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Abstract

Deformable objects play a critical role in our life due to their compliance. Clothing and
support structures, such as mattresses, are just a few examples of their use. They are so
common that an accurate prediction of their behavior under a variety of environments and
situations is mandatory in order to design products with the desired functionalities.

However, obtaining realistic simulations is a difficult task. Both, an appropriate defor-
mation model and parameters that produce the desired behavior must be used. On one hand,
there exist many deformation models for elasticity, but there are few capable of capturing other
complex effects that are critical in order to obtain the desired realism. On the other hand, the
task of estimating model parameters is usually performed using a trial-and-error method, with
the corresponding waste in time.

In this thesis we develop novel deformation models and parameter estimation methods that
allow us to increase the realism of deformable object simulations. We present deformation
models that capture several of these complex effects: hyperelasticity, extreme nonlinearities,
heterogeneities and internal friction. In addition, we design parameter estimation methods
that take advante of the structure of the measured data and avoid common problems that arise
when numerial optimization algorithms are used.

First, we focus on cloth and present a novel measurement system that captures the behavior
of cloth under a variety of experiments. It produces a complete set of information including
the 3D reconstruction of the cloth sample under test as well as the forces being applied. We
design a parameter estimation pipeline and use this system to estimate parameters for several
popular cloth models and evaluate their performance and suitability in terms of quality of the
obtained estimations.

We then develop a novel, general and flexible deformation model based on additive en-
ergy density terms. By using independent components this model allows us to isolate the
effect that each one has on the global behavior of the deformable object, replicate existing
deformation models and produce new ones. It also allows us to apply incremental approaches
to parameter estimation. We demonstrate its advantages by applying it in a wide variety of
scenarios, including cloth simulation, modeling of heterogeneous soft tissue and capture of
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extreme nonlinearities in finger skin.
Finally, a fundamental observation extracted from the estimation of parameters for cloth

models is that, in real-world, cloth hysteresis has a huge effect in the mechanical behavior
and visual appearance of cloth. The source of hysteresis is the internal friction produced by
the interactions between yarns. Mechanically, it can produce very different deformations in
the loading or unloading cycles, while visually, it is responsible for effects such as persistent
deformations, preferred wrinkles or history-dependent folds. We develop an internal friction
model, present a measurement and estimation system that produces elasticity and internal
friction parameters, and analyse the visual impact of internal friction in cloth simulation.
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Chapter 1

Introduction

Deformable objects are a fundamental part of our everyday life and, in many cases, it is thanks
to their compliance that they play such an important role: grasping of objects relies heavily
on the compliance of our fingers; comfortability of clothing, mattresses, etc, is usually related
to their compliance; the automotive industry relies on the compliant, elastic and damping
behaviors of the materials used for wheels as well as for the interior of cars.

For decades there has been a huge interest in simulating and analyzing the behavior of
deformable objects in a variety of different fields. In ergonomics, simulation of deformable
objects is used to design comfortable support structures for the human body. Medicine is
another field in which simulation of deformable objects has been studied in depth with the
growing interest in virtual surgery simulators. Video game and animation industries rely on
deformable object simulation to create compelling visual effects. Fig. 1.1 shows examples of
applications where simulation and analysis of deformable objects play a critical role.

Deformation models are key in order to model the behavior of deformable objects. Among
the variety of existing deformation models we focus on continuum mechanics models, which
produce physically-based accurate results. More specifically, we focus on the Finite Element
Method (FEM) as the discretization for this continuum formulation.

Deformable objects are usually characterized by their elasic behavior. However, in the real
world more complex effects are involved:

• Nonlinearities: popular deformation models in computer graphics produce elastic forces
linear to the strain, but real world objects present a nonlinear behavior, with clearly
nonlinear elastic forces. These nonlinearities can include both geometric nonlinearities,
such as nonlinear relationships between strain and displacement or deformation, and
material nonlinearities, such as nonlinear stress-strain laws or material properties than
change with the applied loads.
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Fig. 1.1 Examples of applications that use deformable objects. Left: ergonomics analysis
(MADYMO). Right: virtual surgery simulator (De et al., 2006).

• Anisotropy: isotropic deformable objects present the same behavior regardless of the
direction in which they are deformed. However, many real world objects behave dif-
ferently depending on the deformation direction. For example, cloth usually presents
an orthotropic behavior (more stretchable in one direction than in the orthogonal one)
produced by differences in the underlying warp/weft yarns and the interlacing pattern.

• Heterogeneity: most real world objects, such as cushions, clothing or human flesh
present a spatially varying or heterogeneous behavior, which is not commonly captured
by popular deformation models.

• Internal friction: there exist many thread/fiber/yarn-based materials that are usually
modeled as continuous objects obtaining accurate results, but there are side-effects that
cannot be captured. The clearest example is cloth: interactions between yarns and
threads produce internal friction effects that elastic models cannot reproduce.

• Plasticity: while pure elasticity describes the behavior of materials that deform under
external loads and return to their original state once the load is removed, plasticity de-
scribes the behavior of materials that undergo non-reversible changes in shape (i.e. per-
manent deformations) due to the applied load.

• Viscosity: real deformable objects usually dissipate energy when a load is applied, hence
showing a dependence on time. This is known as viscosity.

In order to realistically capture these behaviors, both appropiate deformation models and
accurate model parameters are required.
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1.1 Data-Driven Elasticity Estimation

Today’s deformable object simulators for animation, visual effects, engineering and medicine
applications can mimic real soft materials and cloth to a high degree of fidelity. However, in
order to obtain specific behaviors the user must choose the deformation model that produces
the closest behavior to the desired one, and then tune the model parameters. Choosing the best
deformation model for a given desired behavior can be challenging due to the large variety of
deformation models available, while tuning parameters is a difficult and tedious task.

A possible solution to this problem is to acquire example deformations of real objects
and estimate parameters of deformation models that best match the acquired examples. A
fundamental part of this data-driven parameter estimation method is the interaction between
the input data, the deformation model and the estimation procedure. Complex deformation
models with many degrees of freedom are prone to falling into overfitting problems, while too
few degrees of freedom may not be able to capture complex behaviors. The structure and the
amount of input data is also critical when choosing the deformation model to estimate: sparse
input data may only allow estimation of simple deformation models, while dense input data
could be used with more complex models.

In this thesis we extend several existing cloth deformation models so that complex cloth
behaviors can be captured. Then, we propose a novel more general deformation model that
can be applied to cloth as well as volumetric deformable objects. Using the extended cloth
models, we estimate material parameters based on measurements taken with a fully automatic
capture system, and we test the novel deformation model estimating parameters with a variety
of input data.

1.2 Internal Friction Modeling and Estimation

Clothing is a fundamental aspect of our world, hence computer animation research has put
a lot of effort towards realism and efficiency in cloth simulation. Since the seminal paper
by Terzopoulos et al. (Terzopoulos et al., 1987), a wide variety of deformation models have
been proposed to capture the elastic behavior of cloth (Choi and Ko, 2002; Grinspun et al.,
2003; Thomaszewski et al., 2009; Volino et al., 2009), sometimes with the addition of complex
effects, such as plasticity (Bergou et al., 2007).

Previous works in mechanical engineering and computer graphics (Lahey, 2002; Ngo-
Ngoc and Boivin, 2004) point out the existence of significant hysteresis observable in typical
force-deformation plots of real cloth, as shown in Fig. 2.1. Researchers refer to internal fric-
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tion due to the interaction between yarns and threads as the source of that hysteresis.

Not only is internal friction the source of hysteresis but, as we show in Chapter 5, it also
plays a central role in the formation and dynamics of cloth wrinkles: it can induce the for-
mation of ‘preferred‘ wrinkles and folds, as shown in Fig. 5.15; persistent deformations, as
shown in Fig. 5.17; history-dependent wrinkles, as shown in Fig. 5.14; and it may also make
folds and wrinkles settle faster, as shown in Fig. 5.16.

In addition, existing elasticity estimation methods completely ignore internal friction, and
either estimate parameters with loading data only, or fit an average of the loading and unload-
ing cycles, leading to bias in the estimations. As we show in Chapter 5, results can be improved
significantly by taking into account internal friction and estimating its model parameters.

In this thesis we present an internal friction model for cloth, analyse the visual impact
of internal friction in cloth simulation and show an inexpensive measurement setup and a
parameter estimation pipeline that produces good estimations for both elastic and internal
friction parameters.

1.3 Contributions

The goal of this thesis is to define deformation models that can capture complex behaviors, de-
sign data-driven parameter estimation pipelines and estimate model parameters based on real
world measurements. We propose deformation models that capture nonlinearities, anisotropy,
heterogeneity and internal friction. Then, we estimate parameters and capture nonlinear,
anisotropic and heterogeneous behaviors for both volumetric solids and cloth, and show that
our internal friction model is able to effectively reproduce the observed hysteretic behavior of
real cloth.

More specifically, in the next chapters we will present the following contributions:

1. A cloth deformation model that captures nonlinear, anisotropic behaviors, and a parame-
ter estimation pipeline that produces accurate estimations for the model parameters. We
extend existing cloth models using nonlinear strain-dependent parameters by interpo-
lating control points. Then, we estimate the configuration of those control points using
real world cloth measurements performed using an automatic capture setup.

2. A novel generic deformation model, based on additive energy components, capable of
capturing extreme nonlinearities, anisotropy and heterogeneity applicable to both, vol-
umetric objects and cloth. We use contraints to model the extreme nonlinearities and
spatially localized energy-components to model heterogeneity. In addition, we show
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how parameter estimation processes benefit from the additive definition of the deforma-
tion model in a variety of experiments using real world input data.

3. An internal friction model for cloth that is able to reproduce the hysteresis effect typical
in force-deformation measurements for real cloth. We present a reparameterization of
Dahl’s friction model that produces key hysteresis features observed in real world cloth.
Then, we estimate parameters for both the elastic and the internal friction components
using a simple parameter estimation process and data obtained with an inexpensive cap-
ture setup.

1.4 Organization

In the next chapter we present previous work on modeling of complex effects and estimation
of parameters. The rest of the thesis will focus on describing our contributions. In Chapter 3
we present an extension of existing cloth deformation models capable of capturing nonlin-
earities and anisotropy, and a parameter estimation pipeline that, together with an automatic
measurement system, is capable of producing accurate parameter estimations for several de-
formation models. Chapter 4 describes a generic deformation model that captures extreme
nonlinearities, anisotropy and heterogeneity, that is suitable for parameter estimation based on
a wide variety of measurement types. In Chapter 5 we present an internal friction model for
cloth, an inexpensive measurement setup and a parameter estimation pipeline that allows us to
easily estimate both internal friction and elastic parameters. Finally, Chapter 6 discusses the
obtained results and future lines of work.





Chapter 2

Related Work

This chapter presents related work in modeling of deformable objects and measurement-based
parameter estimation methods. The key component when simulating deformable objects is the
underlying deformation model. Elasticity is the most common effect in deformable objects,
but real-world deformable materials present many other sources of complexity: hyperelastic-
ity, hysteresis, plasticity, viscosity, and heterogeneity, which produce characteristic behaviors
that cannot be obtained with elasticity alone. In Section 2.1, we focus on related work in
deformation models used in computer graphics for several of these effects: hyperelasticity,
heterogeneity, internal friction and plasticity. In order to obtain realistic simulations, these
models must capture the behavior of real-world objects. A common approach to obtain this
realistic behaviors is to estimate the model parameters based on real-world measurements.
Section 2.2 presents previous works in measurement-based parameter estimation.

2.1 Modeling of Deformable Objects

Deformable objects include many types of objects: thin shells, such as paper, soft tissue, such
as human internal organs or skin, and cloth. All these types of objects can be modeled using a
continuum formulation (Etzmuß et al., 2003; Irving et al., 2007; Lee et al., 2009; Volino et al.,
2009), but other methods such as mass-spring systems (Choi and Ko, 2002; Provot, 1995) and
inextensibility constraint-based models (English and Bridson, 2008; Goldenthal et al., 2007)
are also available. For cloth, due to its yarn-based nature, discrete yarn models (Kaldor et al.,
2008) and mesostructure-based continuum models (Boisse et al., 1997; Parsons et al., 2010)
have been used.

The goal when simulating these deformable objects is also a critical factor for deciding the
type of deformation model to use. In computer graphics, applications such as video-games or
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virtual surgery simulators prioritize real-time interactivity over accuracy, and therefore sim-
pler models are preferred. Other applications, such as animation movies or visual effects
favor accuracy and use models similar to the ones developed in computational mechanics. In
this thesis, we focus on capturing complex effects with the goal of increasing the realism of
the final simulation. Consequently, we use continuum-based deformation models and Finite
Element Methods (Bathe, 2006; Hughes, 2000) in order to obtain accurate results.

2.1.1 Modeling of Hyperelasticity

Hyperelastic materials are characterized by a stress-strain relationship derived from a strain
energy density function. Linear elasticity is a special case of hyperelasticity, in which this
stress-strain relationship is linear. However, linear elasticity is not capable of accurately mod-
eling many real-world elastic behaviors. For example, materials such as rubber or biological
soft tissue show nonlinear stress-strain relationships that linear elasticity cannot capture.

Hyperelasticity has been studied in computational mechanics for decades and, due to its
complexity, it is still a very active research field. Several constitutive models have been de-
signed to capture the behavior of hyperelastic materials, such as the general Ogden model, or
other variants like neo-Hookean or Mooney-Rivlin (Bonet and Wood, 1997; Ogden, 1997).

In computer graphics, an approach of growing popularity is to model hyperelastic materi-
als by adapting continuum models borrowed from computational mechanics. Then, they are
augmented with features to increase robustness and/or efficiency (Barbič and James, 2005;
Bridson et al., 2003; Grinspun et al., 2003; Irving et al., 2004; Müller and Gross, 2004; Narain
et al., 2012; Patterson et al., 2012).

Continuum-based approaches can accurately describe the directional variation of material
properties, but regardless of the deformation model, a single set of material coefficients for
the entire deformation range is not sufficient to faithfully capture the nonlinear response of
many real world materials. Bi-phasic models, typically implemented as strain limiting meth-
ods (Bridson et al., 2002; Hernandez et al., 2013; Thomaszewski et al., 2009; Wang et al.,
2010), improve on this by splitting the material behavior into an initial, weakly elastic range
and a stiff, quasi-inextensible limit. At the extreme, in cloth simulation, where the largest de-
formations are given by shear and bending components, the pure stretch elastic range can be
replaced by inextensibility constraints (English and Bridson, 2008; Goldenthal et al., 2007).

In order to obtain more realistic simulations, a possible strategy is to estimate the param-
eters of these models based on real-world measurements. An even better approximation to
the true (potentially nonlinear) material response can be obtained by making the material pa-
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rameters functions of the deformation, rather than constants, and by fitting these functions to
measured data. This approach is described in detail in Chapter 3.

2.1.2 Modeling of Heterogeneity

Many real-world objects, such as human tissue, consist of heterogeneous hyperelastic materi-
als. The complexity of modeling those materials goes beyond the choice of constitutive model,
as material heterogeneity requires spatially varying material parameters. This substantially in-
creases the number of model parameters and makes parameter estimation a high-dimensional
nonlinear problem.

Virtual surgery is a very active area where heterogeneity is a critical feature. A possible
approach to obtain heterogeneous behaviors is to define different objects for structures with
different properties, such as bones, muscles and fat, and simulate the whole system handling
the interactions between those independent homogeneous structures. However, this method
translates heterogeneity modeling complexity into contact handling complexity since the de-
scribed scenario is extremelly demanding in terms of collision detection and response. The
most common approach to model heterogeneity is to assign different parameters to each dis-
cretization element, as in (Hiller and Lipson, 2012; Lin et al., 2008).

In computer graphics, several works have presented constitutive models capable of cap-
turing heterogeneities. Bickel et al. (2009) captured nonlinearity by interpolating stiffness
parameters in strain space, and heterogeneity by defining such strain-space interpolation dif-
ferently for each discretization element along the material domain. Our work in Chapter 4
follows a similar sampling strategy for heterogeneity, but we capture nonlinearity with an
energy model, not stiffness parameters.

Cloth heterogeneity can be analyzed at two different levels. From a continuous domain
view, seams are the typical source of heterogeneity. Pabst et al. (2008) modeled seams in
cloth by precomputing a multiplicative factor on each discretization element (triangles in this
case) based on measurements of real cloth samples. From a yarn-based view, thanks to the
recent development of yarn-based models (Lim et al., 2003; Spillmann and Teschner, 2009),
heterogeneity can be achieved by assigning different parameters to different sets of interlacing
yarns.

2.1.3 Modeling of Internal Friction in Cloth

Two different observations motivate the interest in modeling internal friction in cloth. On
one hand, measurements (Eberhardt et al., 1996; Lahey, 2002) have shown that the height of
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Fig. 2.1 Force-deformation plot for an experiment with real cloth. The height of the hysteresis
cycle is almos 50% of the maximum applied force.

hysteresis cycles in force-deformation plots of experiments using real cloth can reach values
of almost 50% of the maximum applied force (Fig. 2.1). On the other hand, different weaving
patterns produce significantly different behaviors for the same yarn materials, which leads to
the conclusion that the interactions between the yarns, which is the source of internal friction,
have a huge effect on the cloth’s overall behavior.

