Rasterizing and antialiasing vector line art in the pixel art style
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Figure 1: A 5-frame animation in vector form, converted into pixel art by our Superpixelator algorithm.

Abstract

Pixel artists rasterize vector shapes by hand to minimize artifacts
at low resolutions and emphasize the aesthetics of visible pixels.
We describe Superpixelator, an algorithm that automates this pro-
cess by rasterizing vector line art at a low resolution pixel art style.
Our technique successfully eliminates most rasterization artifacts
and draws smoother curves. To draw shapes more effectively, we
use optimization techniques to preserve shape properties such as
symmetry, aspect ratio, and sharp angles. Our algorithm also sup-
ports “manual antialiasing,” the style of antialiasing used in pixel
art. Professional pixel artists report that Superpixelator’s results are
as good, or better, than hand-rasterized drawings by artists.
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Generation—Bitmap and framebuffer operations;
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1 Introduction

The conventional purpose of pixels is to provide small discrete sam-
ples of a continuous signal, ideally small enough for seamless re-
construction by the human visual system. In contrast, pixel art is
a style of digital art that celebrates the aesthetics of visible pix-
els. The style developed out of necessity when early 8-bit graphics
hardware had limited resolutions and colour palettes. It remains
popular today in games, mobile applications, and graphic design —
even though these limitations are imposed artificially.

Nearly all pixel art is constructed painstakingly pixel-by-pixel, with
very little automation beyond flood fills. Automation is difficult be-
cause pixel art focuses on low resolution details which are not han-
dled well by automatic drawing tools. By using pixel-based editors,
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artists are forced to work with individual pixels instead of address-
ing higher-level problems of shape, outlines, and composition.

A natural alternative is to create pixel art using vector-based il-
lustration software. This approach enables artists to operate at a
higher level of abstraction, making tasks like animating sprites for
games much easier. But it fails to address the problem of represent-
ing vector art on a coarse pixel grid. Many standard rasterization
algorithms are available, but these are optimized for infinitesimal
pixels and produce unacceptable artifacts at low resolutions (see
Section 3).

Our research focuses on pixelation [Inglis and Kaplan 2012], a spe-
cial class of rasterization algorithms designed to respect the aes-
thetic conventions of pixel art at low resolutions. Every pixel counts
in this context, and a pixelation algorithm must therefore consider
the colour of every pixel carefully, taking into account its effect on
its neighbours. Ultimately, pixelation should mimic the pixels that
would be chosen by a human artist.

Pixel art is supported by a large online community where individu-
als regularly share their work, critique the work of others, and create
tutorials. For example, a popular tutorial by Yu [2013] (reproduced
in Figure 2) covers the cleaning, colouring, and shading steps in-
volved in developing a finished piece of pixel artwork. By studying
the work of pixel artists, and interacting with them directly, we can
articulate the conventions they follow and ideally devise algorithms
that embody those conventions.

In this paper we present Superpixelator, an algorithm for convert-
ing vector line art to pixel art. Our algorithm offers substantial
improvements over the previous Pixelator algorithm [Inglis and
Kaplan 2012] As a superset of Pixelator, Superpixelator generates
smoother pixelated curves that preserve symmetry, yielding more
faithful representations of geometric primitives. It also supports
manual antialiasing, a form of antialiasing unique to pixel art that
uses limited colours to draw clean, smooth outlines. We compare
our results to hand-drawn pixel art and line art rasterized using
existing software, and report on feedback from professional pixel
artists. They report that shapes rasterized by Superpixelator are as
good, or better, than those done hand rasterized by artists.
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Figure 2: Selected steps from Yu’s pixel art tutorial [2013], showing the evolution of a design from initial pixel line art to a finished work.

