical data. It
considers three aspects to determine the necessary cutting param-
eters: (1) The previous cut choice, (2) cinematic principles taken
from the seminal book on film language by Arijon [Ari91], and (3)
a certain amount of randomness. First, one cutting type from the
following ones needs to be determined.

• A Direct Cut is a standard cut without any special characteristics.
• A Match Cut implies that the next view matches the current view

to some extent.
• A Contrast Cut is the opposite of the Match Cut, which means

the new view is contrasting the current one to some extent.
• A L-Cut is a standard cut, but audio-delayed. The audio of the
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EXAMPLE FOR A DUTCH ANGLE
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Figure 4: Different angles of a camera on an object in the scene.

current scene is still played while the view already cuts to the
next scene.

• A J-Cut works the other way around than the L-Cut. I.e. the
sound from the next scene is already audible, but the view is
set with a temporal delay.

• A Cut In makes the camera stay in place, but it zooms in very
strongly.

• A Cut Out opposes Cut In by strongly zooming out.

Two subsequent cuts may not be of the same type. Additionally, the
successors for Cut Ins and Cut Outs need to be the respective oppo-
sites, implementing the rules outlined by [Ari91], and the third cut
in such a sequences is restricted to the other choices above. After
the choice of the cutting type, the camera angle is chosen from the
following options (depicted in figure 4): Normal view, high-angle
shot, low-angle shot, bird’s-eye view, worm’s-eye view, and dutch
angle. As before, two subsequent angles may not be the same. In
a third step, the cutting system determines whether a dolly shot
should be used to animate the transition to the new cut, or not.

3.4. VIEW SYSTEM

The view system is responsible for (1) selecting the next Focal
Point and (2) realising the cut calculated by the cut system. In case
the cut system decided for a Cut In or Cut Out, the new Focal Point
is set to be the current one, as the location of the camera stays un-
changed. and only zooms in or out. If the cut system has chosen
a Contrast Cut or Match Cut, the choice for the new Focal Point
is made randomly between the respective candidates from the con-
figuration of the current Focal Point. For all other cut options, the
next Focal Point is selected from those whose associated audio ob-
jects is currently active, whereas highly active audio objects result
in a higher probability of selection. Thus, it is randomly selected
between all highly active objects, in case there are none, the choice
falls on one of the active ones, also at random. After the determi-
nation of the next Focal Point, its camera position and orientation
is adjusted to fit the previously selected camera angle. To obtain a
sharp image, the focus setting of the camera is adjusted, depending
on its new location and its looked-at audio object. If the cut system
has chosen a static camera, the process is finished. But if the choice

Figure 5: Screenshot from a demo movie: The tree is moved by
the wind, which is controlled by a synthesizer. The morphing cloud
reacts to a snare drum.

was to put the camera in motion, a last random selection has to be
made among all predefined dolly shots of the specific Focal Point.

4. DEMO INSTANCE

As we only started experimenting with its general idea, we tested
the framework with a very simple outdoor scene composed of ob-
jects that would usually be static. By virtue of the rhythmic input
extracted by the audio analysis, they come to life alongside some
environmental elements. Every object represents a musical instru-
ment, simulating a band performance. Whenever the specific in-
strument is particularly prominent in the song, the movie cuts to
the respective Focal Point. A tree is standing in the middle of a hilly
landscape, whose branches are set in motion by wind and small im-
pulses, causing leaves to fall down (fig. 5). The intensity of the wind
is modified by the frequency values of a synthesizer, whose ampli-
tude values in turn control two rags floating through the scenery
(fig. 6). The impulses for the tree are caused by the amplitude val-
ues of an electrical guitar, also reshaping the tree’s branches by
scaling them up and down. Additionally, the frequency values of
a second guitar are responsible for the movements of a swarm of
fireflies buzzing around a small lake. A drum kit is split into the
individual elements, which influence the scenery in different ways.
The beat of the bass drum is connected to some glossy spheres
bouncing and popping around on the lake, a cloud is listening to
the beat of a snare drum together with the frequency values of the
synthesizer and a ladder is able to alter its height contingent on the
beat of a drum kit’s hi-hat (fig. 7). Lastly, a mirror is being tilted by
the beat of a musical kick (fig. 8). This kick is also in charge of trig-
gering the cutting itself. Hereby, the scenes switch between close
and far views of the moving objects as well as a static camera and
dolly shots, due to the random choices between the valid options.
The song starts with few instruments, but more begin to play after
a few seconds. This translates to the little movement in the begin-
ning with less cuts, as there are not many active Focal Points yet.
Later, this changes to quite an energetic cutting switching between
the different the techniques, as the intensity of the music increases
more and more over time.
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Figure 6: Screenshot from the demo movie: A rag floats through
the scene, driven by the wind. The glossy spheres bounce in syn-
chronization with a bass drum.

