
IPT-EGVE Symposium (2007)

B. Fröhlich, R. Blach, and R. van Liere (Editors)

Adaptive Classifier System-Based Dead Reckoning

Samir TORKI, Patrice TORGUET, Cédric SANZA

Institut de Recherche en Informatique de Toulouse

118 route de Narbonne, 31062 Toulouse, France

{torki | torguet | sanza}@irit.fr

Abstract

Most dead reckoning implementations are based on DIS’ specifications and only use a single prediction model

during the whole simulation. However, several studies manage to improve dead reckoning’s performance by defin-

ing prediction model selection strategies. Nevertheless, these approaches are either too generic and based on

empirical results or too specific and only have few fields of application.

This paper presents our approach that is meant to determine, among a set of extrapolation models, the one to apply

in any given situation. It is based on classifier systems, adaptive evolutionary systems that are more generally

involved to create artificial creatures in the field of “artificial life”.

Using such systems enable us to define a general model that can generate simulation-specific rules with relatively

little work. Indeed, they just require defining the parameters that have to be taken into account and the criteria to

optimize (e.g. accuracy, amount of updates...). Then, the system makes a set of rules emerge through a trial/error

process in order to define more efficient and finer prediction model selection strategies.

Categories and Subject Descriptors (according to ACM CCS): I.6.0 [Simulation and Modeling]: General

1. Introduction

Simulations of virtual environments are very demanding in

terms of computing power. Distributed virtual environments

(DVEs) are aimed to supply such a power through the use

of networked computers. Distribution also enables several

users to participate and collaborate within a same environ-

ment and tends to provide them a more enjoyable experi-

ence. This is why such distributed simulations are involved

in many kinds of fields, from military simulations [DFW97]

to video games [Mau00].

Nevertheless, these applications have to cope with differ-

ent kinds of bottlenecks mainly due to CPU and network

limitations. CPU limitations are generally bound to calcula-

tions that are badly distributed between the hosts involved in

the simulation. Such issues tend to be solved through the use

of load balancing techniques [TL01].

Network related issues are generally bound to bandwidth

limitation, latency and jitter. At first, bandwidth limitations

often require a reduction in the amount and in the size of the

messages exchanged between hosts in order to avoid net-

work congestion.

Furthermore, all DVEs and especially those running over

the Internet also have to cope with latency and jitter. Latency

is the delay it takes for a message to travel across the network

while jitter can be defined as the variation of latency over

time. Such delays are mainly due to routing as it takes some

time for routers to process packets.

Unfortunately, distributed virtual environments involving

human users are even more sensitive to latency and jitter

than any other kind of distributed application. Indeed, those

phenomena have a huge impact on the course and the “real-

ism” of a simulation. For example, in the case of First Person

Shooters, it has been clearly shown that higher latencies tend

to deteriorate players’ performance [BCL+04].

Jitter makes the drawbacks induced by latency even

worse. Indeed, as updates can be received at variable rates,

this generally leads to implausible and unpredictable jittery

motions.

Several methods are aimed to overcome the effects of

bandwidth limitation, latency and jitter. Most of them

achieve that goal by reducing the amount of data trans-

mitted through the network in order to decrease both link

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

S. Torki & P. Torguet & C. Sanza / Adaptive αCS-Based Dead Reckoning

and router utilization. Among those techniques, the most

widely used are multicast transmission [Dee89], data loss-

less compression [SZ99], filtering [Mor96] and dead reckon-

ing [CDG+93].

This paper deals with the dead reckoning algorithm. This

technique consists in making hosts extrapolate entities’ state

in order to reduce the number of emitted updates. Section 2

is aimed to present this algorithm more precisely.

Most distributed simulations involve that algorithm, nev-

ertheless they generally content themselves with using a sin-

gle - most often linear - extrapolation model. However, de-

pending on the nature of the simulation and of the simulated

entities, different kinds of predictions may give better re-

sults by providing better accuracy and making updates de-

crease. Section 3 presents existing researches that attempt

to determine prediction model selection strategies in order

to optimize the dead reckoning process. Nevertheless, these

approaches are either too generic and based on empirical re-

sults or too specific and only have few fields of application.