2 Related work

Rasterization is a fundamental problem in computer graphics. Bre-
senham’s algorithm is commonly used to rasterize lines and circles
without antialiasing, and has been extended to handle ellipses and
spline curves [Hearn and Baker 1986]. Recent advances in raster-
ization are focused more on improving efficiency by simplifying
calculations [Boyer and Bourdin 1999] or exploiting graphics hard-
ware [Liu et al. 2011]. Antialiasing can be used to lend rasterized
line art a smoother look. There are many antialiasing algorithms, in-
cluding supersampling, multisampling [Akeley 1993], fast approxi-
mate antialiasing [Lottes 2011], etc. Recently, Jimenez et al. [2012]
developed a technique combining morphological antialiasing with
multi/supersampling strategies to generate high quality antialiasing
with fast execution time. Lines and circles can be rasterized more
efficiently using Wu'’s antialiasing algorithm [1991a; 1991b]. Font
hinting can improve the quality of font rasterization at the level of
individual pixels, and there are automatic methods for creating and
transferring hints between TrueType fonts [Stamm 1998]. Subpixel
rendering, such as Microsoft’s ClearType, takes advantage of the
colour subpixel layout in a liquid crystal display to increase the ap-
parent resolution available for antialiasing.

With the recent resurgence of retro pixel art games, the computer
graphics community has approached pixel art as a research topic
from various perspectives. Kopf and Lischinski [2011] introduced
an algorithm for extracting a resolution-independent vector draw-
ing from a pixel art image. Gerstner et al. [2012] presented a
method for abstracting high-resolution images into low-resolution,
restricted colour pixel art output. Inglis and Kaplan [2012] devel-
oped a real-time algorithm called Pixelator for pixelating vector line
art. In a comparison with commercial software, Pixelator produced
low-resolution curves that are more visually appealing and have a
greater similarity to original vector curves. However, their algo-
rithm does not support antialiasing and it has limitations related to
smoothness and symmetry (discussed in depth in Section 3.1) that
we address in this paper.

3 Pixelating line art

Creating good pixel line art is challenging because there are many
artifacts to avoid. In raster graphics editors, any drawn shape is
immediately converted to pixels, and attempting to transform the
shape will significantly degrade its quality. For example, most
raster graphics editors draw axes-aligned geometric primitives sym-
metrically by copying pixels from one part of the shape to another,
but undesired artifacts are introduced when primitives are rotated
(Figure 3a). For vector editors, rasterizing a variety of rotated and
scaled ellipses is a good way to test for artifacts. We did this with
Adobe Illustrator, CoreIDRAW, and Java 2D, and found many cases
of asymmetric rasterized ellipses and various artifacts (Figure 4),
including: blips, missing pixels, extra pixels, and jaggies.

Blips are single pixels that stick out of smooth curves. A blip oc-
curs when a vector curve lightly grazes a column or row of pixels,
causing the pixelated curve to contain a single pixel in that column

26

or row. By repositioning the vector curve as shown in Figure 5a, the
blip can be eliminated without significantly changing the perceived
shape of the pixelated curve.

Missing pixels are gaps in a curve which should be connected, and
extra pixels are places where the curve is more than one pixel thick.
Extra pixels are the cause of three problems, blip-like pixels stick-
ing out of smooth curves, L-shaped corners where rounded corners
are preferred, and pixel clusters that make sections of the curve look
too thick and too dark.

Jaggies is a term used by the pixel art community to describe places
where a smooth curve looks jagged (not the computer graphic
meaning of staircasing). The concepts of slope order and pixel
span are required to explain Jaggies. A smooth curve has a posi-
tive slope order if its curvature is positive everywhere, and negative
slope order if its curvature is negative. If the slope is not changing
monotonically, then its slope order is ill-defined. Each pixelated
curve contains contiguous rows or columns of pixels that we call
pixel spans. We define the slope of a pixel span to be the slope of
its diagonal.

Figure 5b shows a vector curve with positive slope order pixelated
in two different ways, one of which has jaggies. The two pixela-
tions can be written as slope sequences: {%, %, 1,2,1,3,4} for the
left and {3, 3,1,1,2,3,4} for the right. The second sequence is
nondecreasing, and therefore has the same slope order as the vector
curve. In contrast, the first sequence contains a jaggie because it
does not respect the slope order. In fact, we can sort any sequence
of pixel spans by slope to obtain a new sequence of spans corre-
sponding to a jaggie-free pixelated curve. Such a curve is said to be
in sorted slope order.

We also subjected Pixelator [Inglis and Kaplan 2012] to the ellipse
test of Figure 4. We obtained results that did not have blips, missing
pixels, or extra pixels. Although the algorithm produced fewer jag-
gies than other rasterizers, jaggie removal is sometimes unsuccess-
fully. Of greatest concern is that in spite of reducing most artifacts,
shape symmetry is not preserved.

