
Hierarchical Data Representations Based on
Planar Voronoi Diagrams

Shirley Schussman, Martin Bertram, Bernd Hamann, and Kenneth I. Joy

Center for Image Processing and Integrated Computing (CIPIC),
Department of Computer Science, University of California at Davis

Davis, CA 95616-8562, USA
{schussms, bertram, joy, hamann}@cs.ucdavis.edu

Abstract. Multiresolution representation of high-dimensional scattered
data is a fundamental problem in scientific visualization. This paper in-
troduces a data hierarchy of Voronoi diagrams as a versatile solution.
Given an arbitrary set of points in the plane, our goal is the construction
of an approximation hierarchy using the Voronoi diagram as the essential
building block. We have implemented two Voronoi diagram-based algo-
rithms to demonstrate their usefulness for hierarchical scattered data
approximation. The first algorithm uses a constant function to approx-
imate the data within each Voronoi cell, and the second algorithm uses
the Sibson interpolant [14].

1 Introduction

This paper presents a new solution for constructing multiresolution data repre-
sentations: data hierarchies based on Voronoi diagrams. This approach is mo-
tivated by the need to interactively explore very large data sets that consist of
scattered or arbitrarily gridded data. A hierarchy of Voronoi diagrams is a nat-
ural solution for a number of reasons. First, Voronoi diagrams define a “natural
mesh” for scattered data, data without explicit point connectivity. Second, point
insertion and deletion operations for Voronoi diagrams are expected constant-
time operations [10, 3]. In addition, Voronoi cells can be sorted in depth in linear
time, which is important for volume visualization, and Voronoi diagrams can be
extended to n dimensions. Although the Voronoi diagram’s dual–the Delaunay
triangulation–has the same properties, the Voronoi diagram provides a more
intuitive tessellation.

2 Related Work

A number of approaches have been developed during the past two decades to
visualize scientific data that is scattered [5] or defined on very large and often
highly irregular grids. The most common methods for hierarchical data repre-
sentations are based on mesh reduction. These techniques associate a mesh with



the data sites, apply various reduction techniques to the mesh, and use reduced
meshes as basis for visualization.

Several data decimation and hierarchical schemes have been developed over
the past few years by the computer graphics and visualization communities.
Schroeder et al. [13] and Renze and Oliver [12] have developed algorithms that
simplify a mesh by removing vertices. Removing a vertex creates a hole in the
mesh that must be re-triangulated, and several strategies may be used.

Hoppe [7, 8] and Hoppe and Popović [11] describe a progressive-mesh rep-
resentation of a triangle mesh. This is a continuous-resolution representation
based on an edge-collapse operation. The data reduction problem is formulated
in terms of a global mesh optimization problem ordering the edges according to
an energy function to be minimized. As edges are collapsed, and the priorities
of the edges in the neighborhood of the transformation are recomputed. The
result is an initial coarse representation of a mesh, and a linear list of edge-
collapse operations. Garland and Heckbert [6] utilize a different strategy, based
on quadratic error metrics for efficient calculation of a hierarchy. Hoppe [9] has
extended this method to multidimensional meshes with appearance attributes.

Trotts et al. [17, 16] and Staadt and Gross [15] have extended the edge col-
lapse paradigm to tetrahedral meshes. Cignoni et al.[1] also treat the tetrahe-
dral mesh problem. They use a top-down Delaunay-based procedure to define
a tetrahedral mesh that represents a three-dimensional set of points. The mesh
is refined by selecting a data point whose associated function value is poorly
approximated by an existing mesh and inserting this point into the mesh. The
mesh is modified locally to preserve the Delaunay property.

This paper presents a new technique that produces a hierarchy of Voronoi
diagrams. These diagrams can be used to approximate massive data sets by uti-
lizing functional approximations over the Voronoi cells. We generate a hierarchy
by inserting points into the Voronoi diagram that represent the largest error in
individual cells. We construct two interpolation methods, one based on constant
functions and the other one based on the Sibson interpolant [?,4]. We discuss
their advantages and disadvantages.