The system we introduce in this paper is based on artifi-

cial learning systems called classifier systems (CS) that are

presented in section 4.2. It consists in taking advantage of

the adaptive capabilities of CSs in order to provide design-

ers a generic system that can produce simulation and entity-

specific strategies. Furthermore, our approach also offers a

way to relieve distributed simulation designers of a demand-

ing and very prone to bugs task that consists in defining such

rules by hand.

The results obtained using our approach are presented in

section 5 as well as a comparison with the results obtained

using existing strategies.

2. The dead reckoning algorithm

This algorithm was introduced in SIMNET [CDG+93] in

order to reduce the effects of latency and network bandwidth

limitation. It became part of the DIS (Distributed Interactive

Simulation) standard [oISS95].

Dead reckoning consists in predicting entities’ state for

some time periods rather than sending protocol data units

(PDU) at every simulation step. Indeed, two models are used

to simulate every entity involved in the simulation:

• a CPU-intensive high fidelity model representing the exact

state of the entity,

• a less CPU consuming low fidelity model used to predict

an approximation of this state.

The high fidelity model is only run by the host that manages

the entity. The low fidelity prediction is run by all the hosts

involved in the simulation.

The host that simulates the entity has to run both models

in order to know how remote hosts perceive this entity.

This is also necessary to be able to define the deviation

between those two models. Indeed, the dead reckoning algo-

rithm requires that computer to send updates only when the

distance between the ghost (i.e. the low fidelity modeled en-

tity) and the real entity exceeds a given threshold. As soon as

a host sends or receives an update PDU, it re-synchronizes

its ghost entity in order to take the latest information into

account and resets the prediction model.

1: Dead reckoning

3. Related work

Most studies related to dead reckoning aim to increase this

algorithm’s performance by modifying either the extrapola-

tion model or the way the error threshold is defined.

The approach presented in [CLC99] manages to improve

the algorithm through dynamic threshold values. Indeed, ac-

cording to its needs in terms of accuracy, every entity in-

volved in the simulation can ask another one to use a spe-

cific threshold. In that way, precise positions are obtained

using a low threshold while a bigger value gives less pre-

cise but less frequently updated information. To determine

an entity’s needs, the proposed method takes areas of inter-

est [Mor96] into account.

[CLC99] also provides a method designed to select a

prediction equation automatically. This approach relies on

the fact that the motion of an entity can be either a smooth,

bounce or jolt motion. Then, some rules have been defined to

select a prediction scheme according to the motion class and

the threshold value. These were established according to the

results obtained with some generic curves such as sinusoids

or saw-toothed curves.

The position history based dead reckoning (PHBDR) pre-

sented in [SC94] uses about the same approach to calcu-

late extrapolation polynomials’ coefficients. Indeed, it re-

quires PDUs to contain only entities’ position and orienta-

tion. Then, all the derivatives required to build the 1st and

2nd order polynomials are calculated from the last 2 (ve-

locity) or 3 updates (acceleration). The selection between

linear or quadratic extrapolation is performed according to

the value of the angle of embrace formed by the last 3 up-

date positions (figure 2). This resulted in better performance

than DIS’ original dead reckoning except for some situations

such as circular movements. It is worth noticing that angles

c© The Eurographics Association 2007.

102

S. Torki & P. Torguet & C. Sanza / Adaptive αCS-Based Dead Reckoning

of embrace were also involved in [ZGD04]’s pre-reckoning

algorithm.

2: Angle of embrace

Some improvements to dead reckoning are also obtained

by using different kinds of extrapolation techniques. For ex-

ample [CH01] uses the same history based dead reckoning

as [SC94] except that the Lagrange polynomial-based pre-

diction deals with quaternions rather than positions. It is

worth noticing that this approach also implements [SC94]’s

angle of embrace as a selection criterion for the degree of

the extrapolation polynomial.

The Taylor expansion-based extrapolation model intro-

duced by [HY06] slightly differs from most dead reckoning

approaches. Indeed, update packets do not actually contain

the position, velocity and acceleration of the entity when the

threshold was exceeded. They rather carry entity’s position

during the steps that preceded the transmission of an update.

Then, the derivatives required by the Taylor expansion are

calculated in the same way as they are in the position history

based dead reckoning. The experiments performed with this

model led to a reduction of the extrapolation error in the case

of smooth trajectories obtained by writing words on a touch

panel screen.