3.1 The Pixelator algorithm and its limitations

Our aim is to build on Inglis and Kaplan’s [2012] Pixelator algo-
rithm. In this section we describe it in more detail, note its limita-
tions, and discuss how it can be improved.

Figure 6 illustrates the algorithm steps. Each vector path is first
split it into monotonic curve segments by dividing at local extrema
points and non-differentiable points (Figure 6a). Then, each curve
segment is realigned by shifting its endpoints to the nearest pixel
centre (Figure 6b). The realignment ensures that the resulting pix-
elation does not have blips, since all the local extrema points are
now on pixel centres. Next, a preliminary rasterization is applied
to the curves (Figure 6c). At this point, the pixelated curves are
mostly artifact-free, but they may still contain jaggies. Pixelator
then attempts to remove jaggies in each pixelated curve by sorting
its pixel spans by slope (Figure 6d). Finally, the results are merged
to form a completed pixelated path.
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Figure 3: Rotating an ellipse in (a) raster and (b) vector editors.
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Figure 4: Artifacts in pixel line art: (a) blips, (b) missing pixels,

(c) extra pixels, and (d) jaggies.

Figure 5: (a) Blips can be removed via curve realignment. (b) Jag-
gles can be removed by rearranging pixel spans.
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In some cases, sorting can lead to an inaccurate pixelated represen-
tation of the vector curve. For example, Figure 7a shows a pixelated
curve before and after slope sorting. Since the original curve con-
sists mostly of pixel spans of slopes 1 and 2, sorting creates a signif-
icant deviation between the pixelated curve and the original vector
curve, while also producing a noticeable kink in the curve. Due
to this problem, Pixelator always calculates the maximum devia-
tion between the two curves, and if the value exceeds the height of
one pixel, sorting is not applied. In addition, Pixelator only applies
sorting to curve segments with well-defined slope orders. Unfor-
tunately, curve segments with inflection points should be sorted as
well (Figure 7b).

4 Algorithm summary

Superpixelator significantly improves Pixelator by introducing
bounding box adjustment to preserve symmetry and other shape
properties, replacing sorting with partial sorting to increase curve
smoothness while limiting the amount of deviation, and adding
manual antialiasing to draw clean antialiased paths.

Superpixelator begins by preprocessing the input vector path, which
involves adjusting the path by its bounding box (Section 5), splitting
the path into curve segments and then realigning each segment by
shifting endpoints. The splitting step is modified so that all the
curve segments have a well-defined slope order (see Section 6). At
this point, the algorithm diverges depending on whether the shape
will be aliased or antialiased.

For aliased paths, Superpixelator rasterizes each curve segment and
improves rasterization quality by partial sorting (Section 6). Unlike
the complete sorting step in Pixelator, partial sorting tries to maxi-
mize smoothness while minimizing deviation from the vector curve.
As a result, jaggies are almost entirely removed and the pixelated
curve remains a close approximation of the vector curve. Once all
curve segments are pixelated, the pixels are merged into a complete
pixelation for the input path.
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Figure 6: In Pixelator, a path is first (a) split into curve segments.
Each curve segment is then (b) shifted to align better with the pixel
grid and (c) rasterized. (d) Finally, the pixel spans are sorted to
remove jaggies.
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Figure 7: (a) Sorting may remove jaggies, but the resulting pix-
elated curve may deviate significantly from the vector curve. (b)
Curves with inflection points should also be considered for jaggie
removal.
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For antialiased paths, Superpixelator uses a method that closely ap-
poximates manual antialiasing (Section 7). Manual antialiasing is
what pixel artists do by hand; it looks cleaner than regular antialias-
ing and uses fewer colours. Our algorithm draws a thinner path via
supersamping, reduces the colour palette, and normalizes opacities
to maintain a constant perceived stroke thickness.

5 Preserving symmetry

5.1 Bounding box adjustment

Pixelator does not preserve the overall symmetry of a path because
it splits a path into curve segments and shifts them separately. For
example, it would split the rotated ellipse in Figure 8a into four arcs
and shift each one by its endpoints for better grid alignment, result-
ing in an asymmetric pixelation (see Figure 8b) even though the
original vector path has 180° rotational symmetry about its centre.