Friction is usually an external effect, taking place when two different objects interact.
Cloth internal friction captures the frictional interactions that take place between interlacing
yarns, and models small-scale resistance to inter-yarn motion. When cloth transitions from
loading to unloading or vice versa, yarns realign and produce a force that acts against their
relative motion. Unlike elastic forces, which oppose deformation (i.e., strain), friction forces
tend to act against the change in deformation (i.e., strain rate). Friction and hysteresis have
been long studied in mechanical engineering, and there is a large variety of available mod-
els. Padthe et al. (2008) survey several models, discuss their mathematical foundations, and
analyze their effects.

In computer graphics, probably the most popular friction model is Coulomb’s model. It
states that dissipation should be maximized (i.e., strain rate should be minimized), subject
to some constraint on the friction stress. For object-object contact, the constraint is posed
as a relationship between tangential and normal forces (Baraff, 1991). Coulomb’s model
is also generalized to 3D, e.g., for the simulation of granular materials (Zhu and Bridson,
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Fig. 2.2 Persistent deformations and hysteresis under friction and plasticity models. Left:
hysteresis loops added to a linear-elastic model; Center: creep model with plasticity satura-
tion (Müller and Gross, 2004); Right: bounded elasticity model (Bergou et al., 2007).

2005), by posing constraints on a 3D friction stress tensor. Coulomb’s model succeeds in
capturing hysteresis effects, but it may undergo an instantaneous switch of force directions,
not present in the data observed on real cloth. Sherburn (2007) simulated cloth at the yarn level
using Coulomb’s model for inter-yarn frictional contact. Later, Kaldor et al. (2008) modeled
inter-yarn frictional contact combining damping and velocity filters. More recently, Chen et
al. (2013) have modeled and estimated friction effects between cloth and other deformable
objects.

2.1.4 Modeling of Plasticity

Plastic materials are those that, in contrast to elastic materials, do not return to their original
shape once the loading forces have been removed. This effect is similar to the persistent de-
formations obtained with internal friction, and it is therefore reasonable to consider plasticity
models as an option to model hysteresis.

As with many other effects characteristic of deformable objects, plasticity has been thor-
oughly studied in mechanics. Good reviews of existing models and analysis methods can be
found in (Han and Reddy, 2012; Simo and Hughes, 2000).

In computer graphics, Terzopoulos and Fleischer (1988) modeled plasticity, viscoelasticity
and fracture based on models developed in mechanics. In the context of cloth simulation, Kim
et al. (2011) designed a complex model of plasticity with ten parameters to produce persistent
cloth wrinkles. Their model modifies the stiffness and rest angle of a bending spring when
its strain rate exceeds a threshold value. The recent work of Narain et al. (2013) focuses on
resolving the geometric detail in folded and crumpled sheets under plastic deformation.

In general, common plasticity models in computer graphics separate elastic strain (which
defines elastic energy) from plastic strain (which does not change elastic energy). Two com-
mon models are a creep model that saturates to a maximum plastic strain (Müller and Gross,
2004) and a bounded elasticity model (Bergou et al., 2007), as shown in Fig. 2.2-center and
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Fig. 2.2-right respectively. The curves evidence that plasticity models are not a good match
for the hysteresis observed in cloth. A plastic material deforms elastically until the material’s
yield strength is exceeded, then abruptly gives way and begins deforming irreversibly. By
contrast, hysteresis is prominent in cloth even for small deformations, and its effects increase
gradually as deformation is increased. Moreover, even in the plastic regime, the response of
plasticity models to reversed loads is purely elastic, whereas cloth exhibits local hysteresis.

Another important difference between plasticity and hysteresis is that persistent plastic
deformations require a large reverse load to be undone, whereas persistent deformations due
to hysteresis can be undone simply by applying small loads that produce narrow hysteresis.

In this discussion, we did not consider material hardening, but it would not eliminate
the fundamental differences. Our model could be complemented with plasticity to capture
irreversible wrinkles due to extreme deformations, but based on all previous observations we
have discarded plasticity for modeling hysteresis in cloth.

2.2 Measurement-Based Parameter Estimation

Material parameter estimation is critical in the characterization of real-world deformable ob-
jects, specially biological soft tissues. However, it is a difficult task that involves designing the
capture and measurement system as well as deciding the deformation model and estimation
methods to use. Both tasks are tightly coupled since the density and structure of the input
data will impose certain limitations on the estimation algorithms as well as the deformation
models.

The choice of estimation methods is strongly affected by the dimensionality of the prob-
lem. Capturing nonlinearities may already require more that 30 parameters, as in (Wang et al.,
2011b). If heterogeneity is included, the dimensionality explosion prevents the utilization of
global optimization algorithms, due to its computational cost. Instead, local optimization al-
gorithms are used and local minima problems arise. In order to minimize their impact, an
appropriate design of the capture process and the input data is fundamental.

2.2.1 Parameter Estimation for Hyperelastic Heterogeneous Objects

In computer graphics, several previous works have attempted the estimation of material pa-
rameters of deformable objects. The pioneering work of Pai et al. (2001) introduced a system
to capture and estimate shape, elasticity, and surface roughness by scanning a volumetric ob-
ject. Becker and Teschner (2007) presented a method to estimate Young modulus and Poisson
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ratio in a linear FEM formulation by solving a linear least squares problem. More recently,
Bickel et al. (2009) proposed a data-driven model for which parameters are estimated based
on a set of real-world example deformations.

For cloth, the traditional method to capture nonlinear elasticity has relied on the Kawabata
Evaluation System (KES) (Kawabata, 1980). This system uses complex machinery to exert
controllable uniform strain on cloth samples, measuring stretch, shear and bending, and then
estimate parameters of elastic models (Breen et al., 1994; Eberhardt et al., 1996; Volino et al.,
2009). However, despite the complexity of the capture setup, KES suffers a major shortcom-
ing: by exciting cloth with uniform strain it fails to capture the interplay between different
deformation modes.

In more specific contexts other devices have been used, such as the Picture Frame test (Culpin,
1979) for measuring shear properties and the Cantilever test (Clapp et al., 1990) for measuring
bending properties (see also Pabst et al. (2008)).

Alternatively, recent approaches exploit computer vision to capture arbitrary cloth defor-
mations and then estimate model parameters. Bhat et al. (2003) (and recently Kunitomo et
al. (2010)) tried to extract model parameters from casually captured videos, avoiding the need
for controlled conditions and using a simple and inexpensive acquisition process. More re-
cently, Bouman et al. (2013) estimate cloth stiffness through the temporal analysis of texture
patterns in video. These methods present the drawback of not being able to accurately separate
internal (i.e. material-specific) and external (e.g. friction, air drag) parameters.

In a similar spirit, capture technology can be used to record time-varying geometry of
complex cloth motions (Bradley et al., 2008b; Stoll et al., 2010; White et al., 2007). But
while capturing can provide accurate deformation data, parameter fitting remains very difficult
without explicit control over boundary conditions, in particular loading forces.

The work of Wang et al. (2011b) is particularly interesting due to the high estimation
quality combined with simple acquisition procedures. Wang et al. propose a data-driven
piecewise linear elastic cloth model comprising 39 material parameters, and advocate for a
combination of semi-controlled deformations and computer-vision-based tracking to estimate
stiffness parameters that depend on the value and direction of the principal membrane strain.
These parameters are fitted to experimentally acquired data obtained from planar and bending
deformations.

The closest research to our work is that by Wang et al. (2011b). While their capture
setup is appealingly simple, in Chapter 3 we present a more general and powerful one: it
produces a 3D surface, rather than a 2D deformation, and it measures all forces applied to
the cloth as they change during a range of different deformations, including hysteresis as the
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difference between loading and unloading paths. In addition, we apply our estimation pipeline
with several popular deformation models and compare the obtained estimations, exposing the
advantages and disadvantages of each deformation model and their suitability for realistic
cloth modeling.

2.2.2 Parameter Estimation for Internal Friction in Cloth

Estimation of internal friction in cloth is important not only because it is the source of very
characteristic behaviors, such as hysteresis, but also because ignoring it may lead to bias in
the estimation of elasticity parameters (Volino et al., 2009; Wang et al., 2011b). Even if the
elastic parameters are chosen to fit the average of loading and unloading behaviors, given
observed hysteresis as high as 50% of the average force, ignoring internal friction may induce
deformation errors of up to ±25% for a given load.

The works by Lahey (2002) and Ngo-Ngoc and Boivin (2004) modeled cloth hystereis
using internal friction, captured force-deformation data using KES and estimated (strain-
independent) parameters of standard friction models. They considered a second-order Bliman-
Sorine model (Bliman and Sorine, 1991), which can capture hysteresis, pre-sliding, and the
Stribeck effect, i.e., a slight decrease in friction at the transition from static to dynamic regime.
However, in their data they found only very subtle Stribeck effects, without which a first-order
Bliman-Sorine model, equivalent to a simple Dahl model (Dahl, 1968) is sufficient.

Like Lahey (2002) and Ngo-Ngoc and Boivin (2004), we fit a friction model to deforma-
tion data. We use Dahl’s friction model, which produces a good fit to our measured force-
deformation data. However, we have found that the standard strain-independent parameter-
ization of Dahl’s model fails to capture the strain-dependent magnitude of hysteresis, which
is present in our data. Therefore we reparameterize Dahl’s model to account for this effect.
Another key difference, is that the KES data used in those papers provides dense sampling
under uniform strain conditions, whereas our methods work with sparse sampling and non-
uniform strain, enabling simpler setups. Furthermore, prior work on internal friction for cloth
is limited to the estimation of parameters that fit hysteresis cycles well, while we also analyze
the impact of internal friction on animations. Chapter 5 presents a detailed description of the
internal friction model and the parameter estimation pipeline.



Chapter 3

Data-Driven Estimation of Cloth
Simulation Models

Realistic simulation of cloth relies not only on the correct underlying deformation model but
also on a set of parameters that produce realistic results. However, traditional methods to
find adequate parameters for cloth models are time-consuming and require a trial-and-error
process until the obtained behavior is considered close enough to the desired one. In this
chapter, we aim to solve this problem by introducing new techniques to measure complete
cloth behavior under controlled conditions and to estimate cloth deformation models from
these measurements.

In this chapter we will present:

• A new, general system for observing cloth properties that measures more complete data
than previous work in cloth capture or textile testing.

• A new method for fitting parametric models to this type of data.

• Results that illustrate the performance of several widely used cloth models in our esti-
mation system.

The results of this work have been published in Computer Graphics Forum (Proceedings
of Eurographics 2012) (Miguel et al., 2012).

3.1 Introduction

Most methods for testing cloth move the sample into a state of near-uniform strain, exercising
one or at most two components of strain at once: pure stretching, pure shearing, or pure
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bending. One or two forces are measured to quantify the cloth’s resistance to deformation,
and the resulting force-displacement curves are valuable in studying the differences between
materials. However, this approach has certain limitations. The inevitable deviations from
uniform strain create modeling error that cannot be quantified without knowing the actual
strain variation; and force-displacement curves can be used directly to tune a cloth model, but
do not provide any way to validate the resulting fit.

Our measurement system applies forces to a sample of cloth using actuators and force sen-
sors that let us know the complete applied force, in 3D. The resulting deformation is tracked
by a stereo computer vision system that captures the complete deformation, also in 3D. Hav-
ing deformation and force information makes our data well suited to model validation—the
experiment measures the complete answer that should be predicted by a cloth simulator. Also,
we do not need uniform strain, and in this chapter we illustrate a range of tests, some that
mimic traditional tests and some with more complex deformations.

Our approach to model estimation is to numerically optimize nonlinear stress-strain curves
to minimize errors in force and position compared to the measurement. We have designed a
general fitting method, suited for the vast majority of existing cloth models, that leverages
equilibrium conditions to guide the iteration. By estimating model parameters under a se-
quence of deformations of increasing complexity, we alleviate convergence problems in the
presence of abundant local minima.

We have used our system to fit three membrane models and two bending models from
the graphics literature, each based on a different strain measure, and to evaluate the resulting
models against more complex motions.

3.2 Measurement system

The design goals of our measurement system are to create deformations in a sample of cloth
that explore a substantial range of the material’s strain space, and to record complete infor-
mation about the forces applied to the cloth and the deformation that it undergoes. Like other
cloth testing systems, we focus primarily on tensile forces, because it is hard to repeatably
produce and measure compression forces in a sheet that is inclined to buckle.

Tests are performed on 100 mm square cloth samples using two kinds of plastic clips:
small, rounded clips that grab a localized area, and long clips that grip one whole side of the
sample. We measure the weights of all cloth samples as well as the clips (see Table 3.1) and
use these values in the optimization process. Forces are applied to the clips by fine wire cords
that are pulled to defined displacements by eight linear actuators, and the tension in the cords is
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Fig. 3.1 Acquisition setup for the measurement system.

monitored by miniature load cells located at the actuator ends (see Fig. 3.1). Our actuators and
load cells are capable of applying and measuring tensions up to 45 N, but in our experiments
the maximum force is typically on the order of 10 N.

The geometry of the cloth sample and the attached clips is monitored by a vision system
composed of four high-resolution cameras. The location and orientation of the cords attached
to the clips (which reveal the direction of the applied force) are also tracked. Each output
frame of a measurement session contains:

• The configuration of the cloth sample, represented as a deformed mesh with 10K regu-
larly sampled vertices.

• The positions and orientations of all clips attached to the cloth, including a list of
clamped cloth vertices.

• The forces applied to all clips. The magnitudes are determined by the tension measure-



18 Data-Driven Estimation of Cloth Simulation Models

Cloth Sample Id Mass (g)

cotton satin #4 1.2
rayon/spandex knit #12 3.1
cotton denim #14 4.6
wool/cotton blend #18 2.4

plastic clips (3 sizes) 1.9, 10.1, 13.3

Table 3.1 Cloth and attachment clip masses.

ments, and the directions are determined by the observed directions of the cords.

Note that the actuator positions themselves are not part of the output, since they are superseded
by the displacements measured at the clips. This prevents stretching of the cord, or other
factors altering the distance between the clip and the actuator, from affecting displacement
accuracy.

3.2.1 Reconstruction

Our vision system recovers the space-time geometry of the deforming cloth and attached rigid
clips, as well as the directions of the forces applied to the clips.

Initialization. The cloth sample starts flat on a table and we capture the rest pose without
applied tensile forces. This initial frame serves to compute the geometry of the cloth without
any occlusion from clips. We then attach the clips, and the measurement process continues
automatically, following a defined script of actuations, and recording images and forces. We
typically deform the cloth by moving the actuators at 0.5 mm/sec, and every 2 seconds we
allow the sample to reach equilibrium and capture a static frame.

Cloth Geometry Reconstruction. The raw data for a single deformation consists of 20
to 200 individual measurement frames, with a set of camera images and simultaneous force
sensor readings for each frame.

We compute the per-frame geometry using a state-of-the-art stereo reconstruction tech-
nique (Bradley et al., 2008a), which was specifically tailored for reconstructing cloth geome-
try (Bradley et al., 2008b). If the inherent texture of the cloth is not sufficiently random, it is
printed with a wavelet noise pattern (Atcheson et al., 2008) to provide texture that can be used
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Fig. 3.2 Force measurements for selected frames of a corner pulling sequence. Forces are
rendered as red vectors with magnitudes proportional to their values (in Newtons).

for stereo reconstruction and tracking. The pattern is printed with a flatbed inkjet printer and
does not have a noticeable effect on the material behavior.

To represent inter-frame correspondence, we use optical flow to obtain a single triangle
mesh that deforms over time, akin to the human face tracking method of Bradley et al. (2010).
To start, the cloth vertices in the rest pose frame (frame 0) are projected onto the input images,
where optical flow predicts the projection of each vertex at the next time step. Back-projecting
onto the reconstructed geometry for the next frame gives new position estimates for the cloth
vertices. The process is then repeated using the result from frame n to obtain frame n+1. As
with all sequential tracking methods, very small errors can accumulate over time and cause
temporal drift in the reconstruction. To avoid drift, we subsequently match each frame inde-
pendently back to the rest pose frame using the approach described in Bradley et al. (2010).
The final solution is smoothed using Laplacian regularization to remove noise.

Tracking Clips and Cords. In order to measure the complete answer that a simulator should
predict, we need to determine the interaction between the rigid clips, the cloth, and the cords.
The clips are produced, using rapid prototyping, with embedded codes (Fiala, 2005) that al-
low us to determine their identity, position, and orientation automatically. The area of cloth
occluded by the clips is used to automatically determine which cloth vertices are clamped by
each clip and will therefore be constrained to it in the simulator.

The vision system also triangulates a 3D line for each cord in the images. A few user
scribbles on an input image indicate which cords are affecting each clip. Fig. 3.2 illustrates
the force measurements and clip locations for three different frames from one experiment. The
forces are rendered as red vectors with lengths proportional to the force magnitudes.



20 Data-Driven Estimation of Cloth Simulation Models

3.2.2 Measurements

The set of deformations to measure is motivated by the goals of the parameter fitting stage
(Section 3.4): to fit model parameters for stretch, shear and bending that best describe the
cloth, and to validate the parameter fits by comparing against other measurements.

To reduce the risk of falling into local minima during parameter fits, we have designed
deformation sequences that produce near-isolated strains, and allow estimating stretch, shear
and bending properties in a separate and incremental manner. However, unlike standard textile
evaluation practices (Kawabata, 1980), and thanks to our full 3D deformation capture solution,
we relax the requirement of uniform strains.

To isolate stretching we perform a uni-axial tension experiment, with forces applied to
two long bar clips attached to either side of the cloth (see Fig. 3.3, 2nd column). The cloth is
slowly stretched until a maximum force is reached and then slowly released back. The process
is repeated three times, in both weft and warp directions separately.