Our algorithm is a top-down approach that produces a hierarchy of Voronoi
diagrams, where each diagram has an associated approximation that is within
a certain threshold of the original data. The error calculations are local, which
makes the algorithm fairly efficient. Our algorithm utilizes only the original data
points, which allows for a very compact representation.

3 Voronoi Hierarchies

A Voronoi hierarchy consists of a set of Voronoi diagrams and interpolating
functions defined on the Voronoi diagrams that approximate a given data set
at different resolutions and qualities of approximation. Any implementation re-
quires methods for selecting points from a given finite data set, choosing an
interpolant for each Voronoi cell, and choosing an error metric to determine the
overall accuracy of each level in the Voronoi hierarchy.



Fig. 1. Example of vertex insertion. Black lines: current Voronoi diagram; black poly-
gon: convex hull of point set; grey region: Voronoi cell with maximal error; grey point:
vertex pcj with maximal error εmax; grey lines: Voronoi cell to be inserted.

3.1 Refinement of a Voronoi Diagram

Given a data set D = {p1, . . . , pn} and n associated functions values f1, . . . , fn.
We define a sequence of Voronoi diagrams V n0 , V n1 , . . . , V nh , where each V i is
defined by i points selected from D. The initial Voronoi diagram V n0 is defined
by the n0 points of D that lie on the boundary of the minimal point set defining
the closed boundary polygon of the convex hull of D.

A Voronoi diagram, V nk , is refined by inserting additional data points of D
into the Voronoi diagram in cells of high error as is shown in Figure 1. More
specifically, a set of Voronoi cells with high error is identified, and a point is
inserted into each cell cj in that set. The error εcj is calculated using the L1

norm, an average of the error over all ncj data points of D lying in cell cj . We
define the error of cell cj as

εcj =
1
ncj

∑
pi∈cj

‖f(cj , pi)− fi‖. (1)

where f(c, p) is used to represent an interpolant over cell cj containing pi and
where fi denotes the associated function value at pi. Once εtj is calculated, it
is compared with some threshold value to determine whether or not it belongs
to the set of cells to be refined. It is convenient to determine the threshold as a
percentage of the average global error εavg, which we define as

εavg =
1
n

nk∑
j=1

∑
pi∈cj

‖f(cj , pi)− fi‖. (2)

Once the set of cells to be refined is identified, a point pcj ∈ D is inserted
into each cell cj . Ideally, pcj would define a cell that would eliminate or at least
minimize the error in the resulting local cell configuration. Rather than searching
exhaustively for the ideal point, we simply choose the point pcj in cj with the
highest error εmax, where

εmax = max
pi∈cj

‖f(cj , pi)− fi‖. (3)



3.2 Constructing the Hierarchy

The following pseudocode describes the basic algorithm for generating the hier-
archy of Voronoi diagrams.

Algorithm: Voronoi Hierarchy Construction:

Input:

• Set of n points pi = (xi, yi) and associated scalar or vector function values
fi, i = 1, . . . , n
• Number of levels, h, to be calculated and error tolerances for all levels, called
εk, k = 1, . . . , h

Output:

• Set of h Voronoi diagrams, where the global error associated with each
Voronoi diagram V nk is smaller than the level-specific global error tolerance
εk

Steps of the Algorithm:

• Determine minimal point set defining boundary polygon of convex hull of
given points.
• Create initial Voronoi diagram for this minimal point set.
• Compute global approximation error for initial Voronoi diagram, called V n0 .
• Assuming that the global approximation error of V n0 is larger than ε1, de-

termine a set of cells in V n0 with high error.
• For each cell in this set, choose an appropriate data point in D that lies in

it and update the diagram accordingly.
• Check whether global approximation error of refined Voronoi diagram still

exceeds ε1.
• Continue process of point selection and insertion until diagram’s global error

approximation is smaller than ε1; call this Voronoi diagram V n1 .
• Construct Voronoi diagrams V n2 , . . . , V nh in the same manner.