To preserve symmetry, let us examine the overall effect of shifting
a path’s curve segments. The shifting step moves all the critical
points—including global extrema—to the closest pixel centres. The
new bounding box of the shifted path therefore has corners that lie
on pixel centres, as shown in Figure 8c. Knowing this, we can solve
the asymmetry problem by first shifting the entire path to the new
bounding box, then ensuring that all subsequent steps are performed
symmetrically about the box’s centre. Operations such as rounding
and computing the floor of a number should be made symmetric,
and any point that lies on either the horizontal or vertical central
axis should not be shifted. Figure 8d shows the symmetric pixelated
ellipse created as a result of these changes.

5.2 Preserving other global properties

Preserving symmetry is not always the top priority. Consider the
star-shaped path in Figure 9a, for instance. If we shift to the nearest
bounding box, the star will be centred horizontally between two
columns of pixels (see Figure 9b), causing the topmost vertex to be
drawn as a 2 x 2 pixel cluster.
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Figure 8: (a,b) Shifting curve segments causes paths to be drawn
asymmetrically. (c,d) Adjusting a path’s bounding box and specify-
ing the drawing order can help preserve symmetry.

We want to keep the acute angle looking sharp by representing it
as a single pixel. We can shift the bounding box by half a pixel
so that vertex lies on a pixel centre. If we decide to preserve sym-
metry, then the width of the shifted star (outlined in red in Fig-
ures 9c and 9d) would be 12 or 14 pixels; in either case, it would
differ from the original 13-pixel-wide star by one pixel. This ex-
ample demonstrates the difficulty in choosing the most important
properties to preserve, whether they are symmetry, angle sharpness,
or size.

We can still adjust bounding boxes, but we need to find the optimal
bounding box that trades off between several desirable geometric
properties. We consider the following properties: symmetry, di-
mension (i.e., width and height), absolute position, sharpness of
acute angles, and aspect ratio. We assign a cost to each possible
bounding box in terms of these properties and search for a bound-
ing box that minimized the cost.

Figures 10a and 10b show respectively the bounding boxes be-
fore and after adjustment, with various positions and lengths la-
belled. Note that the box is originally centred on (z¢,y.) =
(Tfz2 sitv2) byt after the adjustment, (2., y..) is not necessar-
ily the box’ s centre because we want to explore asymmetric options
as well.

Using the values labelled in Figure 10, we define the cost of the
new bounding box as a weighted sum of costs due to symmetry
(Cs), dimension (Cy), position (Cp), acute angles (C,), and aspect
ratio (C.):

Ciotal = ksCs+kaCa+ kpCp + kaCo + krCry (1)
where each component is defined as

Cs _ mé'iX (1{}1,15)2) + max (hl,hg) (2)
min (@1,w2)  min (h1, ha)’

Ca lw — | + |h — hl, (3)

Cp |T1 — Z1| + |Te — Te| + T2 — T2| + 4)
lyr — G1] + [ye — Je| + |y2 — G2l ®)

Co = #{acuteangles withe = x.} -1 czy + (6)
#{acute angles with y = y.} - 1y ez, @)

Cr = Lpwpaviy- (8)

The symmetry term C's tries to make the left and right halves of
the bounding box the same width, and the top and bottom halves
the same height. The dimension term Cy measures the change in
width and height between the old and the new bounding boxes. The
position term C), tracks the change in the positions of the sides and
the central axes of the bounding box. The acute angle term C,
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Figure 9: (a) Pixelating a shape symmetrically is not easy. It can
lead to (b) pixel clusters, or make the shape (c) too narrow or (d)
too wide.
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Figure 10: Bounding box adjustment helps preserve symmetry and
other properties of the vector shape after pixelation. The bounding
boxes (a) before and (b) after the adjustment as labelled as shown.

counts the number of acute angles that lie on the central horizontal
or vertical axes. The aspect ratio term C). measures the change in
aspect ratio. In most cases, this property is not crucial and is already
taken care of by the dimension term C4. However, for shapes with
square bounding boxes (e.g. circle), it is important to preserve the
aspect ratio exactly. Therefore, we set C,. = 1 if a square bounding
box becomes non-square, and 0 otherwise.