Shearing is captured using an approximate picture-frame experiment (Culpin, 1979), where
four long clips fix the cloth boundaries and shear stress is applied as the cords pull on opposite
corners (Fig. 3.3, 3rd column). To isolate bending deformation we slowly push the flat cloth
sample off the edge of a table and measure its shape as it bends under its own weight (Fig. 3.3,
4th column), for both weft and warp directions. Thus we have a total of five measurements per
cloth sample that will be used for parameter fitting (two stretch, one shear, and two bending).

We also capture two sequences with more complex deformation (Fig. 3.4) for validation
after parameter fitting. In the first test, opposite edges of the cloth are pulled in opposite
directions, causing shearing and buckling (Fig. 3.4, top). The second is a four-corner pulling
test, where opposite pairs of corners are pulled in alternation, resulting in diagonal wrinkles
(Fig. 3.4, bottom).

Fig. 3.3 and Fig. 3.4 show that our acquisition system is able to recover the 3D cloth geom-
etry including temporal tracking (illustrated with an overlaid checkerboard), tracked 3D clip
locations, and individual 3D force directions (shown as green lines). To our knowledge, our
method presents the first system able to record such extensive information about the behavior
of a cloth sample.

3.2.3 Accuracy

In the vision system, the camera calibration accuracy is within 0.3 pixels, or about 0.075 mil-
limeters at the distance of the cloth. The multi-view stereo algorithm of Bradley et al. (2008a)
is among the most accurate available according to the Middlebury evaluation benchmark. It is
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Fig. 3.3 Selected frames from isolated measurements of stretching, shearing, and bending.
The left column shows the cloth in its rest state. One input image is shown above each 3D
reconstruction. The reconstruction includes parameterized cloth geometry, clip locations and
the direction of the force vectors (shown as green lines).

difficult to quantify the accuracy of the temporal flow computation, but it can be visualized by
compositing the reconstructed deformation on top of the input images.

The raw repeatability of our force sensors is about 3 millinewtons (RMS). The largest
source of error in measuring the force indirectly through the cord is the internal friction in the
cord as it bends around the pulleys, which introduces an artificial hysteresis of about 0.1 N.

3.3 Cloth Models

Our goal is to study the fidelity of constitutive models of cloth—models that predict the forces
produced in the cloth in response to deformations. The input of such a model is the positions
of the vertices x1, . . . ,xn ∈ IR3 that define the deformation state of the sheet (analogous to
strain in continuum mechanics) and the output is the forces that act between those vertices in
response (analogous to stress). Although some of the models we look at are discrete in nature,
we will use the convenient terms stress and strain to describe them.

3.3.1 Strain Metrics

Most elastic cloth models separate membrane (i.e., stretch and shear) and bending deformation
energies. In both cases, deformation energy density can be described by the product of strain
(ε) and stress (σ ), i.e., W = 1

2σ ·ε . Furthermore, most of these models define separable scalar



22 Data-Driven Estimation of Cloth Simulation Models

Fig. 3.4 Selected frames from more elaborate cloth manipulation, demonstrating complex de-
formations. Input image (left) and 3D reconstruction shown from two viewpoints.

stress components as linear functions of individual scalar strain metrics. In that case, the
energy density of each deformation component i can be written as Wi =

1
2kiε

2
i , where kiεi = σi

and ki is the stiffness coefficient corresponding to the deformation component εi. The force
density due to each εi follows as Fi =−∇Wi =−σi∇εi =−kiεi∇εi. We have evaluated three
models for membrane deformation that fit this description (spring systems, the soft constraint
model by Baraff and Witkin (1998) and the diagonalized St.Venant-Kirchhoff (StVK) model
by Volino et al. (2009)), and two bending models (spring systems and the edge-based bending
model in Discrete Shells (Grinspun et al., 2003)).

Considering possible anisotropic behavior, we distinguish six different strain components
on regularly triangulated cloth: weft-stretch (εs,u), warp-stretch (εs,v), shear (εs,uv), weft-bend
(εb,u), warp-bend (εb,v), and diagonal-bend (εb,uv). Next, we describe in detail the strain met-
rics for the individual deformation components in the selected models. Note that not all force
models define the quantities below explicitly as strains, as they often rely on the resolution of
the discretization, or they differ simply by scale factors that can be embedded in the stiffness
ki. We use continuum strain definitions in all cases to fit them in a common formulation that
allows us to easily compare the models. The details about the computation of strain gradients
for the various cloth models, needed in the force computation, are given in their respective
original papers.
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Spring Membrane. All deformation components are modeled based on springs, with weft
and warp ring-1 springs for stretch, and diagonal ring-1 springs for shear. The spring-based
strain for each deformation component i can be defined as the relative change of edge length,

εs,i =
l/l0 −1, (3.1)

with l the current length of the spring, and l0 its rest length.

Diagonalized StVK. The membrane deformation is defined using the Green-Lagrange strain
tensor, a formulation introduced to computer graphics by Terzopoulos et al. (1987). Given a
per-triangle mapping function w from the undeformed 2D configuration (xa,0,xb,0,xc,0) to the
deformed 3D configuration (xa,xb,xc), the deformation gradient can be computed as

(wu wv) = (xb −xa xc −xa)
(
xb,0 −xa,0 xc,0 −xa,0

)−1
. (3.2)

Then, the components of the membrane Green-Lagrange strain are defined as:

εs,u =
∥wu∥2 −1

2
, εs,v =

∥wv∥2 −1
2

, εs,uv = wT
u wv. (3.3)

Volino et al. (2009) approximate the standard StVK model zeroing out off-diagonal terms
in the matrix that relates strain and stress, σ = Eε . Then, in the diagonalized StVK, each
membrane stress component depends only on its corresponding strain component, σs,i(εs,i).

Soft Constraints. Weft- and warp-stretch are measured through a subtle modification of the
Green-Lagrange strain tensor, defining terms that are quadratic in positions instead of quartic:

εs,u = ∥wu∥−1, εs,v = ∥wv∥−1, εs,uv = wT
u wv. (3.4)

Spring Bending. The deformation is measured based on weft and warp ring-2 springs for
weft- and warp-bend, and diagonal ring-2 springs for diagonal-bend. Same as for membrane
deformation, strain is measured as the relative change of edge length (Eq. 3.1).

Discrete Shells Bending. It is measured as the change of dihedral angle at edges:

εb,i =
1/h0(θ −θ0), (3.5)
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with θ the current angle, and θ0 the undeformed angle. Grinspun et al. (2003) and Bridson
et al. (Bridson et al., 2003) discovered concurrently the appropriate weighting of the angle
change in order to model homogeneous bending on irregular triangle meshes with a homo-
geneous stiffness. Grinspun et al. define h0 as a third of the average of the heights of the
two triangles incident to the edge. This definition implies that bending energy density is inte-
grated over edge-centered rectangles of size l0 ×h0. With our separation of weft-, warp- and
diagonal-bending to capture anisotropy, the bending models in Discrete Shells and by Baraff
and Witkin (1998) are equivalent up to a stiffness scale factor.

3.3.2 Nonlinear Stress-Strain Curves

The generic force density model F =−σ∇ε defined above assumes a linear stress-strain curve
σ = kε . However, stress-strain curves are potentially nonlinear functions. Then, for each de-
formation component, we model stress as a function σi = ki(εi)εi, with a strain-dependent
stiffness ki encoded using Hermite splines. We enforce non-negative constraints on the stiff-
ness values at control points. The resulting nonlinear force density function, Fi =−ki(εi)εi∇εi

yields a conservative force field, but note that the elastic energy density can no longer be de-
fined simply as 1

2kε2, and would now require the integration of the stiffness function.

Although only Volino et al. (2009) propose a general nonlinear stress-strain relationship
(though many systems use some form of strain limiting instead), the same construction can
easily be built on any of our selected models. Because linear models fit the data poorly, we
used the nonlinear model in all cases, resulting in a consistent set of models, parameterized
by the number of spline control points, which reduces to the widely used linear models when
each spline has a single control point.

3.4 Fitting

The key question of how well a given model describes a particular piece of cloth is answered
by fitting the model to the measurement data: adjusting its parameters to minimize the differ-
ence between the model’s predictions and the measured behavior, both in position and force.
We do this by solving an optimization problem, leveraging that the cloth is at static equilibrium
at the measured configurations.

In principle all parameters of a cloth model can be fit to a sufficiently rich single deforma-
tion sequence, but this can result in a problem fraught with local minima. In order to achieve
stable fits, we have designed an incremental optimization procedure that fits model parameters
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a few at a time using the isolated deformations described in Section 3.2.2.

3.4.1 Optimization Problem

For each different cloth sample, we have created a simulated replica with the same mass, uni-
formly distributed, and the same 100mm square geometry, discretized with a regular 25×25-
node mesh, connected either with springs or with quadrilaterals split into triangles, depending
on the model. In each measurement sequence, a different set of nodes is fixed to rigid bodies
representing the clips. For the bending measurement sequences (see Fig. 3.3), we fix all cloth
nodes above the edge of the table. The measured pulling forces of the cords are applied as
point forces on the rigid bodies at known locations, with known magnitudes and orientations.

Given a set of captured static deformation frames, we wish to know the (nonlinear) stress-
strain curves for the deformation components of a cloth model, such that a simulated cloth
matches known positions and forces as well as possible. Specifically, we minimize the weighted
error of cloth positions and clip forces over a sequence of measurement frames, subject to the
constraint of static equilibrium on all frames. For the formulation of the objective function,
we concatenate in vectors the positions, xn, and the net forces, Fn, of free cloth nodes at all
frames, as well as the forces, Fc, applied by the cords on the clips. Due to equilibrium, the net
force on the clips, produced by cord forces, gravity, and forces from fixed cloth nodes, must
be zero. We indicate with x̃n and F̃c, respectively, the known cloth node positions and clip
forces, measured as described in Section 3.2.

We also concatenate in a vector k the (unknown) stiffness values at the control points of the
nonlinear stress-strain curves for the deformation components of the cloth. Since the pieces of
cloth are homogeneous, we use a single curve for each deformation component for all frames
and all cloth elements. Then, the computation of model parameters based on the minimization
of position and force errors subject to the static equilibrium condition can be formulated as
the following nonlinear constrained least-squares problem:

k = argmin µ∥xn(k)− x̃n∥2 +λ∥Fc(xn,k)− F̃c∥2,

s.t. Fn(xn,k) = 0. (3.6)

In this optimization problem, we use the measured clip positions, x̃c, as known boundary con-
ditions. For stretch tests, the objective function is based only on clip forces, i.e., µ = 0,λ = 1,
while for bend tests it is based only on cloth positions (since there are no measured forces),
i.e., µ = 1,λ = 0. For shear tests, the objective function is based only on clip forces parallel
to the direction of the clips themselves. We observed that, in situations of near-homogeneous
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shear, the clip-parallel forces are dominated by shear, while clip-orthogonal forces are domi-
nated by stretch. Then, by fitting only clip-parallel forces we reduce the sensitivity to potential
errors in stretch stiffness.

The optimization problem contains two unknowns: the parameter vector k and cloth node
positions xn. We solve the optimization in an iterative manner, refining k and xn separately
on two nested loops. In an outer loop, we refine k by local minimization of the error function
and, in an inner loop, we recompute xn to satisfy the equilibrium constraint.

Outer Loop. Assuming cloth positions that satisfy the (nonlinear) equilibrium constraints
on all captured frames, we locally linearize those constraints w.r.t. both k and xn. As a result,
we obtain a linear expression that relates node positions to parameter values:

∂Fn

∂xn
∆xn +

∂Fn

∂k
∆k = 0 ⇒ ∆xn =−∂Fn

∂xn

−1
∂Fn

∂k
∆k. (3.7)

We also locally linearize clip forces,

∆Fc =
∂Fc

∂xn
∆xn +

∂Fc

∂k
∆k, (3.8)

and we turn Eq. 3.6 into a linear least squares problem, which we solve to refine the parameters
k(i+1) = k(i)+∆k, with:

∆k = argmin µ∥xn(i)− x̃n −
∂Fn

∂xn

−1
∂Fn

∂k
∆k∥2+

λ∥Fc(i)− F̃c +

(
∂Fc

∂k
− ∂Fc

∂xn

∂Fn

∂xn

−1
∂Fn

∂k

)
∆k∥2. (3.9)

We terminate the outer loop (and hence the overall optimization) when the residual is
reduced by less than 1% between two consecutive iterations. To ensure convergence of the
Newton-like iterations and to enforce non-negativity constraints on the components of k, we
execute a line search from k(i) to the solution of Eq. 3.9 if the residual grows or if the solution
violates some constraint. The solution to the linear least squares problem requires solving a
system Ak = b, where the size of A is given by the number of unknown stiffness values, |k|.
In our test examples, this number was always below 10, and we solved the linear systems
using LDL factorization. The formulation of A, on the other hand, requires solving |k| linear
systems of type ∂Fn

∂xn
y = b, which we did using the conjugate gradient method.
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Inner Loop. Once the parameter values k(i+ 1) are refined, we bring the cloth to a static
equilibrium position, xn(i+ 1). We do this by solving quasi-static simulations until conver-
gence on all captured frames, starting always from the measured configuration xn and using the
measured clip positions x̃c as boundary conditions. We consider that a piece of cloth has con-
verged to equilibrium when ∥Fn∥< 10µN. The quasi-static simulations involve linear-system
solves with the cloth stiffness matrix ∂Fn

∂xn
. We found that, during intermediate iterations, the

stiffness matrix may not always be well conditioned, therefore we have solved the quasi-
static equilibrium problems using additive Levenberg-Marquardt, which effectively produces
a modified stiffness matrix of the form ∂Fn

∂xn
+µI. For improved conditioning, we also use this

modified stiffness matrix in the outer loop.

3.4.2 Incremental Parameter Fitting

The nonlinearity of cloth deformation, together with the complex interplay of various de-
formation components in the resulting forces and positions, make the optimization problem
above extremely complex in the general case, prone to falling in local minima and sensitive
to initialization values. However, we largely alleviate these issues with the design of the five
isolated deformation measurements described in Section 3.2.2, which allow us to separately
fit stiffness curves for the six deformation components described in Section 3.3.1, following
an incremental parameter fitting procedure.

First, we fit in parallel the weft-stretch stiffness curve, ks,u(εs,u), for the weft-stretch se-
quence, and the warp-stretch stiffness, ks,v(εs,v), for the warp-stretch sequence. We ignore
shear and bend parameters for stretch fits, as we have observed that they have little effect. Sec-
ond, using known stretch stiffness curves, we fit the shear stiffness ks,uv(εs,uv), for the shear
sequence. Third, we fit in parallel the weft-bending stiffness kb,u(εb,u), for the weft-bending
measurement sequence, and the warp-bending stiffness kb,v(εb,v), for the warp-bending se-
quence. Finally, we fit the diagonal-bending stiffness curve kb,uv(εb,uv), using both weft- and
warp-bending measurements. To better account for cross-influence of shear and bending, we
use their estimated values as initial guesses and run another fitting iteration.

To fit each stiffness curve ki(εi), we iteratively subdivide the Hermite spline adding more
control points until the residual error function Eq. 3.6 is reduced by less than 1% or a specified
maximum number of points, usually 4 or 5, is reached. First, we evaluate the strain histogram
for the corresponding measurement sequence, and we determine maximum and minimum
strains after removing outliers. We initialize the stiffness curve with one control point (i.e.,
constant stiffness), and subsequently we subdivide the strain range with equidistant control
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Fig. 3.5 Raw force measurements for X stretching in Sample #18. Cloth is held by two bar
clips, with two cords attached to each clip.

points.

3.5 Results

We tested our system on four fabric samples, including a knit and the three common weave
patterns (plain weave, twill, and satin), and three fiber types (cotton, wool, and synthetic):
cotton satin (#4), rayon/spandex knit (#12), cotton denim (#14), and wool/cotton blend (#18).
Each fabric was tested with seven deformations (see Section 3.2.2): for fitting, stretch in X
and Y, simple shear, and bending in X and Y; and for evaluation, complex shearing and corner
pulling. Fig. 3.5 shows the four individual tension measurements for a typical stretching test,
plotted as a function of the overall extension of the cloth. The measurement shows the typical
behavior of a woven fabric: a nonlinear curve with increasing stiffness for higher strain, and
large hysteresis. The test repeats three times, retracing the same loop each time after the initial
extension from rest.

We worked with three cloth models built from the components described in Section 3.3.
The Springs model uses the spring membrane model with the spring bending model; the Soft
Constraints model uses Baraff and Witkin’s membrane model with the Discrete Shells bending
model; and the StVK model uses the diagonalized St. Venant-Kirchoff membrane model with



3.5 Results 29

the Discrete Shells bending model. We fit all the models in four variants: linear (constant
stiffness for each deformation mode), isotropic (identical stiffness in warp and weft), linear
and isotropic (the simplest variant), and nonlinear orthotropic (the most general variant). The
results are too numerous to include in this chapter; we refer the reader to Appendix A, which
illustrates the behavior of the nonlinear orthotropic variant of all three models for all four
fabrics, and the behavior of the variants of the Soft Constraints model for denim, a largely
nonlinear and anisotropic material.