3.3 Point Insertion and Selection

One reason Voronoi hierarchies are a general and suitable form for multiresolu-
tion representations is that there are multiple ways to choose points for refine-
ment. Rather than exploring all possibilities, which is a research topic in its own
right, we developed the method described in Section 3.1. This method is de-
signed to be fast, to refine Voronoi diagrams adaptively, and to quickly capture
patterns in the underlying data. It can also be extended to higher dimensional
domains, as can be seen by all equations.

The method of point insertion described in Section 3.1 refines a Voronoi
diagram in a way that captures high-gradient regions and discontinuities very
early in the refinement process. The point insertion strategy detects “extreme



α 0
α 1

α 2
α 3

α 4

c0 c1

c2

c3

c4

Fig. 2. Example of Sibson interpolant. Black lines: current Voronoi diagram; ci: cells in
current Voronoi diagram; grey point: simulated insertion point; grey region: simulated
cell resulting from point insertion; αi: regions where simulated cell overlaps ci

values” first, since εmax is always the maximum or minimum function value in a
cell cj . If the point pj defining cj was defined by a maximum value in a previous
iteration, then pcj is a minimum value and vice versa.

A problem arises when there are multiple points in cell cj with the same
maximal value εmax. In this case, a random point is selected from the set of
candidates for insertion. Random selection is crucial in this context, as the order
of indices of the points in D should not bias point insertion.

Selecting an appropriate threshold value to determine which cells should be
refined is another issue. As stated in Section 3.1, if a cell error εcj is greater than a
threshold value, the cell should be refined. In the context of data approximation,
high threshold values are good since only areas of high error will be refined.
Unfortunately, it is difficult to determine a good threshold value for an arbitrary
data set. Another approach is to only insert a point in a cell with maximal error.

3.4 Interpolation Functions

In principle, any function that interpolates values at the cell centers can be
used. We implemented two interpolants for comparison, a piecewise constant
and the Sibson interpolant The strengths and weaknesses of both interpolants
are compared.

Using a constant value per cell, where the value is that of the defining point
for the cell, is a simple and efficient interpolant. The constant function can be
rendered quickly, which means that more data points can be rendered in the
same amount of time. A piecewise constant interpolant representation permits
the representation of discontinuities, but cannot represent smoothly varying data
well.

The Sibson interpolant is a smoothly varying function that smoothly rep-
resents the underlying data. The Sibson interpolant is based on blending the
function values fj associated with the points defining a Voronoi diagram. The re-
sulting interpolation defines a smooth function that is C1-continuous everywhere
except at the points themselves. The interpolating function f(p) is evaluated at a



(a) (b)

(d) (e)

Fig. 3. (a) Piecewise constant function used to evaluate analytical function with 270
points; (b) Sibson’s interpolant used to estimate same function with 270 points; (c)
and (d) show corresponding Voronoi meshes for (a) and (b), respectively

point p by “simulating its insertion” into the Voronoi diagram, without actually
changing the Voronoi diagram, and by estimating the areas aj cut away from
Voronoi cells cj in a local neighborhood. The value of the Sibson interpolant at
p is defined as

f(p) =

∑
j ajfj∑
j aj

,

which is illustrated in the Figure 2.

4 Results

We present the results of the constant function and Sibson interpolant based
algorithms for three data sets shown in Figures 3, 5 and 6, along with their
numerical performance data in Table 1. We also show a hierarchy using the
Sibson interpolant in Figure 4. All of the input data sets are defined on a 250x250
uniformly spaced rectilinear grid representing color and grey scale images.

The first greyscale data set, see Figure 3, was generated by evaluating the
function

ω(x, y) = sin(x2) sin(y2), x, y ε [0, 4] .