Through trial and error, we arrived at the following set of weights:
ks = 10000, kq = 40, k, = 1, kg = 10, and k, = 1. These
values indicate that symmetry is still considered most important but
other factors are used as tie breakers. To keep the algorithm fast,
we only test bounding boxes that are within one pixel of the original
bounding box on all four sides. As for the shifted centre (x7, y.), it

must be within 0.5 in both z and y of (22772, ¥1%¥2)),

6 Curve smoothing via partial sorting

After adjusting a path to preserve global properties, the next step is
to pixelate it and remove any remaining artifacts. In this section, we
describe how to split a path into curve segments with well defined
slope orders, and how to use partial sorting to remove jaggies in
a pixelated curve while minimizing its deviation from the vector
curve.
6.1 Splitting at inflection points

A curve segment has a well-defined slope order only if it has mono-
tonically changing slope. We can divide a path into such curve
segments by splitting it at all non-differentiable points, local ex-
trema, and inflection points. However, splitting at inflection points
may cause a problem later in the shifting step. Figure 11a shows an
example of a path divided at an inflection point into two curve seg-
ments. When each curve segment is shifted to make its endpoints
line up with pixel centres, as shown in Figure 11b, the tangent
slopes on either side of the inflection point are scaled differently,
resulting in a slope discontinuity.



Figure 11: (a) A curve is split into two at an inflection point. (b)

Shifting each curve’s endpoints to pixel centres creates a slope dis-

continuity at the inflection point. (c) Adjusting the tangent vectors

fixes this problem.
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Figure 12: 7o find a neighbour of a pixelated curve, either (a) shift
a pixel, (b) split a pixel into two, or (c) merge two pixels into one.

To fix the slope discontinuity, we need to adjust the tangent slopes
slightly without changing the curves too much. Let the two tangent
vectors be vy and v2. We replace them with new tangent vectors

— _lvall _ — _lv2ll _
1= Ty —or]] (01 Uz) arhld W2 = o, 2] (v2 — v1). These two
vectors point in opposite directions, and have the same lengths as

the original vectors (see Figure 11).

w

6.2 Partial sorting

Next, we rasterize a curve segment by approximating it as a piece-
wise polygonal path and applying Bresenham’s line algorithm. The
pixelated curve will not have any blips or missing pixels, but it may
contain extra pixels and jaggies. An extra pixel is one that has both
horizontal and vertical neighbours, since it can be removed with-
out disconnecting the pixelated curve. We find all such pixels and
remove them in decreasing order of their shortest distance to the
vector curve.

To remove jaggies, again we use an optimization approach. For
each pixelated curve, we define a cost based on its smoothness and
deviation from the vector curve, then try to minimize this value.
We call this process partial sorting because the resulting pixelated
curve will be only partially sorted by slope, but it will be a more
faithful representation of the vector curve than a fully sorted pixe-
lated curve.

The cost of a pixelated curve considers positional deviation D,
slope deviation Dj, and the sortedness of the pixel spans S. To get
positional deviation D,,, calculate the shortest distance between the
vector curve and each pixel, then take the maximum of these values.

As for slope deviation D, we know that each pixel span corre-
sponds to a line segment that approximates a section of the vector
curve. So we compare them by taking angle difference between
their slopes; the slope of the pixel span is the slope of its diagonal,
and its corresponding slope on the vector curve is the tangent slope
at the point closest to the pixel span’s centre. D; is defined as the
maximum of these angle differences.

Sortedness S is a measure of smoothness. It is defined as the num-
ber of pairs of pixel spans that are in sorted order. The cost C is
given as a weighted sum of the three quantities C' = 3D, + 3Ds +
S. The weights are determined empirically and intended to maxi-
mize visual appeal.
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In practice, we want the algorithm to run in real time, and finding
the global minimum for the cost would be too slow. Instead, we use
a greedy approach: given a pixelated curve, check its neighbours
and accept the one with the lowest cost, if has a lower cost than the
current pixelation; repeat until convergence. To find a neighbour
for a pixelated curve, either shift a pixel (see Figure 12a), split a
pixel into two (see Figure 12b), or merge two pixels into one (see
Figure 12c), while ensuring that the pixel spans remain connected.
Comparing two neighbours requires only calculating their differ-
ence in cost, which is fast because it involves only the modified
pixels. We tested a number of shapes smaller than 50 x 50 pixels,
and in all cases, the algorithm converged within 10 steps.