Observations. In Fig. 3.6 and Table 3.2 we present results for fitting the Soft Constraints
model to Sample #12. For each test we show a selected frame (near maximum distortion)
with renderings illustrating the captured and fitted cloth geometry and forces. To illustrate the
fitting residuals more quantitatively, we show a force-displacement plot comparing a summary
of the measured forces to the predictions of the fitted model and a vector-field plot illustrating
the position error over the geometry of the fitted mesh (see caption for details). Similar tables
are shown for all cloth samples and several model variants in the supplementary document.

The four selected fabrics span a large range of possible cloth behaviors. In a nutshell, #12
is isotropic and very compliant in stretch and bending; #4 is also isotropic, very stiff in stretch
but compliant in bending; #14 is stiff and quite isotropic in stretch, but extremely anisotropic
in bending (with 33/1 stiffness ratio in weft and warp); and #18 is anisotropic both in stretch
(with 10/1 stiffness ratio) and in bending (with 13/1 stiffness ratio). The maximum stretch
stiffness for #4 is 250 times higher than for #12, while #14 is 10 times stiffer in shear than
any other fabric. All four fabrics show similar hysteresis behavior, with loading-to-unloading
stretch stiffness ratios ranging from 1.4/1 to 1.8/1. Sample #12 is nearly linear in the test
deformation range, while all other three fabrics exhibit nonlinearity. Interestingly, nonlinearity
may arise in some deformation modes but not in others, with no clear pattern.

For stretching, all three cloth models fit nicely to the average of the hysteresis bands, even
in highly nonlinear cases. The fitting residual is larger for stiffer fabrics, and the nonlinear or-
thotropic model variants fit anisotropic fabrics best, as expected, while linear and/or isotropic
variants reach a reasonable compromise but are not always able to remain inside the hystere-
sis band. For shearing, the fitting force residual is larger for #14, the stiffest fabric. Across
models, the Soft Constraints and StVK models fit to the average of the shearing hysteresis
band, while the Springs model deviates at times. For bending, no forces are available, and we
evaluate the position residual as well as profiles of sample curves orthogonal to the support
plane. The fitting residual is similar for all fabrics, but distinctly higher for the Springs model.
Often, the residual is dominated by a difference in curl near the edge of the sample, while the
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Fig. 3.6 Fitting results for Sample #12 with the Soft Constraints model. Top to bottom; Stretch-
X, Simple shear, Bend-X, Corner pull, Complex shear. Left to right: captured geometry, equi-
librium of fitted model, force comparison (thin line: measurement; thick line: model), position
residual (vertex position minus corresponding measured position, magnified 5x). “Effective
shear” is the shear angle of the best-fit transformation to the motion of the clamped cloth ver-
tices. “Aggregated torque” is the torque about the center of the cloth applied by the clamps,
with every other clamp counted negatively. “Stretching force difference” is the difference in
the two corner-to-corner stretching forces.

overall shape is well fit.

The last two rows of Fig. 3.6 show the evaluation tests; these data were not used in fitting
the models. The behavior of sample #12, the most linear fabric, is predicted well in all cases, as
seen in the force-displacement plots, the buckling behavior in corner pulling, and the (lower)
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Scenario Stretch-X Stretch-Y Shear Bend-X Bend-Y

Residual 0.53N 0.62N 0.22N 21.3mm 22.0mm

Table 3.2 RMS residuals of non-linear orthotropic fitting to Sample #12 with the Soft Con-
straints model.

effective shear stiffness of the sheet when allowed to buckle in the complex shear test. In the
three other samples, however, the force-displacement plot of the corner pulling test reveals that
the stiffness is underestimated for the Soft Constraints and StVK models, and overestimated
for the Springs model. Visually, the mismatch is more apparent in the complex shear test,
where models with underestimated stiffness exhibit wider folds than the real fabrics.

We have also evaluated the fitted models on new test samples of each fabric, to validate
their generality. Specifically, we have tested stretching on new samples of rayon/spandex knit
(#12.2) and cotton denim (#14.2), and shearing on new samples of cotton satin (#4.2) and
wool/cotton blend (#18.2). The force-displacement plots of the real cloth samples, shown in
the supplementary document, indicate very similar behavior between fitting and test samples
for #12 and #14, and a larger disparity for #4 and #18. The evaluation plots for the simulation
models behave similarly for the test and fitting cases, but the matching quality depends on the
actual disparity across cloth samples.

3.6 Discussion and Future Work

In this chapter, we have presented a novel system for observing cloth behavior, including com-
plete information about deformation and forces, and a new method for fitting and evaluating
cloth models using the measurements. Our system is different from standard textile testing
systems because it captures detailed geometry information; it is different from previous cloth
capture systems in that it captures complete force information and measures deformations of
a 3D surface. The combination of very complete position and force information provides an
unprecedented view into the complex behavior of cloth.

Our measurement setup offers very accurate control over membrane deformations, but the
bending tests require manual intervention and are thus less precise. Furthermore, the bending
tests are most accurate for samples with straight edges, but some cloth materials (in particular
knit) tend to curl up at free boundaries. In order to eliminate these problems, we would like to
investigate alternative ways of controlling bending deformations in the future.
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The data from our experiments shows some of the limitations of current models. The most
obvious of these is hysteresis—all widely used cloth models are elastic, but cloth is clearly far
from elastic, resulting in quite large errors for any given point in the experiment. There are
many paths for future work in measurement, including more complete exploration of strain
space (including compression) and capture of dynamic properties, and in fitting, where new
ways of evaluating fitting error are needed that can work when the cloth’s equilibrium state is
unstable or non-deterministic.

While overall force-displacement behavior is nicely matched, the actual folding shapes of
simulated cloth may deviate largely from the captured cloth, because even a small change in
material properties may lead to distant stable configurations in the L2 sense. For this reason,
the traditional L2 metric is not appropriate for evaluating error in this case. The discontinuity
of stable configurations is also the cause of flickering and twitches in some of our examples.

The Springs model exhibits the worst fitting quality in shearing force-displacement curves,
and the highest fitting residual for bending. This is probably due to the inherent coupling of
stretch and bending deformation components in this model. Nevertheless, the overall defor-
mations in complex shearing fit reasonably well. In contrast to continuum models, complex
parameter tuning has often been regarded as a caveat of mass-spring models; but our results
indicate that satisfactory parameter estimation is possible by incorporating anisotropy and
nonlinearity into the model. The Soft Constraints and StVK models produce results with very
similar quality, which is expected as the models present only subtle differences as described
in Section 3.3.1.

At least three effects are missed by the tested models: hysteresis, Poisson effect (due to
the diagonalization of the standard StVK model), and cross-modal stiffening (e.g., shear stiff-
ening due to stretching). We indeed identified stretch stiffening in the shearing deformations,
therefore we chose clip-parallel forces as objective function to minimize the effect of stretch
errors on shear optimization. We conjecture that missing cross-modal stiffening may also be,
to a large extent, the reason for stiffness underestimation in the corner pulling test for the Soft
Constraints and StVK models. An extension to the nonlinear model of Wang et al. (Wang
et al., 2011b) could help alleviate these problems.



Chapter 4

Data-Driven Modeling of Hyperelastic
Objects

In Chapter 3, we have presented a cloth capture and measurement setup that provides com-
plete information on geometry and boundary conditions (applied loads) in the experiments.
Then, we have used that information to estimate strain-dependent parameters of several pop-
ular cloth models. However, we identify two major limitations of this approach. One is that
through strain-space interpolation of stiffness parameters it is difficult to enforce fundamental
properties of elastic forces, such as integrability and energy convexity. The other is that it
turns out complicated to estimate parameters in a progressive manner.

In this chapter, we present:

• A general hyperelastic material model based on separable energy terms that can capture
extreme nonlinearties and heterogeneity.

• A parameter estimation system that takes advantage of the energy-based deformation
model and works with a variety of input data types.

4.1 Introduction

A growing interest in computer graphics is to produce simulation models that match the elastic
behavior of deformable objects in the real world. One possibility to reach this goal is to acquire
example deformations of real objects, and estimate parameters of constitutive models that best
match the acquired examples. Unfortunately, real materials show a high degree of complexity,
in the form of heterogeneity, anisotropy, and nonlinearity.
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Energy

Fig. 4.1 Nonconservative elastic forces may produce uncontrolled energy growth, which leads
to stability.

A common temptation in previous work was to produce nonlinear materials by making the
coefficients of a linear strain-stress relationship strain-dependent, thus making the resulting
model nonlinear Bickel et al. (2009); Wang et al. (2011a). Unfortunately, this choice makes
forces non-integrable, as the stress is no longer guaranteed to be the derivative of some energy
field.

Fig. 4.1 shows an example of a triangle with two fixed vertices and the third one moved
in circles. The plot shows the growing energy, computed as the work done to move the vertex
with a Saint Venant-Kirchhoff (StVK) material model with strain-dependent Young modulus
E = ε1 + 2ε2 + 3ε12, where ε1 and ε2 are stretches, and ε12 is shear strain. As we discuss in
the next sections, with our energy-based parameterization of hyperelastic materials we achieve
force integrability by construction, and we enforce energy convexity thanks to a constraint-
based parameter estimation.

We propose to define general hyperelastic materials using an additive model of separa-
ble energy terms, each of them obtained by interpolating strain-dependent energy parameters.
With this formulation, elastic models are conservative by construction. In addition, the ad-
ditive model allows progressive estimation of parameter values, as well as the definition of
energy terms that depend on diverse deformation metrics. We also enable the addition of
constraints to the energy formulation, allowing the efficient implementation of extreme non-
linearities.

We show that, with the right choice of energy terms and basis functions, our model can
exactly match common standard models. But, with our parameter optimization, the general
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elastic model can match more complex nonlinear, anisotropic, heterogeneous objects. The
optimization takes as input force-deformation examples in static equilibrium, and estimates
material parameters such that the deformations and forces best match the measured ones.

Our formulation is general, and can be used to model volumetric elastic objects as well as
thin shells. In this chapter, we show the application of our model to the estimation of com-
plex nonlinearities in cloth, extreme nonlinearities of finger skin deformation, and combined
mechanical model estimation and non-rigid registration of internal human anatomy in medical
imaging data.

4.2 A General Model of Hyperelasticity

In this section, we present our model of hyperelasticity based on the addition of strain-dependent
energy terms. Our model is general, and it can model the elastic behavior of volumetric
solids, as well as shells through a decomposition of membrane and bending energies. We
start with the formal definition of the additive energy model, followed by a description of
strain-dependent energy addends. We discuss the connections between our model and several
standard hyperelasticity models as well. We continue with a discussion of additional features,
such as the enforcement of energy convexity, heterogeneity, and the use of energy constraints.
Finally, we conclude with remarks concerning the use of our model in the context of FEM
simulations.

4.2.1 Additive Energy Model

The elastic forces of a hyperelastic material can be defined using a generic strain energy den-
sity function. Given a point X in rest position, deformed to position x, the deformation gradient
is defined as F = ∂x

∂X . Then, the strain energy density can be defined as a generic function of
the deformation gradient, Ψ(X) = f (F(X)). Alternatively, we can express the energy den-
sity as a function of the Green strain tensor ε = 1

2

(
FT F− I

)
, i.e., Ψ(X) = f (ε(X)). Finally,

elastic forces can be obtained by differentiating the integral of strain energy density. With an
energy-based definition of the hyperelastic material, forces are integrable by construction.

The complete strain energy density depends on all terms of the strain tensor, but we find
that it is convenient to express the energy using an additive model, where some addends de-
pend on individual strain terms, and others complete the remaining energy as a function of
multiple strain terms. This additive decomposition of the energy enables the estimation of
individual addends, plus a progressive estimation of the full energy, as we will show in Sec-
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tion 4.4 for several examples. The strain energy density can be defined in an additive manner
as:

Ψ(X) = ∑
i

Ψi(εi(X)). (4.1)

In this representation, the addend-wise dependency of strain, εi, denotes the possibility to use
a different strain metric for each energy addend. In this way, our additive energy definition
is very general, and it can represent as additive models popular hyperelastic models, such as
StVK, Ogden, Neo-Hookean, etc. (Ogden, 1997). In the StVK model the energy addends
are given by quadratic terms of the Green strain tensor, in the Ogden model they are given
by various powers of principal stretches, and in the Neo-Hookean model the energy depends
on the first invariant of the left Cauchy-Green strain tensor, which corresponds to the sum of
squared principal stretches.

4.2.2 Interpolated Energy Functions

Since our goal is to estimate hyperelastic materials in a data-driven manner, we design a
representation of each energy addend Ψi that allows capturing arbitrary nonlinearities (up to
hyperelasticity, not other nonlinearities such as time-dependency). We design each energy
addend as the interpolation of energy samples in the addend-dependent strain domain:

Ψi(X) = ∑
j

φ(εi(X)− εi j)Ψi j, (4.2)

where φ denotes some basis function, Ψi j its corresponding weight, and εi j a particular sample
of the strain component εi.

We have considered two general ways of interpolating energy samples. For one-dimensional
strain domains, we distribute energy control points evenly, and interpolate them using cubic
Hermite splines. For high-dimensional strain domains, we use Gaussian radial basis functions
to interpolate scattered control points. By using basis functions with local support, during
data-driven parameter estimation each energy control point is influenced only by a fraction of
the input data, thereby simplyfing the structure of the optimization problem.

But the choice of basis functions also allows us to replicate standard models exactly. Let
us take, for instance the StVK model, with strain energy density Ψ = λ

2 tr(ε)2 + µ tr(ε2), λ

and µ Lamé parameters, and ε Green strain. In the 2D case, with stretches ε1 and ε2 and shear
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strain ε12, this strain energy density can be rewritten in an additive manner as:

Ψ =

(
λ

2
+µ

)
ε1

2︸ ︷︷ ︸
Ψ1

+

(
λ

2
+µ

)
ε2

2︸ ︷︷ ︸
Ψ2

+λ ε1 ε2︸ ︷︷ ︸
Ψ3

+2 µ ε12
2︸ ︷︷ ︸

Ψ4

. (4.3)

The energy addends Ψ1, Ψ2 and Ψ4 are unimodal and can be represented in the format of
Eq. 4.2 using just one quadratic basis function each. The addend Ψ3, on the other hand, is
bimodal and can be represented using one bilinear basis function. We have tested the ability
of our additive interpolated model and optimization framework to match in practice test de-
formation data generated with a pure StVK model, and we found that energies are matched
exactly.

But once the correspondence with standard models is analyzed, the power of our proposed
additive model lies in the versatility to introduce additional features. Some of them are:

• Anisotropy, which could be added, e.g., to Eq. 4.3 simply by using different functions
for the stretch energy addends Ψ1 and Ψ2.

• Additional strain-dependency (e.g., material hardening), which could be obtained by
adding further control points to each energy addend.

• Cross-stiffening, which could be modeled with an additional addend dependent on the
principal strain.

• Volume/Area preservation or strain limiting, which could be modeled as energy ad-
dends that weight the deviation w.r.t. default volume, area, or strain values. Patterson et
al. (2012) also formulate volume preservation as an energy addend.

4.2.3 Convexity

In addition to the integrability of elastic forces, another desirable property of a strain energy
density function is convexity, which will ensure passivity of the mechanical model and stabil-
ity of numerical integration under some choice of time step. An energy function is convex iff
the eigenvalues of its Hessian are always positive. The definition of an additive energy model
with separable addends might suggest enforcing convexity of each addend individually, but
this limits the versatility of the optimization procedure in practice. Taking again as example
the 2D StVK model in Eq. 4.3, the bimodal addend Ψ3, which captures area preservation, is
concave. With a regular StVK model, enforcing convexity of the added energy is simple, as
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Fig. 4.2 A large negative λ , that creates a nonconvex strain energy density function, produces
a diverging motion instead of restoring the triangle to its rest configuration.

it reduces to imposing conditions on the Lamé parameters. The shear modulus µ is always
positive, but a large negative value of λ can turn the energy concave along some direction.
Fig. 4.2 shows diverging motion of a deformed triangle due to large negative λ . With a strain-
dependent model, energy convexity is harder to enforce, as it may be locally violated.

Fortunately, we relax the need to explicitly constrain the energy Hessian in the full strain
domain in the following way. In practice, we found that unimodal energy addends (e.g.,
stretch, shear, cross-stiffening, or strain limiting) can be assumed to be convex. Hence, we
enforce convexity of these addends separately, simply in their respective one-dimensional do-
mains. For bimodal energy addends, since all other addends are convex, it turns out sufficient
to enforce convexity of the full energy in the two-dimensional domain of the bimodal addend.
In Section 4.3.3, we describe the enforcement of convexity in the context of our optimization
framework for parameter estimation.

4.2.4 Heterogeneity

To model heterogeneous materials, we make use of the flexibility of our additive energy model.
Given a deformable object, we sample it in material space at the desired resolution to capture
material heterogeneity, and we define a separate additive energy model Ψk at each sample
point Xk. Then, to obtain the strain energy density at an arbitrary test point X in material
space, we first evaluate energies at the sample points using the deformation at the test point X,
and then interpolate these energies:

Ψ(X) = ∑
k

φ(∥X−Xk∥)Ψk(ε(X)). (4.4)

In our examples, we interpolate strain energy densities in material space using as basis
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functions φ normalized Gaussian radial basis functions.

4.2.5 Energy Constraints

Modeling extremely stiff materials using strain energy density functions implies two major
difficulties. One is the need to solve stiff systems of equations during simulation, which usu-
ally requires tiny time steps and slows down the convergence rate of commonly used solvers.
The other is that the generation of reliable force-deformation data requires expensive setups.