Some other works base their prediction algorithm on “arti-

ficial life” techniques. For example, [LH05] uses a bayesian

network in order to predict the position of the cursor in

the field of collaborative environments. In the same way,

[And05]’s neural network tries to extrapolate the velocity

and the force of a haptic device from their previous values.

4. Our approach

4.1. Polynomial prediction

The early experiments performed with our approach in-

volved a polynomial prediction model. The way the poly-

nomials are calculated is defined in a generic way, so that it

can at least reproduce DIS and the position history’s extrap-

olation formulae. Like many other dead reckoning schemes

[HY06] [SC94] [oISS95], our prediction model is based on

Taylor series. However, our approach differs from the others

in the way the derivatives are calculated. Indeed, the extrap-

olation polynomial is calculated in this way:

xpred(t) =
deg

∑
i=0

(

(t − tu0)
i

i!
·

dix

dt
(tu0)

)

(1)

where ui represents the last ith update that was received

at tui , deg the degree of the extrapolating polynomial and

nbDer the maximum derivative order extracted from an up-

date packet.

Applying this formula, requires to calculate dix
dt (tu0)s:

• if i ≤ nbDer and if the ith derivative is provided in ui,
dix
dt (tui) corresponds to the value found in ui,

• in any other case, dix
dt (tui) is calculated in a recursive man-

ner :

dix

dt
(tui) =

di−1x
dt (tui)−

di−1x
dt (tui+ jump)

tui − tui+ jump

(2)

Such a method enables us to simulate DIS’ dead reck-

oning by joining all the derivatives required to every trans-

mitted update and by giving deg and nbDer the same value.

Position history based dead reckoning can also be obtained

by setting nbDer to 0 and jump to 1 or by only reporting

entities’ position in updates. In addition, making jump vary,

allows to choose the appropriate combination between long

term (global) information given by previous updates and

short term (local) data brought by the latest ones.

4.2. Classifier systems

A classifier system (CS) is an adaptive system aimed to gen-

erate a set of ‘if-then’ rules through a learning process. Clas-

sifier systems are commonly used in the field of artificial

life [San01].Nevertheless, our approach uses them for what

they are above all: optimization systems [Gol85].

This section describes Holland’s Learning Classifier Sys-

tem [HR78](LCS) from which most CSs - including the αCS

we use - derive from.

4.2.1. Architecture

A CS runs as a perception→decision→action loop. At first,

it perceives information from its environment through its

sensors. Then, its decision unit selects the action to trigger

according to the sensor inputs. Finally, the system modifies

its environment by executing that selected action through its

effectors.

Most of a classifier system’s work is achieved by its deci-

sion unit. It consists of a base of “if condition then action”

rules called classifiers. These are bit strings in which:

• condition is represented by a sequence of 0 (false),

1 (true) and # (don’t care) trits,

• action is a sequence of 0 and 1 bits.

This unit’s function is to make useful classifiers emerge

from a randomly initialized base. This is performed by pre-

serving the most valuable rules and by replacing the bad

ones. To distinguish good rules from bad ones, each clas-

sifier is given a strength that denotes the adequacy of a given

action, when condition is met.

c© The Eurographics Association 2007.

103

S. Torki & P. Torguet & C. Sanza / Adaptive αCS-Based Dead Reckoning

The classifier system’s running cycle defines the way that

strength is calculated. At the first step of that cycle, the in-

formation perceived by the sensors are converted into a 0,1

bit string message and stored into a message list. Then, three

cycles are run in order to define the action to trigger and to

update classifiers’ strength: the performance, credit assign-

ment and the rule discovery cycles.

4.2.2. Performance cycle

This cycle intends to choose the most appropriate rule to

trigger. Firstly, the algorithm selects all the rules which

condition part matches at least one of the bit strings con-

tained in the message list. Then, these selected classifiers

make a bid proportional to their strength in order to be trig-

gered. The winner is designated via a roulette wheel selec-

tion algorithm (i.e. the probability of a classifier to win is

proportional to the bid it makes). Finally, these wining clas-

sifiers “post” their action part as new messages into the mes-

sage list. These actions can be either used to trigger a given

effector or to select other rules at the following iteration.