7 Manual antialiasing

Certain shapes just do not look good as pixel art. For example, a line
with slope 2/3 cannot be drawn without jaggies (see Figure 13a). In
these cases, we need to resort to antialiasing to reduce the impact
of visual artifacts. Pixel artists often talk about two types of an-
tialiasing: automatic and manual. Automatic antialiasing is what
image editors do when rasterizing a vector image, while manual
antialiasing is what pixel artists apply to their art to soften jaggies.
There are several differences between automatic and manual an-
tialiasing. Automatic antialiasing is an approximation of the pixel
coverage of the vector image, and can be calculated using various
antialiasing algorithms, such as supersampling. It does not limit
the number of colours used and the result can often look blurry (see
Figure 13b). In contrast, manual antialiasing is done by hand using
a limited palette (see Figure 13c). When applied to line art, man-
ual antialiasing creates a cleaner look because the lines look thinner
and sharper.

Our algorithm mimics manual antialiasing by drawing paths with
less blur using a limited palette. Let us assume that we are given a
black path of unit thickness, and are asked to pixelate it on a white
background using four shades of grey. As summarized in Section 4,
we first preprocess the path by adjusting the bounding box, splitting
it up and shifting each curve segment. Then manual antialiasing
is applied in four steps. In the discussion that follows, we speak
interchangeably of the grey level of a pixel and its opacity.

First we select parts of the path that do not require antialiasing. In
all the pixel art examples we have analyzed, lines that are horizon-
tal, vertical, or of slope £1 are almost never antialiased. Therefore
we do the same in our algorithm.

Next, we draw the remaining path with antialiasing. To avoid blur-
riness, we can rasterize a thinner version of each curve via super-
sampling. For example, Figure 14a shows a curve rasterized with
thickness 0.5; the numbers the figure represent pixel opacity values
in the range [0, 100]. Notice that the resulting pixelated path looks
too light in colour; it cannot be fixed simply by doubling the opaci-
ties because that makes the overall line thickness look uneven. We
need some way of normalizing the opacities so that the pixelated
path looks one pixel thick everywhere.

Normalization can be done using the idea of apparent thickness de-
scribed in Gower’s antialiasing tutorial [2013]. In a pixelated path,
we can pick a pixel, calculate the total opacity in that row and col-
umn, and whichever value is less, divide it by 100 to get the ap-
parent thickness at that pixel. The reason the pixelated path in Fig-
ure 14a looks thinner than one pixel is because its apparent thick-
ness is less than 1 everywhere. Although this measure of apparent
thickness may not be exactly how we interpret a pixelated image, it
works quite well for the purpose of drawing pixel art, and we use it
to adjust path thickness during antialiasing.
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Figure 13: A line of slope 2/3 with (a) no antialiasing, (b) auto-
matic antialiasing, and (c) manual antialiasing.
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Figure 14: We apply manual antialiasing by (a) rasterizing a thin-
ner path, (b) normalizing opacities, (c) reducing colour count, and
(d) renormalizing opacities.

Figure 15: (a) A pixel artist drew straight lines with regular pixel
patterns. (b) Superpixelator did not.

To normalize the path thickness in Figure 14a, let 0;; be the original
opacity for the pixel of row ¢ and column j. Then for each pixel, we

scale its opacity by ¢/ min (ZZ 0ijs D5 Oij), where ¢ is the vector
path thickness. Figure 14b shows the normalized path.

To reduce the colour count, we quantize each pixel’s colour to the
closest match in a given palette. Figure 14c shows the resulting
path. To ensure the path thickness has not changed too much, we
apply normalization again, allowing pixels to be replaced only by
colours in the limited palette. Figure 14d shows the final pixelated
path.

Different results are produced depending on how thin a path we
rasterize initially. The thinner the path, the less antialiasing will
be applied, which means the path will look sharper but also more
jagged. Based on samples of pixel art with antialiasing, we rasterize
paths with a thickness of 0.75.