As an alternative to stiff energy models, we propose to augment the additive energy model
described so far with energy constraints. Several authors have enforced in the past constraints
on strain (Goldenthal et al., 2007; Perez et al., 2013; Provot, 1995; Thomaszewski et al., 2009;
Wang et al., 2010) or volume (Irving et al., 2007) to model extreme nonlinearities. As a small
variant, we express constraints on strain energy density, which allows us to constrain either
individual addends, combinations, or the total energy. In general, energy constraints can be
expressed as:

C = Ψmax −Ψi(X)≥ 0. (4.5)

4.2.6 FEM Simulation

In our examples, we have used FEM to discretize elastic deformation problems, and we have
tested tetrahedral elements with linear interpolation and hexahedral elements with trilinear
intepolation. To compute elastic forces, we first integrate the strain energy densities over
each element using quadrature points (1 point for tetrahedra and 8 points for hexahedra),
and then differentiate these energies w.r.t. element nodes. We have implemented elastic force
computation using finite differences, which reduces to performing multiple evaluations of each
element’s strain energy (13 for tetrahedra and 25 for hexahedra). Each strain energy density
evaluation on a quadrature point requires: first, the evaluation of each energy addend for each
nearby material sample, according to Eq. 4.2; second, the computation of the total energy for
each nearby material sample, according to Eq. 4.1; and third, the interpolation of energies
from material samples, according to Eq. 4.4. Implicit integration or (quasi-)static simulation
also require the Hessian of the energy, which again we compute through finite differences of
forces.
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4.3 Data-Driven Material Estimation

In this section, we describe our general optimization framework for the estimation of material
parameters in our energy model. Later in Section 4.4, we discuss how we use this framework
iteratively in several applications with very diverse deformations and data, ranging from sparse
to dense measurements.

Let us consider a general deformable model with a vector q that concatenates all its nodal
positions, and a vector f that concatenates all nodal forces. Our optimization framework re-
ceives as input a set of N example deformations in static equilibrium. Each of the example
deformations is produced from some known boundary conditions (forces fc and/or positions
qc), and contains some known measurements m̄. We consider diverse types of measurements,
such as positions, forces, or image intensities.

The goal of the optimization framework is to estimate a vector p of material parameters
consisting of energy control points, such that the least-squares error between the known mea-
surements m̄ and their estimated values m(f,q) is minimized, subject to static equilibrium and
energy convexity. We formally define the objective function of the optimization by summing
the error over all examples:

f =
1
2

N

∑
i=1

wi ∥mi([qi, fi] (p, fc,i,qc,i))− m̄i∥2. (4.6)

We enable the possibility to weight examples differently with {wi}. In the expression above,
we explicitly indicate that estimates of measured variables m depend on simulated positions
and forces, and through these they depend on estimated parameters and boundary conditions.
Note that the measured variables and the nodes where boundary conditions are applied may
differ across examples.

Our optimization framework iterates the following three steps until convergence:

1. Update of parameter estimates.

2. Convex energy projection of parameters.

3. Static equilibrium on all examples.

Next, we discuss these three steps in detail.
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4.3.1 Parameter Estimation

In each iteration of parameter estimation, we minimize Eq. 4.6 subject to energy convexity
and static equilibrium. We treat these two types of constraints differently. We do not enforce
energy convexity during parameter updates, and instead, we compute an unconstrained update
and project the parameters to a convex configuration afterwards, as described in Section 4.3.3.
On the other hand, we enforce static equilibrium implicitly during parameter updates. We
do this by computing a Jacobian of positions w.r.t. parameters that respects static equilibrium.
After the parameter update, it is anyway necessary to project all examples to static equilibrium,
as they may have slightly deviated.

For each input example, we formulate the Jacobian of positions w.r.t. parameters ∂qi
∂p

through the application of the implicit function theorem on the static equilibrium constraints.
In its most general formulation, our energy model includes energy constraints; therefore, static
equilibrium forces include energy constraint forces: fi + Ji

T
λi = 0. In this expression, we

assume that energy constraints are enforced through Lagrange multipliers, and Ji =
∂Ci
∂qi

is the
Jacobian of active energy constraints Ci for the ith example. The enforcement of hard energy
constraints complicates the application of the implicit function theorem, as it requires to first
solve for Lagrange multipliers.

However, we observe that the purpose of the implicit function theorem is just to provide a
suitable Jacobian of positions w.r.t. parameters. For this purpose, we found that it is sufficient
to approximate energy constraints as soft constraints with energy 1

2 k∥C∥2, for some large
value of the stiffness k. Taking only active constraints, the static equilibrium in the ith example
can then be reformulated as:

fi − k Ji
T Ci = 0. (4.7)

Differentiating the static equilibrium constraints w.r.t. the vector of parameters, we obtain:

∂ fi

∂p
− k Ji

T ∂Ci

∂p
+

∂ fi

∂qi

∂qi

∂p
− k Ji

T Ji
∂qi

∂p
= 0. (4.8)

And from this we obtain the Jacobian of positions that satisfies equilibrium:

∂qi

∂p
=

(
∂ fi

∂qi
− k Ji

T Ji

)−1(
∂ fi

∂p
− k Ji

T ∂Ci

∂p

)
. (4.9)

In practice, we evaluate all terms in this expression using finite differences, but accounting for
sparsity patterns for efficiency. If the energy model does not include energy constraints, it is
sufficient to drop the related terms from the expression.

By enforcing static equilibrium constraints implicitly in the Jacobian of positions, the op-
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Fig. 4.3 Evaluation of the fitting quality of our energy model on force-deformation data of two
cloth samples. Left half: sample A, rayon/spandex knit. Right half: sample B, cotton/denim.
The first and third columns show one frame of a corner-pull deformation, and the second and
fourth columns show one frame of a complex shear deformation. The top row shows the input
data (not used for training), the middle row shows simulated results with our fitted model, and
the bottom row shows per-vertex error.

timization problem Eq. 4.6 turns into an (unconstrained) nonlinear least-squares problem. We
solve this problem iteratively using Gauss-Newton followed by a line-search. Gauss-Newton
requires the evaluation of the derivative of the estimates of measurements mi, which can be
written as:

∂mi

∂p
=

∂mi

∂qi

∂qi

∂p
+

∂mi

∂ fi

∂ fi

∂p
. (4.10)

In this expression, we plug in the Jacobian of constrained positions Eq. 4.9. The Jacobians
of estimates of measurements w.r.t. positions ∂mi

∂qi
and w.r.t. forces ∂mi

∂ fi
are trivial when those

measured variables are positions and/or forces, as is the case in some of our experiments. In
cases where the measured variables depend in a complex way on simulated forces and posi-
tions, such as image intensity in one of our experiments, we opt to compute their derivatives
w.r.t. the parameters directly through finite differences.
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Fig. 4.4 Evaluation of the fitting quality of our energy model on 3D MRI data of a knee.
The left image and the three top images constitute the input MRI data Rhee et al. (2011). The
bottom three volume-rendering images have been obtained by deforming the left image to best
match the top images, in a combined hyperelastic model estimation and image registration.

4.3.2 Static Equilibrium

After each update of material parameters, we reproject all input examples to static equilibrium.
We use a different method depending on the type of deformable object and energy model.

For volumetric objects whose energy model does not contain energy constraints, we found
that Newton-Raphson-type root-finding performs best. For thin shells (e.g., cloth) with no en-
ergy constraints, we found that dynamic relaxation with kinetic damping (Volino and Magnenat-
Thalmann, 2007) performs best.

For objects with energy constraints, static equilibrium should be posed as the minimiza-
tion of potential energy (elastic plus gravitational) subject to the energy constraints. We found
that, instead of imposing constraints on quasi-static iterative updates, we obtain better con-
vergence by imposing constraints on dynamic solves in the context of dynamic relaxation.
For the enforcement of energy constraints in dynamic solves, we use a Lagrange multiplier
formulation and an LCP solver (Cottle et al., 1992), analogous to constraint-based solvers for
contact problems.

4.3.3 Convex Energy Projection

In Section 4.2.3, we have discussed the importance of enforcing convexity of strain energy
density functions. For our additive energy model, a sufficient convexity condition is to im-
pose convexity of unimodal addends in their one-dimensional strain domain, together with
convexity of the full energy in the strain domain of multimodal addends.
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Dataset StVK A. Stretch Nl. Stretch A. Shear Area Pres. Cross-Modal

A-Pos. (mm) 0.6299 0.6229 0.6242 0.6177 0.6199 0.6194
B-Pos. (mm) 0.8549 0.8584 0.8261 0.7983 0.8031 0.8031

A-Force (N) 0.3484 0.3482 0.3244 0.3196 0.3174 0.3170
B-Force (N) 2.5816 2.5276 2.2807 2.2605 2.2569 2.2569

Table 4.1 Evolution of the position and force RMS error of the two cloth samples as the
strain energy density is augmented with more addends. From left to right: Isotropic StVK,
Anisotropic Stretch, Nonlinear Stretch, Anisotropic Shear, Anisotropic Area Preservation,
Cross-Modal Stiffening.

Given a possibly concave energy function resulting from a parameter update, we project
the energy to a convex space by computing the most similar energy function that satisfies
convexity constraints at a discrete set of strain samples. Let us denote as p̄ the parameter
vector of energy control points resulting from the optimization step. We wish to compute a
new parameter vector p that minimizes the deviation ∥p− p̄∥2. We formulate constraints based
on eigenvalues λ j of the Hessian of energy addends Ψi (or the full energy), evaluated at strain
samples εk:

Ci, j,k = λ j(H(Ψi(p,εk)))≥ 0. (4.11)

We solve this constrained optimization using Interior-Point method in Matlab. This method
handles well complex nonlinear constraints, and it does not become a bottleneck in our exper-
iments.

4.4 Results

We have tested our modeling and estimation framework on a variety of deformable objects and
applications. Each benchmark allows us to test certain aspects of our approach, and altogether
they allow us to validate its generality. In all benchmarks we fit our energy model using real-
world deformations measurements, with high nonlinearity and possibly measurement error.
All experiments were executed on a 2.67 GHz Intel Core i7 920 CPU with 12 GB RAM.

Cloth Models from Force-Deformation Data For this experiment, we have used data cap-
tured by the measurement system described in Section 3.2. Specifically, we have used data
from cloth samples 12 (A: rayon/spandex knit) and 14 (B: cotton/denim).

We have evaluated our additive energy model and its effect on parameter estimation by
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Fig. 4.5 Cross-sections of the knee MRI in the pose with largest bending. Left: original MRI;
Middle: deformation of the straight MRI with our estimated heterogeneous model; Right:
deformation with a homogeneous model. This is one of the most challenging slices, and it
shows the improved registration with the heterogeneous model.

fitting an increasingly complex energy model to the training data. We discretize the cloth
geometry using an irregular triangle mesh with 520 triangles. To formulate the objective
function Eq. 4.6, we use as measured variables the positions of mesh vertices and the forces
on clips attached to the cloth samples. Table 4.1 shows the evolution of position and force
RMS error as the energy model is augmented with more addends. We start with an isotropic
StVK model for membrane deformations and the discrete shells model for bending (Grinspun
et al., 2003), and then add stretch anisotropy, stretch nonlinearity, shear anisotropy, anisotropic
area preservation, and cross-modal stiffening based on the principal strain.

Finally, we have also validated the fitted energy model on the two test datasets. Fig. 4.3
shows representative frames of the two datasets for both cloth samples, with a plot of per-
vertex error.

Internal Tissue Model and Image Registration For this benchmark, we have used 3D
MRI data of a knee obtained by Rhee et al. (2011). The dataset includes volumetric images
for 4 different poses of the knee, shown in Fig. 4.4. This scenario is particularly challenging
because the underlying mechanical model is heterogeneous and there is no correspondence
information between images. The scenario constitutes a classic problem for non-rigid image
registration, for which many approaches exist. However, due to the large deviation between
the input images, standard methods fail, as we have attested using ITK. To avoid the problem
of large initial deviations, an alternative is to first design a patient-specific FEM model, then
deform the source image into the target image using this FEM model, and finally execute the
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registration algorithm (Han et al., 2011). Leveraging our data-driven estimation approach,
we have tested an extension that executes progressive registration plus hyperelastic model
estimation.

We started by segmenting the leg in the first pose, and we meshed it with a tetrahedral mesh
(with 822 tets in our example). We then manually defined a crude correspondence between the
4 input poses (15 point correspondences in our case). We used a subset of 8 correspondences
on the outer skin as boundary conditions during the fitting process, and 7 correspondences in
the interior for the definition of the objective function as the sum of squared position devia-
tions. With this crude data, we estimated a homogeneous elastic model.

Then, we progressively added material samples throughout the model, until the optimiza-
tion converged. For subsequent registration and material estimation steps, we defined as objec-
tive function Eq. 4.6 the sum of image differences between the input poses and the deformed
ones. To evaluate the objective function, we rasterized the deformed tetrahedral mesh us-
ing the source volume as 3D texture map (Gascon et al., 2013), and simply computed image
differences w.r.t. the destination volumes for all voxels inside the tetrahedral mesh.

Fig. 4.4 shows in its bottom row the poses obtained by deforming the source volume with
our final fitted energy model. This model contains 16 material samples to capture tissue het-
erogeneity. The fitted model is not perfect, and it provides a least-squares solution that weights
error in all target poses. As an extra spin to our method, we have also tested to use its deformed
output as input to free-form deformation methods for image registration in ITK (Mattes et al.,
2003; Rueckert et al., 1999). Table 4.2 shows the improvement in RMS image error from
the homogeneous model to the final heterogeneous model, as well as the error using ITK’s
registration initialized with both models. Fig. 4.5 also compares slices of target and deformed
volumes resulting from the heterogeneous model.

Method Homog. Homog. + ITK Heter. Heter. + ITK

Error 65.88 60.80 56.48 52.62

Table 4.2 Registration error (RMS of voxel intensities in a scale from 0 to 255) for the knee
MRI data in Fig. 4.4, using several registration methods: homogeneous (hom.) or heteroge-
neous (het.) energy model, with/without ITK post-registration.

Nonlinear Skin from Finger Pressing Experiments Our final benchmark involves the esti-
mation of a hyperelastic model of finger skin from controlled force-deformation data provided
by collaborators from the European project Wearhap. In this benchmark, in particular, we have
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Fig. 4.6 Plots of contact force vs. contact area for a fingerpad. The dots indicate the input
examples, and the solid lines the results produced by our hyperelastic model with energy
constraints (blue), the elastic component of this hyperelastic model (green) and the linear
elastic model (red).

evaluated the estimation of energy constraints formulated in Section 4.2.5 to capture extreme
nonlinearity. The input data, shown in Fig. 4.6, consists of paired values of contact area vs.
total normal force for one subject’s index fingerpad. The data was collected keeping the sub-
ject’s finger fixed, with the nail-side resting on a fixed surface, while a flat transparent moving
platform was pressed against the fingerpad. The platform was equipped with a force sensor,
and the contact area was estimated by capturing the image of the pressed finger through the
transparent platform.

Using this data, we have estimated a homogeneous hyperelastic model for the skin of the
fingertip. We have replicated the capture scenario, modeling the finger with a 347-tetrahedra
mesh fixed on the nail area, as shown in Fig. 4.7. We have clustered the input data into 4
force-deformation examples. For each of the examples, we move a fixed platform against the
fingerpad until the contact area matches the input value. We formulate the objective function
as the difference between the simulated contact force on the fingerpad and the input force
value, and we update the model parameters as described in Section 4.3.1. In this benchmark,
once a new set of parameters is computed, we enforce energy convexity and recalculate static
equilibrium as described in Section 4.3.2, but we also reposition the moving platform for each
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Fig. 4.7 Simulation of the finger deformation capture experiment. Left: finger in rest pose.
Right: finger deformed due to the platform pressing against the fingerpad.

example to match the input contact area.
We have estimated energy control points for a regular StVK model with the addition of

an energy constraint, alternating the estimation of the StVK model and the energy constraint
until convergence. The force-area result produced by the resulting model is compared to the
input data in Fig. 4.6.

4.5 Discussion and Future Work

In this chapter, we have presented a general formulation of hyperelasticity based on energy
addends that allows modeling and estimating various nonlinear elasticity effects in a separable
manner. We couple our formulation with an optimization algorithm that enables data-driven
estimation of complex hyperelasticity in diverse applications. Two of the main features of
our model are the enforcement of force integrability and energy constraints, overlooked in
previous approaches.

The performance of the optimization algorithm could be further improved. One of its
limitations is that, in practice, we do not guarantee global enforcement of energy convexity.
We enforce convexity only at discrete strain samples, for efficiency reasons. It is worth looking
into simpler ways of enforcing convexity, perhaps by formulating energy addends that are
convex in nature, and then global convexity could be enforced through individual convexity.
Another limitation of our current enforcement of energy convexity is that convexity constraints
are not satisfied implicitly during parameter updates, only through projection afterwards. The
efficiency of the optimizer would increase by handling convexity constraints implicitly, as
currently done for static equilibrium constraints.

The current bottleneck in the optimization is the solution of static equilibrium conditions



4.5 Discussion and Future Work 49

after every parameter update. Our model would benefit from faster static equilibrium solvers,
as well as more drastic minimization methods, which would reduce the number of static equi-
librium solves. Concerning the optimization algorithm, one last limitation is that we rely on
gradient-based optimization, which does not prevent falling in local minima. We partially
avoid such local minima thanks to the incremental increase of complexity of the parameter
space, but with no absolute guarantees.