4.2.3. Credit assignment cycle

Credit assignment cycle’s goal is to update every classi-

fier’s strength so that useful rules become stronger and have

greater probability to win at the end of the performance cy-

cle. The most widely used credit assignment algorithm is

the bucket brigade algorithm presented in this section. First

of all, every bidding classifier selected has to pay the bid it

made during the performance cycle. Payment is shared be-

tween the classifiers that caused that classifier’s selection by

sending messages during the previous iterations.

Then, the usefulness of an action is defined by giving the

system a reward according to the effects it had. Bad actions

generally lead to a more or less negative reward while good

actions lead to positive ones and result to an increase of the

rule’s strength.

The credit assignment cycle also manages to make unnec-

essary rules become even weaker by taxing non selected or

non winning classifiers. This enables the system to replace

those classifiers by potentially better ones during the rule

discovery cycle.

4.2.4. Rule discovery cycle

The rule discovery cycle aims to replace the least useful clas-

sifiers by potentially better ones. This cycle is based on a

genetic algorithm which population consists of the classi-

fiers contained in the rule base. Classifiers’ strength is used

as a fitness function, so that weaker rules tend to “die” and

get replaced by good ones’ children. Those children are ob-

tained through different genetic operators such as selection,

crossover, mutation and covering [Gol85].

4.2.5. αCS classifier systems

Our application involves αCS [San01], a variation of Hol-

land’s LCS. The most important feature introduced by those

classifier systems rests on their multi-objective capabilities.

Indeed, they enable designers to specify the rewards the sys-

tem receives through several easy-to-define fitnesses rather

than a single complicated one. Moreover, αCSs also provide

a mechanism of fitness prioritization in order to give some

goals more importance than others.

Such characteristics make this kind of classifier systems

well suited to our approach as the next section shows.

4.3. The dead reckoning rule discovery system

Our approach aims to determine the most appropriate pre-

diction scheme to use in any given situation without having

to define all the rules by hand. Indeed, such a task is gen-

erally very demanding and prone to bugs and forgetting. To

achieve such a goal, our method attempts to use classifier

systems’ adaptation and learning capabilities. Indeed, on ev-

ery host, every “high fidelity” entity is associated to a clas-

sifier system. Such a classifier system will only require de-

signers to define sensors, effectors and retributions and let

the system determine the rules rather than having to define

them by hand.

Our choice for joining a classifier system to every “high

fidelity” entity comes from the fact that this enables us to de-

fine entity-specific rules. This can have a huge impact when

the simulation involves different kinds of entities that can

behave and move in different ways. For example, the model

used for human-beings’ motions may differ from the model

used for planes or tanks and such differences should be re-

flected in the rule the system should generate.

The system can be run once the following elements have

been defined:

• sensors: the parameters that have to be taken into account

in order to select a prediction scheme,

• retributions: the goals that have to be fulfilled (e.g. reduc-

ing the overall error, reducing the amount of updates emit-

ted. . .),

• effectors: the prediction models that can be used.

The initial rule base used by the system can be defined

either from an empty or randomly initialized base or from a

base resulting from a previously run simulation or even from

a set of a priori defined rules.

Then, during one or several simulations, the system is

trained in order to make interesting rules emerge. For that

purpose, we had to determine when to activate the classifier

system by sending it a retribution and requesting it to deter-

mine the action to trigger according to the sensors’ states.

Several strategies were applicable:

• triggering the system at every step: such a strategy is not

c© The Eurographics Association 2007.

104

S. Torki & P. Torguet & C. Sanza / Adaptive αCS-Based Dead Reckoning

correct as the system cannot get relevant information on

the effects of using such or such a prediction model,

• triggering the system periodically: at first, this strategy

would require extra work from the designers as the dura-

tion of periods would have to be defined. Furthermore, the

rules obtained at the end of the training process should be

- to be consistent - applied periodically too. This raises the

synchronization problem that often occurs in distributed

application.

• triggering the system at every update: we chose such a

strategy as it also enables us to follow the model used in

DIS to determine the prediction scheme that remote hosts

use.