If a path contains lines that are horizontal, vertical, or of slope 1,
then it will be partially pixelated without antialiasing. As a result,
the pixelated path will look uneven in thickness because antialiasing
makes a path look thicker, even with opacity normalization. For
such a path, we apply the initial rasterization at 0.5 thickness so
that the transition from an aliased to an antialiased segment is less
noticeable.

8 Evaluation of Results

Our results are evaluated in two stages with two professional pixel
artists. First, both artists compared the pixelation quality of a set of
shapes rasterized by Superpixelator, current state-of-the-art algo-
rithms, and hand-rasterized by one of the artists. Second, one of the
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artists used Superpixelator as implemented in a full-featured pixel
art image editor and evaluated the usability and pixelation qual-
ity. We were fortunate to have experienced pixel artists participate,
Sven Ruthner' and eBoy’. Ruthner has been practicing pixel art pro-
fessionally for about a decade, and is well-known within the pixel
art community. eBoy is an internationally renowned pixel art group
specializing in detailed isometric cityscapes for advertisements.

8.1 Comparison of shapes pixelation quality

To facilitate direct comparison of shapes, we selected a set of 24
common vector geometric primitives. The set comprised six rotated
ellipses, six rotated rectangles, six rotated rounded rectangles, and
six stars (from 3-pointed to 8-pointed). The shapes are deliberately
not aligned with the pixel grid to make the pixelation task more
challenging.

We rasterized these shapes using Superpixelator, Pixelator, Corel-
DRAW, Adobe Illustrator, and Java2D. Note that Pixelator is the
only rasterizer that does not support antialiasing. For rasterizers
that support antialiasing, we want to create a fair comparison by
keeping the number of colours the same. Since Superpixelator uses
five fixed shades of grey, we apply nearest-neighbour palette re-
duction to the other antialiased results so that they use the same
palette. To compare these results to actual pixel art, Ruthner raster-
ized all 24 shapes by hand with and without antialiasing. To get a
sense of how much time is involved, Superpixelator took on average
450ms without antialiasing and 950ms with antialiasing. Java2D
took about 70ms both with and without antialiasing. Ruthner spent
approximately seven hours on the antialiased shapes and one hour
on those without antialiasing.

The complete results can be found on our project website’, under
Supplementary Material. However, due to space constraints, only
a subset of the results are shown in Figure 16. We chose to com-
pare Superpixelator to Java2D because Java2D’s results contain less
artifacts than those of CorelDRAW and Illustrator, and unlike Pix-
elator, it supports antialiasing which can be compared to Superpix-
elator’s manual antialiasing.

For aliased shapes, both artists agree that Superpixelator’s results
look significantly better than those of the other rasterizers. Our
algorithm correctly identifies and removes many artifacts created
by the current state-of-the-art rasterizers. eBoy commented that
straight lines should be drawn with more regular pixel patterns. As
shown in Figure 15, the edges of the fifth rounded rectangle cannot
be drawn without jaggies, but even so, drawing them with a repeat-
ing {1, 1, 2} pixel span pattern is still preferable to a non-repeating
pattern.

According to Ruthner, our aliased shapes are very solid representa-
tions and as good as the work of any pixel artist. Compared to the
hand-rasterized versions, Ruthner believes Superpixelator actually
captured some aliased shapes more faithfully (e.g., the third and
fourth rectangles). However, we noted a few subtle differences. On
the 4-pointed star, the artist drew obtuse angles with L-shaped cor-
ners to make them less rounded, whereas Superpixelator avoided
such corners. On the 6-pointed star the Ruthner’s version is sym-
metric, whereas Superpixelator sacrificed symmetry for accuracy.

For the antialiased shapes, in some cases Superpixelator’s results
look similar to the Ruthner’s. We made the same choice as the pixel
artist to draw certain parts without antialiasing. Ruthner feels that
some of our shapes, especially the stars, may be a little too dark and

'ptoing.blogspot.ca
zhello.eboy.com
3g00.91/4JJHu


ptoing.blogspot.ca
hello.eboy.com
http://goo.gl/4JJHu

RSN SIS
o AT i AN TN
;%:]E:JC?;QJ%% DE::JCDQ%%
A< L7 IR S I A>T SR 33t
ESSSNEEESN
([ T
[ [n]eslaoIOVIN N [an [an TS IS TN AN
AT i S A T IR e Rt
OOOOQVOODTSITOO O
T T VAN A S IS TAT T S
OO OHOO( OGO
A RO E RS A RO SR

Figure 16: Vector shapes rasterized without and with antialiasing by Java2D, Superpixelator, and a professional pixel artist (Ruthner).