In addition to hyperelasticity, the example data used in our experiments is likely to exhibit
other nonlinearities, such as hysteresis. Even though modeling such nonlinear effects is or-
thogonal to our contribution, the fact that we do not account for them may bias the estimation
of hyperelasticity in some cases.

We have demonstrated the applicability of our energy model in diverse settings, but further
work would be needed to achieve more accurate material estimations. In particular, in the
medical imaging benchmark, our combined parameter estimation and registration algorithm
is not at the level of specialized registration methods. We instead introduce an interesting spin
to regular methods, which handle registration and model estimation as two separate tasks. For
model estimation, the results could be largely improved by segmenting the data, meshing it
according to the segmentation, and accounting for contact between anatomical structures. In
the finger skin estimation benchmark, the input data is rather crude, just a 1D function, hence
it is insufficient for estimating an accurate model of skin.

To conclude, we think that an interesting extension to our energy model would be to iden-
tify representative energy addends that both minimize the number of parameters and ease their
estimation, while allowing simple enforcement of convexity. One possibility would be to per-
form extensive data mining in force-deformation data, to identify such representative energy
addends.





Chapter 5

Modeling and Estimation of Internal
Friction for Cloth

Previous chapters have focused on modeling hyperelasticity in cloth, always ignoring internal
friction. Several works in mechanical engineering have studied cloth hysteresis, but there is
very little work on it in computer graphics and, in particular, no knowledge about its visual
effects. In this chapter we present:

• An internal friction model, based on Dahl’s friction model (Dahl, 1968), that is able to
produce the observed hysteresis effect.

• A reparameterization of the standard model to account for strain-dependent behaviors
of cloth.

• A capture and measurement setup that allows us to estimate both elasticity and internal
friction parameters.

• An analysis of the visual impact of internal friction in cloth simulation.

This work has been published in ACM Transactions on Graphics (Proceedings of SIG-
GRAPH Asia) (Miguel et al., 2013).

5.1 Introduction

Internal friction in cloth is the source of its characteristic hysteresis behavior. While several
previous works (Lahey, 2002; Ngo-Ngoc and Boivin, 2004) have used complex second order
models to capture internal friction, from our observations of real cloth samples, we conclude
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that simpler first order models, such as Dahl’s friction model, can effectively produce realis-
tic results. We apply this friction model on cloth, but it can be easily extended to solids as
long as the constitutive model used to capture elasticity is able to produce scalar strain mea-
surements. As we will discuss in Section 5.2.4, we also identify features that are not well
captured by the standard model, and propose an augmented reparameterization that includes a
strain-dependent definition of hysteresis.

In contrast to previous work, we will also analyze the visual impact of internal friction in
cloth simulation, describing several interesting visual effects:

• ‘Preferred’ wrinkles and folds, as in Fig. 5.15.

• Persistent deformations, as in Fig. 5.17.

• History-dependent wrinkles, as in Fig. 5.14.

• Faster settling of folds and wrinkles, as in Fig. 5.16.

We also propose simple and inexpensive data-driven procedures for friction parameter
estimation, described in Section 5.3. Previous work relied on complex force-deformation
measurement systems with uniform strain, controlled deformation velocity, and dense data
acquisition (Kawabata, 1980). Our procedures, in contrast, need only sparse data and can deal
with non-uniform strain. We demonstrate procedures for stretch and bending acquisition that
lead to simple optimization problems for parameter estimation.

Finally, in Section 5.4, we present a simple algorithm for the efficient simulation of internal
friction using implicit integration methods. We validate our parameter estimation for several
fabrics by simulating the acquisition procedures, and we also show cloth animation examples
that exhibit disparate behavior with and without internal friction.

5.2 Dahl’s Friction Model

In this section we will first introduce the underlying elasticity model and then discuss the con-
nection between Dahl’s model and the observed features of hysteresis. Most importantly, we
highlight features that are not captured by the standard Dahl model, and propose an augmented
reparameterization that is well suited for parameter estimation given force-deformation mea-
surements.
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5.2.1 Underlying Elasticity Model

To model cloth elasticity we use a thin shell model, similar to the one described in Chapter 3,
that separates membrane and bending energies. For membrane elasticity, we adopt the St.
Venant-Kirchhoff (StVK) model Ogden (1997), with strain-energy density W (E) = λ

2 tr(E)2+

µ tr(E2). E is the Green-Lagrange strain tensor, and λ and µ are the Lamé constants. With
a triangle-based discretization, strain is considered constant per triangle, energy density is
integrated over the triangle area A, and membrane force is computed as F = A∇W .

For bending elasticity, we adopt the discrete shells bending model Grinspun et al. (2003).
Under this model, the discrete strain associated to a deformed edge can be expressed as ε =

3 θ−θ̄

h , where θ (resp. θ̄ ) is the deformed (resp. undeformed) dihedral angle, and h is the
undeformed average height of the incident triangles. Bending forces are computed as F =

Aσ ∇ε , where A = 1
3eh is the area associated to an edge, e the rest length of the edge, σ = k ε

the bending stress, and k the bending stiffness.

For our exposition, it is convenient to employ a unified representation of scalar strain and
stress components. In the remaining, we denote by ε (resp. σ ) an arbitrary scalar strain (resp.
stress), either the bending strain (resp. stress) or an individual component of the membrane
strain (resp. stress). Then we express the force due to a scalar stress on a deformed element
with area A as F = Aσ ∇ε , with σ = k ε , and k the stiffness of the stress on the element.

5.2.2 Characterizing Hysteresis

Fig. 5.1 shows plots of measured end-to-end distance vs. applied force for 10cm × 10cm
square pieces of rayon/spandex knit (left) and denim (right). We used the capture system de-
scribed in Section 3.2 and applied loading-unloading cycles between 20% and 60% stretch for
rayon/spandex and between 0% and 3% for denim, centered at different offset deformations.
We repeated the tests under deformation speeds ranging from 0.5mm/s to 2mm/s, obtaining
very similar force values. While these experiments relied on complex hardware, our estima-
tion procedures, described in Section 5.3, rely on very simple setups.

We draw the following conclusions from the force-deformation data in Fig. 5.1. First,
hysteresis is a strong effect, with a ratio Fmax−Fmin

Favg
at a given deformation of up to 50%. Second,

the amount of hysteresis depends on the deformation range of the load-unload cycle and the
offset deformation. Third, the transition from the load to unload path and back exhibits pre-
sliding, i.e., the opposing friction grows smoothly, not sharply. In our work, we show that a
model of internal friction based on Dahl’s model can replicate this behavior.

Another interesting conclusion about hysteresis is that it produces persistent deformations.
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Fig. 5.1 Force-deformation curves for load-unload cycles of uniform stretch on a
rayon/spandex knit (left) and denim (right).

Fig. 2.2-left shows an ideal linear elastic force with ideal hysteresis cycles. In the unload
path, the displacement stops when the total internal stress is canceled, producing a persis-
tent deformation εper. We have observed such persistent deformations in stretch and bending
experiments with real cloth, and we show that Dahl’s model can replicate this behavior too.

In the rest of this chapter, a positive internal force will indicate a force that opposes defor-
mation, hence the total force acting on cloth should be evaluated as Fexternal −Finternal.

5.2.3 Model and Interpretation

For any scalar strain metric ε (e.g., weft or warp stretch, shear, or discrete-shells bending
strain), Dahl’s model (Dahl, 1968) can be used to define a scalar friction stress σ in terms of
the change of stress as a function of strain, as follows:

dσ

dε
= α

(
1− s

σ

σmax

)γ

. (5.1)

σmax is the maximum friction stress, α is the slope of the stress ratio σ

σmax
at σ = 0, and

s = sign(ε̇) indicates the sign of the rate of deformation. In the rest of the chapter, we restrict
the discussion to a Dahl model with γ = 1. With constant parameters σmax and α , this model
corresponds to a first-order system with time constant τ = σmax

α
, and limiting stress σmax when

strain is increasing, or −σmax when strain is decreasing. Recall that stress is transformed to
forces through multiplication by the element’s area A and the strain gradient ∇ε , as discussed
in Section 5.2.1.

To interpret the parameters of Dahl’s model, it is convenient to analyze the behavior of a
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ffriction

-felastic

per

sat

Fig. 5.2 Three different unload paths for friction forces and negative elastic forces. Intersection
defines equilibrium configuration and a remaining deformation.

linear elastic material with friction in the absence of external forces. Fig. 5.2 shows friction
forces under three possible unload paths, as well as (negative) elastic forces. In the loading
path, friction adds to the elastic force and saturates in all three cases. In the unloading path,
friction gradually decreases and eventually changes sign and opposes elastic forces until an
equilibrium is reached. With constant maximum stress, σmax, the persistent deformation for a
linear elastic material with stiffness k saturates at a value εper =

σmax
k . Then, an effective way

to tune the maximum friction stress is to specify a desired (maximum) persistent deformation,
εper, and the maximum stress is set as σmax = k εper.

The unload paths do not reach saturation in all cases though, only when the deformation
in the loading path reaches a saturation deformation εsat. For practical reasons, we consider
that Dahl’s friction has saturated if it reaches a value ∥σ∥ ≥ cσmax (with, e.g., c = 0.95).
Then, based on the analytic solution of first-order systems, the saturation deformation can be
computed as εsat = εper +

σmax
α

ln 2
1−c . In other words, an effective way to tune the friction

saturation rate is to specify the saturation deformation, εsat, and then the friction saturation
rate is automatically set as α = σmax

εsat−εper
ln 2

1−c .

5.2.4 Parameters for Estimation

The force-deformation data from Fig. 5.1 suggests that the magnitude of hysteresis grows as
the deformation grows. A possible explanation for this growth is that higher strain produces
higher inter-yarn normal forces, and hence higher inter-yarn friction. This effect may be
captured by a strain-dependent maximum stress σmax(ε). Indeed, as shown in Fig. 5.3, we
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Fig. 5.3 Fits of Dahl’s model to the data in Fig. 5.1-right using as parameterizations: (left)
linear σmax and constant τ; (center) constant σmax and constant τ; (right) linear σmax and
constant α .

found that a maximum stress linear w.r.t. strain, i.e., σmax = a+ bε , rendered an excellent
match to the observed hysteresis data.

With linear maximum stress σmax and constant slope of the stress ratio α , the time constant
τ of Dahl’s model becomes strain-dependent. As shown in Fig. 5.3, a constant α does not
capture well the profile of hysteresis across the range of deformations in the measured data,
while a constant τ produces an excellent match.

With these two conclusions in mind, we generalize and reparameterize Dahl’s model as
follows:

dσ

dε
=

σmax(ε)− sσ

τ
, with σmax(ε) = a+bε. (5.2)

For the purpose of parameter estimation, given initial conditions ε0 and σ0, the analytic solu-
tion can be approximated as

σ(ε) = sσmax(ε)+(σ0 − sσmax(ε0))e−s ε−ε0
τ . (5.3)

For constant maximum stress, the solution is accurate. For linear maximum stress, it omits a
varying offset term bounded by ∥bτ∥. In practice, we found this term to be small, as well as a
source of local minima for parameter optimization; therefore, we resorted to the approximate
analytic solution for parameter estimation.
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5.3 Estimation of Friction Parameters

Based on the understanding of Dahl’s friction model, in this section we propose simple proce-
dures to estimate its parameters for different cloth deformation modes. Our procedures each
include an acquisition step and a numerical optimization step. By defining simple principles
for the acquisition step, we can leverage the analytic definition of friction forces, and thus
largely simplify the optimization step. The friction model and the capture principles are gen-
eral, and we demonstrate them by designing estimation procedures for stretch and bending
friction. In both cases, the hardware used for acquisition is extremely simple.

5.3.1 General Rationale

Our parameter estimation procedures share the high-level strategy of many previous approaches
for estimating elasticity parameters, namely: apply known position or force boundary condi-
tions, measure the resulting static deformation, and estimate parameters that minimize force
and/or position errors for the given conditions. Model estimation is cast as an optimization
problem with friction parameters (and possibly elastic parameters) as unknowns.

Elastic forces are defined as explicit functions of elasticity parameters and deformations;
therefore, it is straightforward to define an objective function based on force errors, and use
optimization methods such as Newton’s or its multiple extensions, which make use of force
gradients w.r.t. the parameters. Dahl’s friction forces from Eq. 5.2, however, are defined in
differential form and the derivative is discontinuous. Friction forces are not simply a function
of parameters and deformations. They depend on the path followed by those deformations;
therefore, the application of Newton-type optimization methods is not straightforward. A
possible solution would be to apply slow deformations to the captured material, sample forces
and positions densely along the path of deformation, and locally linearize the friction force at
each sample.

We propose instead friction estimation procedures that rely on simple capture setups and
sparse data. We apply anchor deformations where friction forces are saturated, and then re-
verse the deformation gradually along a monotonic path. Friction forces depend on the path
taken, not its duration; therefore, the friction forces at any position along a monotonic path
starting at an anchor deformation are defined solely by the current deformation and the an-
chor deformation. Following this rationale, we can define friction forces as explicit functions
of friction parameters and deformations, using the analytic expression in Eq. 5.3, with the
strain and stress at an anchor deformation as initial conditions: ε0 = εanchor,σ0 = σanchor =

±σmax(εanchor). Then it is straightforward to compute gradients of friction forces and apply
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Fig. 5.4 Acquisition of stretch for a piece of cotton. From left to right: at rest, deformed under
a weight of 6N, and with a persistent deformation back at rest.

Newton-type optimization methods.

With linear maximum stress σmax, the approximate expression of friction stress Eq. 5.3
corresponding to a measured deformation with strain εi, anchor deformation εanchor,i, and
strain-rate sign si ∈ {1,−1} can be rewritten as

σi = si(a+bεi)−2si(a+bεanchor,i)e−si
εi−εanchor,i

τ . (5.4)

For practical purposes, in the expression above we assume that strain does not switch signs in
the range

[
εanchor,i,εi

]
. For stretch, we perform only tensile experiments, hence the assumption

is trivially satisfied. For bending, we suggest performing separate experiments with positive
and negative curvatures, and estimating separate parameters in each case.

5.3.2 Estimation of Stretch Friction

To estimate parameters of stretch friction (independently for warp and weft directions), we
have devised a procedure to capture force-deformation pairs under quasi-uniform stretch. We
place a 10cm×10cm cloth sample on a vertical plane and we hang various weights from the
lower side as shown in Fig. 5.4. We perform incremental loading and unloading cycles, mea-
suring deformations for weights [0,1, . . . ,n, . . . ,1,0]N, and n varying from 1 to 6 in our ex-
periments. We repeat the full deformation sequence three times. For each measurement on a
loading (resp. unloading) path, we define as anchor deformation the last measurement with a
weight of 0N (resp. nN).
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Fig. 5.5 Fitting of stretch friction parameters for cloth samples of cotton (left), cotton/spandex
(center), and polyester (right).

For the ith force-deformation measurement, we define a force error as the deviation from
force equilibrium between the weight Fi (which includes the external weight, the clip, and the
cloth itself), the elastic force k εi A∇εi, and the friction force σi A∇εi, i.e.,

fi = Fi − k εi A∇εi −σi A∇εi. (5.5)

k is the elastic stiffness, A = L2
0 is the area of the undeformed cloth of width and length L0,

and the friction stress σi is defined as in Eq. 5.4 based on the current and anchor strains. We

use the Green-Lagrange strain ε = 1
2

((
L
L0

)2
−1
)

, where L is the current length of the cloth.

The strain gradient can be computed as ∇ε = L
L2

0
.

Given all the force-deformation measurements, we jointly estimate elastic and friction
parameters by solving the following least-squares problem:

(k,τ,a,b) = argmin∑
i

f 2
i . (5.6)

In addition to linear maximum friction stress σmax = a+bε , we have also estimated a linear
stiffness k. We have solved the non-linear optimization in Matlab using its built-in trust-region
reflective algorithms. To avoid local minima, we initialize the parameters in the following way:
first, we fit the stiffness k with no internal friction, then we fit σmax with very low τ (which
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Material ρ k1 k2 a b τ

cotton 0.143 135.6 64.03 2.22 3.16 0.006
spandex 0.157 4.42 32.19 0.40 4.84 0.088
polyester 0.121 26.62 3.64 2.10 5.41 0.031

Table 5.1 Fitting results for the warp direction on the three samples.

Fig. 5.6 Acquisition of bending for a strip of doublecloth. From left to right: rolled around a
cylinder, after removing the cylinder, and final spiral shape after unrolling.

approximates Eq. 5.4 to σi = si(a+bεi)), and then we fit τ .

Results and Discussion We have tested our stretch friction estimation procedure on cloth
samples of cotton, cotton/spandex, and polyester. Fig. 5.5 compares the measured force-
deformation data and the results of our parameter estimation for the three materials. As a
reference for the fitting results, Table 5.1 shows density (ρ , in kg/m2), stiffness (k1 + k2ε , in
N/m), maximum friction stress (a+bε , in N/m), and time constant (τ , dimensionless) for the
warp direction on the three samples.

Thanks to the use of sparse data, our parameter estimation procedures work well with
coarser capture resolution, and hence allow the use of less expensive hardware. For compliant
cloth such as the one in the examples, inexpensive desktop hardware turns out to be sufficient.
For stiffer cloth our desktop setup is not sufficient, but our estimation procedures could reduce
the cost of instrumented capture setups and broaden the range of measurable materials.
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Fig. 5.7 Schematic of a sampled profile and evaluation of torques at sampled points.