An example rendering with a cut option we selected can be
watched here: https://vimeo.com/508517056.

5. DISCUSSION

The sample project demonstrates that the overall concept can lead
to an aesthetic result. Still, a closer look at its generated details in
combination with the underlying processes is needed to better un-
derstand the pros and cons of our proposed approach, and the capa-
bilities and limitations of the implemented framework. Currently,
it is required to include multiple cameras within the scene and to
manually set them up. It might be easier to only add one camera,
which can be displaced and manipulated throughout the recording.
But the somewhat labour-intensive initialization pays off: It allows
for highly individualised design of a story line well-aligned with
boundaries of cinematic parameters. It also results in a great replay
value as the generated movie varies at each run - respecting both
general cutting rules and the individual style introduced by the de-
signer. Yet, at this point, further explorations are required to under-
stand which design details might be automatised without loosing
desirable control or diminishing the replay value. Currently, the au-
dio analysis is limited to amplitude, frequency and beat detection.
With an increasing number of objects being animated by the mu-
sic, the dynamics of the movie would eventually be lost since then
all objects depend on the same parameters. This problem could be
solved by extracting more parameters from the audio stream such as
pitch, by introducing different random number generators (RNGs)
and storing different RNG seeds for different channels or decision
processes. Timing of the cutting process might come into conflict
with dolly shots or animations of audio objects. Especially dolly
shot interruptions are hard to cope with since they are currently
defined before playtime. For instance, an early cut in the middle
of a focus shift would be rather unpleasant. This issue could be
tackled by implementing a look-ahead for the audio analysis, so
that the system knows when the next cut will occur and select the
current cut accordingly. Furthermore, the currently deployed, great
amount of randomness may lead to somewhat sub-optimal loca-
tions of the camera. Despite cutting to a highly active Focal Point,
the adjustment of the camera to fit a chosen angle might result in

Figure 7: Screenshot from the demo movie: The ladder’s height is
changed relative to a drum kit’s hi-hat.

an odd-looking view and the focused audio object might be pre-
sented in a strange perspective. Although this could be solved by
adding more constraints on the view on some of the objects, this
in turn would interfere with the movie’s flow. As the way an audio
object cannot be foreseen, only a very far view would always frame
the action, limiting the result to fewer camera angles and cut tech-
niques. Testing and refining the framework, the distinction of low
and high activity of audio objects proofed rather practical. It allows
for dynamic prioritization of views and as the music is in charge
of the objects’ motions, the system produces very unique aesthet-
ics. Considering this observation, a continuous prioritisation might
yield further improvements.

6. CONCLUSION AND OUTLOOK

In this paper, we presented (1) an approach to automatically trans-
late music streams to an animation story line supported by cin-
ematic cutting. To implement this approach, we created (2) an
accessible framework whose code base integrates music analysis
by means of fmod and wraps low-level functionality into high-
level, visually programmable components in the Unreal Engine’s
blueprint scripting environment. Finally, we demonstrated how the
approach could drive a (3) specific artistic, music-driven movie in-
stance. With the help of with the fmod api we analyze a music
stream in real time and utilize extracted music features parame-
ters to control the behaviour of the objects in the scene as well as
trigger the cutting between views. For this, a specific cutting tech-
nique, angle and movement of the camera is chosen with regard
to common cinematic guidelines. The new view into the scene is
further dependant on the activity level of the objects.

What could boost the current system to a higher level is an ex-
tended audio system with additional descriptive parameters and live
music. The fmod software is capable of processing live input, but
the sound is completely merged into one group channel in UE4,
which would have limited the audio analysis tremendously. Further
investigations and tests on the interplay between fmod and UE4 as
well as other audio analysis platforms to solve this issue would be
beneficial. Another important aspect we plan to implement is the
look-ahead to increase predictability, which would, in turn, lead
to a clearer separation between activity levels and a better, more
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Figure 8: Screenshot from the demo movie: The mirror is tilted with
a musical kick.

thoughtful view choices. We intend to address all of this by creating
an engine plugin, which will mitigate the work load of the setup and
also simplify the process of manipulating objects by means of au-
dio information. The movie designer would not have to write code,
but could only set and weigh the respective correlations in the edi-
tor. Then, it would also be easier to test the system with movies of
different styles and scenic setups, to get an even better insight on
its artistic variations of the result. Overall, our approach has the po-
tential to extend the power of the editing process: Cutting may be
performed completely automatically and in synchronization with
the beat. Yet, individually granted degrees of stochasticity or defi-
nition of probabilistic rule-sets to implement different paths of best
practice cutting strategies can render the experience of one single
music video definition repeatedly surprising and attractive. It also
allows the designer to (automatically) provide customizations for
his or her different audiences.
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