(a) Superpixelator result

ngIng

(b) Adobe Illustrator result

Figure 17: Vector line art rasterized two different way, with red boxes indicating problematic areas.

too strong on the antialiasing. However, he noted that it may be a
stylistic choice, as some of his hand-drawn shapes may also appear
too light. Pixel artists also tend to apply antialiasing with regular
pixel patterns, as shown in Figure 15. Not only does it create a more
consistent look, but it also adds a human aspect to the artwork.
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eBoy believes that Superpixelator’s antialiasing is superior to that of
other rasterizers. However, he feels the aliased slope +1 lines look
noticeably thinner compared to everything else. We believe this is
a matter of taste, as some artists (such as Ruthner) also choose not
to antialias slope %1 lines.



8.2 Feedback on the pixel art editor

Our goal in the second stage of the evaluation is to see how the
algorithm performs in a realistic usage setting. We developed a
pixel art editing tool which features the Superpixelator algorithm.
The editor supports raster and vector layers. Artists can draw and
transform vector line art on vector layers and see it pixelated in real-
time using Superpixelator. The editor provides tools for drawing
Bézier splines and geometric primitives, which can be transformed
via translation, rotation, and scaling. The raster layers enable pixel-
level details to also be added. We gave the tool to Ruthner and
asked him to comment on the experience of using it to draw pixel
art, and the quality of pixelation.

Ruthner found that although the shapes are drawn nicely, the fact
the vertices do not always snap to the nearest pixel can be frustrat-
ing. This is a result of Superpixelator optimizing across various
quality measures, but this comment suggests that a closer corre-
spondence between vector shapes and pixelated shapes is desired
during real-time editing. Ruthner also asked for more antialiasing
support. For example, a path is often at the boundary between two
regions of different colours. He said it would be helpful to be able
to choose which side of a path to antialias. Overall, he believes
that integrating our algorithm into a pixel art editor will be of great
benefit for production work when working under a deadline.

8.3 Discussion

Our evaluation suggests that Superpixelator is better than other ras-
terization techniques for pixelation, but it is has limitations. To il-
lustrate this, we created a vector line drawing of a walk-cycle (Fig-
ure 1a) and contrast the results when rasterized with Superpixelator
and Adobe Illustrator (Figure 17). Superpixelator produces fewer
artifacts than Illustrator, but important for sprites, the pixelations
are also more consistent. For example, in the first three frames, the
man’s head (including hat, hair, and face) is simply translated, but
[lustrator rasterizes it in three different ways.

Superpixelator’s results are not perfect, however. Since our algo-
rithm pixelates each path separately, sometimes it encounters pixel
clusters where two pixelated paths come into contact. For future
work, we will consider the problem of arranging a collection of in-
teracting pixelated paths to minimize such artifacts.

9 Conclusion and future work

Superpixelator is a pixelation algorithm that rasterizes vector
shapes in a pixel art style. Shape properties are preserved by ad-
justing the bounding box to an optimal configuration. Curves are
drawn by applying partial sorting, which considers both smoothness
and deviation. Manual antialiasing gives pixelated paths a cleaner
and smoother look using a limited colour palette. Pixel artists pre-
fer Superpixelator to other rasterization algorithms, and believe our
algorithm correctly mimics what pixel artists do.

For future work, we would like to pixelate an entire vector line
drawing more effectively by considering relationships between the
shapes. Currently, Superpixelator treats shapes individually, so
when merging the resulting pixels, some new artifacts can emerge.
Finding a method to rearrange shapes to avoid these inter-shape
conflicts while preserving the overall topology of the drawing is an
interesting problem. It may also be possible to remove or simplify
certain features to make an image more suitable for a given resolu-
tion. Such a tool would be immensely useful for icon design and
sprite creation, where it is often necessary to represent an image at
different sizes with varying levels of abstraction.
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