5.3.3 Estimation of Bending Friction

The key aspect of our procedure to estimate parameters of bending friction is a simple way
to produce anchor deformations with controlled strain. We roll a 10cm×2.5cm strip of cloth
around a cylinder of known radius as shown in Fig. 5.6, and then we gradually unroll the
cloth. We have used cylinders with radii of [3,4,5,6,7,7.5,10,16,23,27.5,31.5,50]mm, and
we have repeated the experiment with each cylinder three times. Before each rolling operation,
we flatten the strip of cloth to remove possible persistent deformations.

For each experiment, we fit a cubic spline to the profile of the spiral, and we sample it at n

points (n = 5 in our experiments), as shown in Fig. 5.7. For each of these samples, we define
a torque error as the deviation from equilibrium between the gravity torque produced by the
cloth’s weight, the elastic bending torque, and the bending friction torque. With our simple
procedure, the anchor deformation for all n samples in the same experiment is given by the
same initial rolling radius. Next, we will define the elastic, friction, and gravity torques in
detail.

The deformed cloth can be regarded as a ruled surface obtained by sweeping the spiral
profile along the width of the cloth w. For the derivation of the elastic torque, we assume an
infinitely fine regular triangulation with triangles of height dh. At each sample, we assume a
hinge formed by edges of the triangulation running across the width of the cloth. Following
the discrete-shells bending model described in Section 5.2.1, the strain of each edge is ε =

3dθ

dh = 3κ , where κ is the curvature of the spiral profile at the sample. The elastic torque
can then be computed as Telastic = k ε dA∇θ ε = 3k wκ . The friction torque is defined as
Tfriction = σ dA∇θ ε = σ w, where σ is defined as in Eq. 5.4 based on the current and anchor
strains. Finally, the gravity torque can be computed based on the density of the cloth ρ as
Tgravity = ρ l wgd, where l is the length of the hanging piece of cloth, and d is the horizontal
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Material ρ k1 k2 a b τ

felt 0.208 145.3 0.15 5.12 0.15 29.9
doublecloth 0.255 62.19 0.07 12.84 0.05 7.67
paper 0.075 479.7 0.47 0.04 0.64 10.2

Table 5.2 Fitting results for the bending on the three samples.

distance from its center of mass to the sample point on the spline.

We can now express a torque error for each spline sample as the deviation from equilib-
rium, Tgravity −Telastic −Tfriction. Substituting the expressions defined above, and factoring out
the cloth width w, we obtain an expression of bending stress error for each sample,

fi = ρ li di g−3k κi −σi. (5.7)

Note that the final expression is independent of the triangulation.

Same as for the estimation of stretch friction parameters, we formulate a least-squares
problem with the form of Eq. 5.6. However, we use a cantilever experiment (Clapp et al., 1990)
to estimate stiffness parameters, because in the spiral shapes of light materials the contribution
of gravity is small, and there is not sufficient data to jointly estimate elasticity and friction
parameters. To increase the optimization robustness, we first fit σmax with very low τ , and
then τ , before fitting both together. In addition, we remove sample points where gravity and
elastic torques oppose each other, as they do not guarantee a monotonic deformation.

Results and Discussion We have tested our bending friction estimation procedure on mate-
rials with a moderately large bending-stiffness-to-density ratio. In particular, we report results
for two cloth fabrics, felt and a synthetic doublecloth, as well as paper. Fig. 5.8 shows all
captured spirals for one bending direction for the three materials, as well as the measured cur-
vatures along the spiral profiles. As a reference for the fitting results, Table 5.2 shows density
(ρ , in kg/m2), stiffness (k1 + k2ε , in (N ·m)×10−7), maximum stress (a+bε , in N ×10−4),
and time constant (τ , in 1/m), for the warp direction on the three samples.

Fig. 5.10, Fig. 5.11 and Fig. 5.12 show photographs of representative spirals for the three
materials (for 4mm, 7.5mm, and 23mm initial radii). These figures show the estimated hys-
teresis curves with unload paths for the three initial radii, and the torque optimization residual
at the sample points. Notice that the residual is overall low compared to the measured gravity-
plus-elasticity torque.
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Fig. 5.8 Left: Spiral profiles for bending estimation; Right: Curvatures along the spiral pro-
files. The plots show data for 12 different initial radii and 3 samples per radius. The materials
are, from top to bottom, synthetic doublecloth, felt, and paper.

Fig. 5.10, Fig. 5.11 and Fig. 5.12 also show final snapshots of unrolling simulations ex-
ecuted with the estimated parameters. The simulation results demonstrate characteristic fea-
tures of both final spiral profiles and dynamic unrolling, with good qualitative matches to
real-world results, and strong differences across materials. Improving accuracy would require
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Fig. 5.9 Results and validation of bending friction estimation on doublecloth (left), felt (mid-
dle), and paper (right). Top row: Estimated hysteresis curves with unload paths for three initial
radii (4mm, 7.5mm, and 23mm). Bottom 3 rows: Stress error residuals evaluated at samples
on the spiral profiles (shown in Fig. 5.10, Fig. 5.11 and Fig. 5.11). The error in total stress is
compared to the gravity and elastic stress.

not only more accurate internal friction, but also accurate damping and contact friction.

5.4 Dynamic Simulation of Internal Friction

Modeling internal friction in the context of dynamic simulation requires answering several
challenges. First, we seek an easy integration into existing cloth simulators, which implies that
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Fig. 5.10 Comparison of captured and simulated unrolling spirals for initial radii of 4mm,
7.5mm, and 23mm for doublecloth. The dots and numbers indicate samples for estimation
residual evaluation in Fig. 5.9.

Dahl’s model should be formulated as an explicit force expression (and possibly its derivatives
w.r.t. positions and velocities) to be evaluated every time step. However, Dahl’s model is ex-
pressed in differential form, hence a straightforward integration in dynamic simulators would
require the inclusion of new state variables. Instead, we propose an algorithm that allows
handling Dahl’s friction force just as any other force expression.
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Fig. 5.11 Comparison of captured and simulated unrolling spirals for initial radii of 4mm,
7.5mm, and 23mm for felt. The dots and numbers indicate samples for estimation residual
evaluation in Fig. 5.9.

The second challenge concerns stability and performance of the simulation. The stiffness
of Dahl’s model is given directly by its differential expression in Eq. 5.2. At zero strain,
the maximum stiffness is 2a

τ
(for σ = −σmax). Based on our estimated values, the effective

stiffness of Dahl’s friction can be in the order of 100 times larger than the elastic stiffness.
Given this high stiffness, it is crucial to design a simulation algorithm for implicit integration,
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Fig. 5.12 Comparison of captured and simulated unrolling spirals for initial radii of 4mm,
7.5mm, and 23mm for paper. The dots and numbers indicate samples for estimation residual
evaluation in Fig. 5.9.

stable under reasonably large time steps.

To formulate an explicit expression of friction force, we start by expressing the time deriva-
tive of the friction stress. Applying the chain rule to Eq. 5.2,

σ̇ =
dσ

dε
ε̇ =

1
τ
(σmax(ε)− sσ) ε̇. (5.8)
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Dahl’s model becomes an ODE, and the friction stress becomes part of the dynamic state of
the cloth (together with positions and velocities). This growth of the state would complicate
the inclusion of Dahl’s model in existing cloth simulators, with the need of major changes to
numerical solvers for implicit integration.

However, we note that the friction stress due to a strain element is a function of only the
strain, strain rate, and stress at the element itself. Then, with backward Euler integration and a
simple local linearization of Eq. 5.8 w.r.t ε , ε̇ , and σ at every time step, we turn the (dynamic)
friction stress into a linear function dependent only on the strain rate:

σ = σ0 +∆t
a+bε0 − s0 σ0 +∆t b ε̇0

τ +∆t s0 ε̇0
ε̇. (5.9)

This function can be trivially evaluated just like any other force in the dynamics simulator, and
its derivatives can be added to the system Jacobian for implicit integration. All values with
a subindex 0 indicate values evaluated at the beginning of the time step (i.e., at the point of
linearization), and ∆t is the time step.

The simulation algorithm for implicit integration with our internal friction model is:

1. Evaluate friction stress values at the beginning of the time step using the analytic ex-
pression in Eq. 5.3, with the values from the previous time step as initial conditions.

2. Evaluate the Jacobians of friction stress according to Eq. 5.9.

3. Evaluate other forces and their Jacobians.

4. Formulate a linear system based on the implicit integration method of choice, and solve
for cloth positions and velocities.

The algorithm above assumes one Newton iteration for (linearized) implicit integration,
but it can be extended to iterate until convergence. In this case, friction stress values may only
be re-evaluated once the solution has converged, not on every iteration of the solver, to ensure
that friction follows the correct path. The same principle is applied as part of contact handling:
friction stress values may only be re-evaluated once collisions are resolved, not inside iterative
contact solvers.

As discussed in the next section, in our examples we found no difference between the
time step requirements with and without friction, as the main source of time step restrictions
turned out to be handling of self-collisions. Without collision handling, we found that implicit
integration of friction forces enables stable integration under large time steps (e.g., more than
15ms for the cylinder demos in Figs. 5.13-5.16).
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Fig. 5.13 Persistent wrinkles for cotton (left) and doublecloth (right) after a twist is quickly
undone. The first and third images show wrinkles with friction and damping. The second
and fourth images show more subtle wrinkles without damping, because vibrations partially
eliminate the persistent deformations.

5.5 Results

We have executed multiple simulation tests to evaluate the effect and performance of our inter-
nal friction model and simulation algorithm on cloth simulations. From the purely mechanical
point of view, our measurements indicate that the lack of friction may cause force and/or
position deviations of up to 50%. From a visual point of view, force errors are not directly
relevant, but we have observed that internal friction affects in multiple ways the formation
and dynamics of folds and wrinkles. Next, we start with a discussion of friction effects on
simple examples, where those effects are easier to isolate. Then, we discuss friction effects
and the performance of our model and algorithm on larger character animation examples. We
have used the damping model by Baraff and Witkin (1998), with damping values between one
tenth and one hundredth of the stiffness at unit strain.

Persistent Deformations As already discussed, bending friction is the key phenomenon that
produces the distinct persistent spiral profiles shown in Fig. 5.10, Fig. 5.11 and Fig. 5.12. In
these benchmarks, the overall dynamic behavior is influenced by other factors such as damping
and contact friction, but the explosiveness of the unrolling effect is highly determined by
internal forces, both elastic and friction forces. Paper turned out to be the most challenging
material to simulate in these examples, due to the fast motion and high stiffness-to-mass ratio.
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Fig. 5.14 Wrinkles on a cotton cylinder with stretch friction after 1, 2, and 3 twist cycles. With
internal friction, wrinkles are qualitatively similar, but arise at different locations after each
twist cycle. Without friction, wrinkles are repetitive.

We executed the simulations with a time step of 0.25ms to resolve all self-collisions robustly.

We have also compared the formation of persistent deformations under different settings.
Fig. 5.13 shows examples of a sheet of cloth tightly wrapped around a cylinder. The cloth un-
dergoes a quick twist-untwist motion, which is similar to the motion of a sleeve when the wrist
is rotated. The figure compares persistent deformations for cotton (using stretch friction only)
and doublecloth (using bending friction only) with and without damping. Without damping,
cloth exhibits vibrations when the twist motion ends, and as a result the persistent wrinkles
are more subtle.

Preferred Folds and Wrinkles The benchmark shown in Fig. 5.15 is a clear example of
the influence of internal friction on the existence of ‘preferred wrinkles’. A localized stretch
deformation is applied to a piece of cloth, and the persistent deformation induces a preferred
wrinkle when the cloth is compressed in the transversal direction. With our internal friction
model we achieve a behavior that closely matches the real world. Under different angles
and directions of compression, the simulation with internal friction tends to produce similar
wrinkles, whereas the frictionless simulation exhibits highly varying wrinkles.

History-Dependent Folds Internal forces with friction are not conservative, hence the de-
formation under given boundary conditions is not defined as a simple energy minimum in the
space of cloth configurations. In practice, this observation implies that the folds and wrinkles
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Fig. 5.15 We produce a wrinkle on a piece of cotton (top). With internal friction (left), it
becomes a ‘preferred wrinkle’ and arises repeatedly under diverse deformations. Without
internal friction (right), folds and wrinkles show no clear similarity. Middle column shows
real-world deformations for the same experiment.

of cloth may differ largely for the same boundary conditions, and depend on history, i.e., the
path traveled to reach those boundary conditions. Fig. 5.14 shows cloth wrinkles on a cylinder
of cotton (with stretch friction) after several cycles of twist motions. With purely elastic de-
formations (not shown), the wrinkles are repetitive, but with the addition of friction wrinkles
are different after each twist cycle.

Settling of Wrinkles Friction resists motion, and sometimes it even stops it. In connection
with this property, internal friction of cloth helps wrinkles settle faster when external motion
stops. Fig. 5.16 compares wrinkles on a cylinder of cloth when a twist motion is undone,
with and without friction. It shows snapshots 0.5sec apart, once the external motion is over.
Without friction, wrinkles slide longer, whereas friction stops them more rapidly.

Character Clothing We have simulated two examples of characters wearing clothing. The
pants shown in Fig. 5.17 are represented using a 20K triangle mesh, and are attached to the
character at the waist and ankles. The character shown in Fig. 5.18 wears pants represented
by a 17K triangle mesh, and again attached at the waist and ankles. The T-shirt is represented
by a 12K triangle mesh and is not attached. In both examples, we used for the cloth model
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Fig. 5.16 Images of a cylinder of cotton once a twist motion is undone, without friction (left)
and with friction (right). The first (resp. third) and second (resp. fourth) snapshots are
0.5sec apart. Without friction, wrinkles slide along the surface, while friction stops them
more rapidly.

parameters estimated from the cotton sample described in Section 5.3.

The pants in Fig. 5.17 show clear persistent deformations induced by friction. When the
character lifts the knee, the fabric around the knee is strongly stretched. The persistent local
stretch that remains when the knee is lowered produces a more irregular surface than the
frictionless case. The visual appearance of this persistent deformation is different from thin
localized wrinkles typically induced by plastic deformations.

The shirt of the character in Fig. 5.18 shows more stable folds and wrinkles with friction.
The images highlight folds on the left side of the character’s chest. Without friction, the folds
disappear half-way through a jumping jack motion. Also, folds and wrinkles settle faster with
friction when the character performs squats.

We used a time step of 1ms for the simulation in Fig. 5.17, and 0.5ms for the simulation in
Fig. 5.18, both for the friction and frictionless cases. In all cases, the time step restrictions were
imposed by robust constraint-based handling of collisions and self-collisions. Despite having
a numerical stiffness up to 100 times larger than the frictionless case, our implicit integration
algorithm provides stable simulation for the internal friction model. The simulations were
computationally expensive, mainly due to the implicit integration of nonlinear elasticity and
friction coupled with LCP-type contact handling. The character simulation took an average of
6sec per time step on a single core of a 2.67 GHz Intel Core i7 920 CPU with 12 GB RAM.
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5.6 Discussion and Future Work

In this chapter, we have presented a model of internal friction that captures cloth hysteresis,
whose parameters can be estimated through simple procedures, and can be easily integrated
into existing cloth simulation frameworks. It constitutes a step forward toward higher realism
in cloth animation and opens up several avenues of further work.

Our current friction model and estimation procedures present several limitations. The
bending friction estimation procedure is not sufficiently sensitive for fabrics with very low
bending-stiffness-to-density ratio, because the fabric’s weight clearly dominates elastic and
friction forces together. We anticipate, however, that an estimation procedure based on anchor
deformations might be designed for such fabrics too. Shear hysteresis appears to be at least
as large as stretch or bending hysteresis, and estimation of shear friction parameters would
require the design of a suitable estimation procedure. The challenge stems from the difficulty
to impose controlled shear deformations that can be employed as anchor deformations in our
estimation procedures.

Our friction model is conveniently expressed as a scalar stress dependent on an individual
scalar strain, and this formulation cannot capture potential cross-modal effects. However, such
potential cross-modal effects are hardly understood to date. In general, with the availability
of good internal friction models, it would be convenient to revisit the existing methods for the
estimation of elasticity, and address the joint estimation of elasticity and friction. Based on our
experiments, this need has become particularly evident for bending estimation on light mate-
rials. Following with a further understanding of internal friction, it would also be necessary to
evaluate the effect of external factors such as moist on friction forces.
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Fig. 5.17 Simulation of cotton pants with stretch friction (bottom) and without (top). When
the character lifts the knee, the fabric is stretched, and internal friction produces persistent
deformations in the stretched areas. They are visible particularly between the knee and ankle
on the rightmost image.
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Fig. 5.18 A character performing jumping jacks. Cloth is simulated without friction on the
top, and with friction on the bottom. Internal friction produces more stable wrinkles and
folds. This effect is particularly visible in the folds on the left side of the character’s chest.
Without friction, these folds disappear half-way through the motion, but they remain under
friction.





Chapter 6

Conclusion

The main goal of this thesis is to develop models and techniques to improve the realism of de-
formable object simulation. We achieve this goal by developing novel deformation models that
capture complex behaviors, such as nonlinearities, heterogeneity and internal friction, design
measurement systems and estimate model parameters that reproduce the observed behaviors.
In the following sections we provide a summary of the results of this thesis and possible future
research directions.