Although both algorithms pick up the pattern quickly, the Sibson interpolant
obtains better results because it can represent smooth functions well.

The remaining data sets are color images produced by the Hubble Space
Telescope, courtesy of NASA. Figure 4 shows a Voronoi hierarchy with four
levels. The basic pattern is represented well with only 100 points, as is shown
is Figure 4(b). Successive levels refine the center and represent additional stars.



Piecewise Constant Sibson Interpolant
Dataset No. Tiles

L1 Error [%] L2 Error [%] L1 Error [%] L2 Error [%]

ω 270 7.1 21 2.9 3.4

“Cat’s Eye” 580 2.3 8.3 2.3 2.9

620 8.2 19 5.3 6.4
“Cygnus Loop”

1740 5.2 11 4.4 5.3

Table 1. Numerical approximation results.

Figure 4(e) shows a good approximation of the original data set with 2000 points,
which is only three percent of the original data points.

Figure 5 shows the effectiveness of both algorithms on the Cat’s Eye Nebula
data set using 580 points. Although they obtain the same numerical performance
for the L1 norm, the constant function algorithm detects more features. Namely,
it detects the second elliptical path in the center, the one whose primary axis
has a negative slope. As is seen from the Voronoi cells in Figure 5(e), the Sibson
interpolant algorithm has fewer cells in that region. The Sibson interpolant, a
smooth interpolant, places its points around discontinuous regions, which is the
only way the Sibson interpolant can represent discontinuities.

Another data set is an image of the Cygnus Loop Nebula, see Figure 6.
Although the Sibson interpolant is better visually and numerically, it depicts
fewer stars than the constant function algorithm. The lack of stars results from
the point insertion technique. Instead of using a threshold value for the entire
data set, like the constant function algorithm, it only inserts a point into the
cell with the worst error before it updates the Voronoi diagram. Since the cells
with missing stars never counted at the worst cell, they were never refined.

5 Conclusions and Future Work

We have introduced a method for the hierarchical, gridless representation of pla-
nar scattered data. The method is straightforward and can be generalized to
higher dimensions. We believe that Voronoi diagram-based approaches provide
an appropriate framework for constructing hierarchical approximations for grid-
less, scattered data. Voronoi diagrams provide flexibility and enable adaptive
and localized refinement. Voronoi diagram hierarchies require rather involved
underlying data structures for their efficient manipulation, but we are convinced
that this is acceptable due to the gain in flexibility. We plan to extend our
implementations to volumetric data, and eventually to time-varying data. We
will develop efficient ray-casting and isosurface extraction methods for Voronoi
diagram hierarchies of volumetric data sets.

6 Acknowledgments

This work was supported by the National Science Foundation under contracts
ACI 9624034 and ACI 9983641 (CAREER Awards), through the Large Scien-



(a) Original image of a dying sun

(b) 100 points (c) 200 points (d) 500 points (e) 2000 points

(f) Cells for (b) (g) Cells for (c) (h) Cells for (d) (i) Cells for (e)

Fig. 4. Approximations of the dying sun image with 100, 200, 500 and 2000 points

tific and Software Data Set Visualization (LSSDSV) program under contract ACI
9982251, and through the National Partnership for Advanced Computational In-
frastructure (NPACI); the Office of Naval Research under contract N00014-97-1-
0222; the Army Research Office under contract ARO 36598-MA-RIP; the NASA
Ames Research Center through an NRA award under contract NAG2-1216; the
Lawrence Livermore National Laboratory under ASCI ASAP Level-2 Memo-
randum Agreement B347878 and under Memorandum Agreement B503159; and
the North Atlantic Treaty Organization (NATO) under contract CRG.971628
awarded to the University of California, Davis. We also acknowledge the sup-
port of ALSTOM Schilling Robotics, Chevron, Silicon Graphics, Inc. and ST
Microelectronics, Inc. We thank the members of the Visualization Group at the
Center for Image Processing and Integrated Computing (CIPIC) at the Univer-
sity of California, Davis.



References

1. P. Cignoni, L. De Floriani, C. Montoni, E. Puppo, and R. Scopigno. Multiresolu-
tion modeling and visualization of volume data based on simplicial complexes. In
Arie Kaufman and Wolfgang Krueger, editors, 1994 Symposium on Volume Visu-
alization, pages 19–26. ACM SIGGRAPH, October 1994.

2. L. De Floriani, P. Marzano, and E. Puppo. Hierarchical terrain models: Survey
and formalization. In Proc. IEEE Sympos. Applied Comput., pages 323–327, 1994.

3. O. Devillers. Improved incremental randomized Delaunay triangulation. In Proc.
14th Annu. ACM Sympos. Comput. Geom., pages 106–115, 1998.

4. Gerald Farin. Surfaces over dirichlet tessellations. Computer Aided Geometric
Design, 7(1-4):281–292, June 1990.

5. R. Franke and G. M. Nielson. Scattered data interpolation and applications: A
tutorial and survey. In H. Hagen and D. Roller, editors, Geometric Modeling.
Springer-Verlag, 1991.

6. Michael Garland and Paul S. Heckbert. Surface simplification using quadric error
metrics. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, An-
nual Conference Series, pages 209–216. ACM SIGGRAPH, Addison Wesley, August
1997.

7. Hugues Hoppe. Progressive meshes. In Holly Rushmeier, editor, SIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 99–108. ACM SIG-
GRAPH, Addison Wesley, August 1996.

8. Hugues Hoppe. View-dependent refinement of progressive meshes. In Turner Whit-
ted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series,
pages 189–198. ACM SIGGRAPH, Addison Wesley, August 1997.

9. Hugues Hoppe. New quadric metric for simplifying meshes with appearance at-
tributes. In David Ebert, Markus Gross, and Bernd Hamann, editors, IEEE Visu-
alization 9́9, pages 59–67. IEEE, November 1999.

10. Arne Maus. Delaunay triangulation and the convex hull of n points in expected
linear time. BIT, 24(2):151–163, 1984.

11. Jovan Popović and Hugues Hoppe. Progressive simplicial complexes. In Turner
Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Se-
ries, pages 217–224. ACM SIGGRAPH, Addison Wesley, August 1997.

12. Kevin J. Renze and James H. Oliver. Generalized unstructured decimation. IEEE
Computer Graphics & Applications, 16(6):24–32, November 1996.

13. William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation
of triangle meshes. Computer Graphics, 26(2):65–70, July 1992.

14. R. Sibson. Locally equiangular triangulation. The Computer Journal, 21:243–245,
1978.

15. Oliver G. Staadt and Markus H. Gross. Progressive tetrahedralizations. In David
Ebert, Hans Hagen, and Holly Rushmeier, editors, Proceedings of Visualization 98,
pages 397–402. IEEE Computer Society Press, Los Alamitos, California, October
1998.

16. Issac J. Trotts, Bernd Hamann, and Kenneth I. Joy. Simplification of tetrahedral
meshes. IEEE Transactions on Visualization and Computer Graphics, 5(3):224–
237, 1999.

17. Issac J. Trotts, Bernd Hamann, Kenneth I. Joy, and David F. Wiley. Simplification
of tetrahedral meshes. In David Ebert, Hans Hagen, and Holly Rushmeier, editors,
Proceedings of Visualization 98, pages 287–296. IEEE Computer Society Press, Los
Alamitos, California, October 1998.



(a) Original image (b) Sibson Interpolant (e) Cells for (b)

(d) Constant function (e) Cells for (d)

Fig. 5. Approximations of the Cat’s Eye Nebula made with 580 points

(a) Original image (b) Sibson Interpolant (c) Cells for (b)

(d) Constant function (e) Cells for (d)

Fig. 6. Approximations of the Cygnus Loop Nebula made with 1740 points