6.1 Summary of results

In Chapter 3 we presented a novel capture system for cloth and an estimation pipeline that out-
puts model parameters that produce realistic simulations based on real-world measurements.
In contrast to standard textile testing and capture systems, our measurement setup produces
complete 3D geometry and force information, offering a detailed view of the behavior of cloth.
We estimate parameters for three different cloth models, namely Soft Constraints model, StVK
model and Springs model. We make this models nonlinear by usin strain-dependent stiffness
parameters and compare them in terms of quality of the obtained estimations. Our results
point out that the Springs model exhibits the worst fitting quality, probably due to the cou-
pling of membrane and bending deformation modes, while the Soft Constraints and StVK
models produce similar, good quality fits.

In Chapter 3, we observed that Poisson and cross-modal stiffening effects cannot be cap-
tured with the proposed models. Consequently, in Chapter 4, we presented a novel deforma-
tion model based on additive energy density terms, that is able to capture these two effects. In
addition, by using an additive energy model we can guarantee integrability of elastic forces,
which could not be guaranteed with the deformation models in Chapter 3. This model also fa-
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cilitates parameter estimation by minimizing the impact of local minima problems, since it is
suitable for incremental parameter estimation strategies. We demonstrate the applicability of
our novel deformation model in three different simulation and parameter estimation scenarios:
modeling of complex nonlinearities in cloth, non-rigid registration of internal heterogeneous
human anatomy and extremely nonlinear finger skin deformation.

In Chapter 5, we presented an internal friction model that is able to produce the typical
hysteresis behavior of cloth. We estimate parameters for this friction model using a simple
and inexpensive measurement setup and local optimization algorithms, and show that this
model can be easily integrated into existing simulation algorithms. Our model is based on
Dahl’s friction model, but we apply a reparameterization that produces a better fit to real-
world measurements. Finally, in contrast to previous work, we provide an analysis of the
visual impact of internal friction in cloth simulation.

6.2 Future Work

The capture system described in Chapter 3 provides very detailed information, but it has sev-
eral limitations. For bending measurement, manual intervention is still required, which re-
duces the precision of the measurement system. In addition, cloth samples tend to curl up
at edges, which may create errors and biases in the estimation. There are still many open
research questions in measurement and capture of cloth: exploration of larger strain space,
maybe including compression; capture and fitting of dynamic properties; and improvement of
shear measurement.

Several limitations arise from current estimation procedures. A common step in the es-
timation pipelines described in Chapter 3 and Chapter 4 is the resolution of the quasi-static
problem. We have observed that it is difficult to navigate the energy space towards a minimum-
energy configuration, which has made this step the bottleneck in the optimization performed
for parameter estimation. We would greatly benefit from faster quasi-static solves since it
would allow us to use other optimization algorithms, maybe with more error function evalua-
tions but less prone to falling into local minima.

Another limitation of parameter estimation is that we rely on gradient-based local opti-
mization algorithms, which may suffer local minima problems. Our progressive estimation
process, which incrementally increases the complexity of the parameter space, helps us min-
imize this problem, but there are no absolute guarantees. Also, it would be interesting to
investigate simpler ways to enforce convexity of the energy addends from Chapter 4.

An interesting extension to our general hyperelasticity model presented in Chapter 4 would
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be to smartly choose other energy addends, such that the total number of energy addends is
reduced, the number of parameters is minimized and the estimation process is eased. An inter-
esting approach could be to apply Principal Component Analysis (PCA) in force-deformation
data, look for the strain components that could have the most impact in the error function and
define energy addends that depend on those strain components.

Our internal friction model (Chapter 5) presents a serious limitation in that it takes as input
a single scalar strain value, which prevents it from capturing potential cross-modal effects.
After observing the results in Section 5.5, it becomes clear that current elasticity estimation
procedures can be improved by taking into account internal friction during the estimation
process.

Finally, the internal friction estimation procedures in Section 5.3 are far from perfect.
Estimation of bending friction turns out to be extremely difficult with materials showing low
bending-stiffness-to-density ratio, due to the fabric’s weight dominating elastic and friction
forces together. Also, there is no clear solution to estimate shear internal friction due to the
difficulty of designing measurement setups that can impose controlled deformations that serve
as anchor deformations.
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Appendix A

Parameter Estimation Results for Cloth
Models

This appendix contains additional results, in this order:

• Fitting results for Sample #4 using the Soft Constraints model.

• Fitting results for Sample #4 using the St. V-K model.

• Fitting results for Sample #4 using the Spring model.

• Fitting results for Sample #12 using the Soft Constraints model.

• Fitting results for Sample #12 using the St. V-K model.

• Fitting results for Sample #12 using the Spring model.

• Fitting results for Sample #14 using the Soft Constraints model.

• Fitting results for Sample #14 using the linear Soft Constraints model.

• Fitting results for Sample #14 using the isotropic Soft Constraints model.

• Fitting results for Sample #14 using the linear isotropic Soft Constraints model.

• Fitting results for Sample #14 using the St. V-K model.

• Fitting results for Sample #14 using the Spring model.

• Fitting results for Sample #18 using the Soft Constraints model.
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• Fitting results for Sample #18 using the St. V-K model.

• Fitting results for Sample #18 using the Spring model.

• Stress-strain plots using the Soft Constraints model.

• Stress-strain plots using the St. V-K model.

• Stress-strain plots using the Spring model.

• Fitting residuals for Sample #4.

• Fitting residuals for Sample #12.

• Fitting residuals for Sample #14.

• Fitting residuals for Sample #18.

• Evaluation results for Sample #4.2 using non-linear orthotropic models fit to #4.

• Evaluation results for Sample #12.2 using non-linear orthotropic models fit to #12.

• Evaluation results for Sample #14.2 using non-linear orthotropic models fit to #14.

• Evaluation results for Sample #18.2 using non-linear orthotropic models fit to #18.

• Comparison of evaluations between fitting and test samples of each fabric.
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Fig. A.1 Fitting results for Sample #4, Soft Constraints model. Top to bottom; Stretch-X,
Simple shear, Bend-X, Corner pull, Complex shear. Left to right: captured geometry, equilib-
rium of fitted model, force comparison (thin line: measurement; thick line: model), position
residual (vertex position minus corresponding measured position, magnified 5x).
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Fig. A.2 Fitting results for Sample #4, St. V-K model. Top to bottom; Stretch-X, Simple shear,
Bend-X, Corner pull, Complex shear. Left to right: captured geometry, equilibrium of fitted
model, force comparison (thin line: measurement; thick line: model), position residual (vertex
position minus corresponding measured position, magnified 5x).
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Fig. A.3 Fitting results for Sample #4, Spring model. Top to bottom; Stretch-X, Simple shear,
Bend-X, Corner pull, Complex shear. Left to right: captured geometry, equilibrium of fitted
model, force comparison (thin line: measurement; thick line: model), position residual (vertex
position minus corresponding measured position, magnified 5x).
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Fig. A.4 Fitting results for Sample #12, Soft Constraints model. Top to bottom; Stretch-
X, Simple shear, Bend-X, Corner pull, Complex shear. Left to right: captured geometry,
equilibrium of fitted model, force comparison (thin line: measurement; thick line: model),
position residual (vertex position minus corresponding measured position, magnified 5x).
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Fig. A.5 Fitting results for Sample #12, St. V-K model. Top to bottom; Stretch-X, Simple
shear, Bend-X, Corner pull, Complex shear. Left to right: captured geometry, equilibrium of
fitted model, force comparison (thin line: measurement; thick line: model), position residual
(vertex position minus corresponding measured position, magnified 5x).
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Fig. A.6 Fitting results for Sample #12, Spring model. Top to bottom; Stretch-X, Simple shear,
Bend-X, Corner pull, Complex shear. Left to right: captured geometry, equilibrium of fitted
model, force comparison (thin line: measurement; thick line: model), position residual (vertex
position minus corresponding measured position, magnified 5x).
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Fig. A.7 Fitting results for Sample #14, Soft Constraints model. Top to bottom; Stretch-
X, Simple shear, Bend-X, Corner pull, Complex shear. Left to right: captured geometry,
equilibrium of fitted model, force comparison (thin line: measurement; thick line: model),
position residual (vertex position minus corresponding measured position, magnified 5x).
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Fig. A.8 Fitting results for Sample #14, Soft Constraints model, isotropic. Top to bottom;
Stretch-X, Simple shear, Bend-X, Corner pull, Complex shear. Left to right: captured geome-
try, equilibrium of fitted model, force comparison (thin line: measurement; thick line: model),
position residual (vertex position minus corresponding measured position, magnified 5x).
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Fig. A.9 Fitting results for Sample #14, Soft Constraints model, linear. Top to bottom; Stretch-
X, Simple shear, Bend-X, Corner pull, Complex shear. Left to right: captured geometry,
equilibrium of fitted model, force comparison (thin line: measurement; thick line: model),
position residual (vertex position minus corresponding measured position, magnified 5x).
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Fig. A.10 Fitting results for Sample #14, Soft Constraints model, linear isotropic. Top to
bottom; Stretch-X, Simple shear, Bend-X, Corner pull, Complex shear. Left to right: captured
geometry, equilibrium of fitted model, force comparison (thin line: measurement; thick line:
model), position residual (vertex position minus corresponding measured position, magnified
5x).
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Fig. A.11 Fitting results for Sample #14, St. V-K model. Top to bottom; Stretch-X, Simple
shear, Bend-X, Corner pull, Complex shear. Left to right: captured geometry, equilibrium of
fitted model, force comparison (thin line: measurement; thick line: model), position residual
(vertex position minus corresponding measured position, magnified 5x).
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Fig. A.12 Fitting results for Sample #14, Spring model. Top to bottom; Stretch-X, Simple
shear, Bend-X, Corner pull, Complex shear. Left to right: captured geometry, equilibrium of
fitted model, force comparison (thin line: measurement; thick line: model), position residual
(vertex position minus corresponding measured position, magnified 5x).
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Fig. A.13 Fitting results for Sample #18, Soft Constraints model. Top to bottom; Stretch-
X, Simple shear, Bend-X, Corner pull, Complex shear. Left to right: captured geometry,
equilibrium of fitted model, force comparison (thin line: measurement; thick line: model),
position residual (vertex position minus corresponding measured position, magnified 5x).
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Fig. A.14 Fitting results for Sample #18, St. V-K model. Top to bottom; Stretch-X, Simple
shear, Bend-X, Corner pull, Complex shear. Left to right: captured geometry, equilibrium of
fitted model, force comparison (thin line: measurement; thick line: model), position residual
(vertex position minus corresponding measured position, magnified 5x).
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Fig. A.15 Fitting results for Sample #18, Spring model. Top to bottom; Stretch-X, Simple
shear, Bend-X, Corner pull, Complex shear. Left to right: captured geometry, equilibrium of
fitted model, force comparison (thin line: measurement; thick line: model), position residual
(vertex position minus corresponding measured position, magnified 5x).
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Fig. A.16 Stress-strain plots, Soft Constraints model. Cloth samples, from left to right: #4,
#12, #14, #18. Deformation components, from top to bottom: warp-stretch, weft-stretch,
shear, warp-bend, weft-bend, diagonal-bend.
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Fig. A.17 Stress-strain plots, St. V-K model. Cloth samples, from left to right: #4, #12,
#14, #18. Deformation components, from top to bottom: warp-stretch, weft-stretch, shear,
warp-bend, weft-bend, diagonal-bend.
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Fig. A.18 Stress-strain plots, Spring model. Cloth samples, from left to right: #4, #12, #14,
#18. Deformation components, from top to bottom: warp-stretch, weft-stretch, shear, warp-
bend, weft-bend, diagonal-bend.
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Fit Variants Cloth Model Stretch-X Stretch-Y Shear Bend-X Bend-Y

Non-Linear Ortho.
Soft. Const. 5.546 6.394 0.33 16.10 33.14
St.VK 5.558 6.323 0.331 19.51 33.22
Spring 5.554 6.016 0.335 38.24 41.86

Linear Ortho.
Soft. Const. 6.708 7.859 0.336 25.88 33.94
St.VK 6.656 7.829 0.337 28.42 34.59
Spring 6.431 7.416 0.328 38.09 43.37

Non-Linear Iso.
Soft. Const. 7.438 0.329 39.53
Spring 7.415 0.406 46.50
St.VK 7.438 0.329 39.27

Linear Iso.
Soft. Const. 7.56 0.338 39.33
Spring 7.466 0.333 45.91
St.VK 7.543 0.338 39.59

Table A.1 Results of fitting to Sample-04 (cotton satin). Each entry shows position residual
(mm, RMS over all free points) for bend scenarios, force residual (N, RMS over all clips) for
Stretch scenarios, and clip parallel force residual (N, RMS over all clips) for Shear scenarios.

Fit Variants Cloth Model Stretch-X Stretch-Y Shear Bend-X Bend-Y

Non-Linear Ortho.
Soft. Const. 0.529 0.621 0.215 21.31 22.01
St.VK 0.529 0.622 0.213 22.53 23.29
Spring 0.529 0.612 0.345 32.01 43.39

Linear Ortho.
Soft. Const. 0.533 0.628 0.229 26.41 49.49
St.VK 0.539 0.647 0.222 23.37 23.16
Spring 0.531 0.619 0.237 31.54 43.69

Non-Linear Iso.
Soft. Const. 0.624 0.213 57.633
Spring 0.606 0.364 39.54
St.VK 0.621 0.213 58.921

Linear Iso.
Soft. Const. 0.637 0.225 57.565
Spring 0.622 0.234 39.562
St.VK 0.635 0.22 53.787

Table A.2 Results of fitting to Sample-12 (rayon/spandex knit). Each entry shows position
residual (mm, RMS over all free points) for bend scenarios, force residual (N, RMS over all
clips) for Stretch scenarios, and clip parallel force residual (N, RMS over all clips) for Shear
scenarios.
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Fit Variants Cloth Model Stretch-X Stretch-Y Shear Bend-X Bend-Y

Non-Linear Ortho.
Soft. Const. 4.508 5.883 1.837 16.15 20.84
St.VK 4.498 6.04 1.857 18.74 70.38
Spring 4.411 5.538 2.041 38.05 137.6

Linear Ortho.
Soft. Const. 5.165 6.163 2.286 11.88 84.91
St.VK 5.118 6.168 2.303 24.11 64.63
Spring 4.995 5.741 2.356 190.78 156.76

Non-Linear Iso.
Soft. Const. 5.614 1.707 124.812
Spring 5.947 2.015 149.943
St.VK 5.604 1.834 94.346

Linear Iso.
Soft. Const. 5.811 2.306 124.497
Spring 5.947 2.352 158.902
St.VK 5.78 2.322 125.063

Table A.3 Results of fitting to Sample-14 (cotton denim). Each entry shows position residual
(mm, RMS over all free points) for bend scenarios, force residual (N, RMS over all clips) for
Stretch scenarios, and clip parallel force residual (N, RMS over all clips) for Shear scenarios.

Fit Variants Cloth Model Stretch-X Stretch-Y Shear Bend-X Bend-Y

Non-Linear Ortho.
Soft. Const. 3.961 5.324 0.485 22.29 19.91
St.VK 3.961 5.338 0.492 24.57 23.61
Spring 3.936 5.298 0.489 62.73 26.64

Linear Ortho.
Soft. Const. 5.087 6.326 0.556 26.96 29.47
St.VK 4.937 6.281 0.563 32.11 89.45
Spring 5.046 6.217 0.563 30.69 33.56

Non-Linear Iso.
Soft. Const. 5.594 0.578 84.73
Spring 5.784 0.683 107.1
St.VK 6.974 0.627 88.55

Linear Iso.
Soft. Const. 6.507 0.483 81.32
Spring 6.538 0.498 118.7
St.VK 7.699 0.492 81.55

Table A.4 Results of fitting to Sample-18 (wool/cotton blend). Each entry shows position
residual (mm, RMS over all free points) for bend scenarios, force residual (N, RMS over all
clips) for Stretch scenarios, and clip parallel force residual (N, RMS over all clips) for Shear
scenarios.
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Fig. A.19 Fitting results for Sample #04.2. Top to bottom; Soft Constraints model, St. V-K
model, Spring model. Left to right: captured geometry, equilibrium of fitted model, force
comparison (thin line: measurement; thick line: model), position residual (vertex position
minus corresponding measured position, magnified 5x).
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Fig. A.20 Fitting results for Sample #12.2. Top to bottom; Soft Constraints model, St. V-K
model, Spring model. Left to right: captured geometry, equilibrium of fitted model, force
comparison (thin line: measurement; thick line: model), position residual (vertex position
minus corresponding measured position, magnified 5x).
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Fig. A.21 Fitting results for Sample #14.2. Top to bottom; Soft Constraints model, St. V-K
model, Spring model. Left to right: captured geometry, equilibrium of fitted model, force
comparison (thin line: measurement; thick line: model), position residual (vertex position
minus corresponding measured position, magnified 5x).
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Fig. A.22 Fitting results for Sample #18.2. Top to bottom; Soft Constraints model, St. V-K
model, Spring model. Left to right: captured geometry, equilibrium of fitted model, force
comparison (thin line: measurement; thick line: model), position residual (vertex position
minus corresponding measured position, magnified 5x).
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Fig. A.23 Comparison of evaluation results for different cloth samples for each fabric. Top-
left: Samples #4 and #4.2, Shear scenario. Top-right: Samples #12 and #12.2, Stretch-X
scenario. Bottom-left: Samples #14 and #14.2, Stretch-X scenario. Bottom-right: Samples
#18 and #18.2, Shear-X scenario. Top to bottom on each set: Soft Constraints model, St. V-K
model, Spring model. Each plot shows force comparison (thin line: measurement; thick line:
model).
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