On a given host, a step in a simulation using our approach

runs in the way presented in figure 3.

for all simulated entities ei js do

- step eri j high fidelity model

- step egi j low fidelity model

- log criteria required to calculate retribution at the end

of the stage

if distance((eri j ,egi j) > threshold) then

- calculate retribution from logged data

- apply retribution to the αCS for the ending stage

- calculate sensors’ state from the state of the entity

and of its surrounding environment

- activate the αCS using those sensors and get the

action to perform

- create an update packet containing the update infor-

mation and the model to use

- send the update packet

- apply the changes on egi j (i.e. position update and

prediction model change)

end if

end for

3: Global algorithm

5. Experiments and results

The experiments presented in this section are aimed to test

and validate our approach. To reach such a goal, we de-

cided to confront our system to different testbenches using

criteria that are quite similar to those presented in [SC94]

and [CLC99]. These include the use of different trajectories

in order to try the system’s ability to adapt to different kinds

of entities. This section also refers to experiments that are

meant to raise the classifier system based dead reckoning’s

capability to reach different goals according to designers’

needs.

As our simulations involve quite “generic” motions, we

decided to make the system’s sensors only take the values

of the angles of embrace (section 3) into account. How-

ever, other kinds of sensors can be defined according to

simulation-specific features such as the distance to the near-

est enemy or the distance to the ground.

Most researches involving angles of embrace define an

arbitrary threshold to distinguish large angles from small

ones and to determine the prediction model to trigger. Un-

like them, we decided to define sensors in a way that enables

us to generate rules according to finer ranges of angles of

embrace. Indeed, the system’s goal is to define the rules to

trigger according to the interval the cosine of the angle of

embrace belongs to, among the following bounds: -1, -0.75,

-0.5, -0.25, 0, 0.25, 0.5, 0.75 and 1.

For all the experiments presented in this section, all the

effectors the system can trigger are defined in a way that

enables the system to use different values for the deg, nbDer

and jump parameters.

The following part of this section presents the results ob-

tained using our system with different kinds of trajectories

and retribution models.

5.1. Smooth trajectory punctuated with sudden velocity

changes

This experiment involves an entity that follows a trajectory

that mixes smooth parts (that can be assimilated with sine

curves) and sudden changes in its velocity when reaching

0 along the X axis. The sensors and effectors used by the

system are the same as the ones presented in the previous

section.

The first experiment performed with this trajectory con-

sists in “asking” our system to reduce as much as possible

the deviation between the high and low fidelity models. Op-

timizing such a criterion should enable us to perform a better

prediction and enhance dead reckoning’s performance. In-

deed, lower deviations should lead to fewer updates as the

threshold would be exceeded less often. In the case of this

experiment, the retribution given to the system at the end of

every prediction stage is calculated from the average value

of the deviation during the ending stage.

Early tests pointed out that this criterion could not be di-

rectly used by the system as it didn’t give reliable informa-

tion about the way the system behaved and about its perfor-

mance. Rewarding or penalizing the system according to a

more ’global’ trend about the evolution of that measurement

helped to solve that problem. Indeed, the results presented

in this section were obtained by rewarding the system using

the slope of the curve representing the cumulative value of

the average deviations. The retribution given to the system

at the end of every prediction stage is calculated in this way:

• At the end of the n
th prediction stage, the average value of

deviation is calculated as follows:

ADn =
∑deviation

nbSteps
(3)

c© The Eurographics Association 2007.

105

S. Torki & P. Torguet & C. Sanza / Adaptive αCS-Based Dead Reckoning

• The cumulative total of that average is computed and

stored in order to calculate the slope:

Cn =
n

∑
i=0

ADi (4)

• The slope is calculated from the last m values of CADn

using a linear regression model:

slope =

m

∑
i=1

[(

m−1

2
− i

)

·

(

Cn−i+1 −
∑

m
j=1 Cn− j+1

m

)]

m

∑
i=1

(

m

2
− i

)2

(5)

• Finally, the retribution is defined in this way in order

to minimize the slope (i.e. the smaller the slope is, the

greater the retribution will be):

retribution = γ− slope (6)

The experiments this section deals with, were performed

with a randomly initialized αCS and a 0.015 threshold value

for the dead reckoning algorithm.

Figure 4 presents a comparison between the trajectory of

the ghost at the beginning of the learning process and its

trajectory several simulation steps later. These graphs show

that our system found a way to reduce the amount of updates

required both near the “bouncing point” and in the smooth

parts of the trajectory.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2

X
 P

o
s
it
io

n

Time

High fidelity model
Ghost

(a) At the beginning

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 290 290.5 291 291.5 292

X
 P

o
s
it
io

n

Time

High fidelity model
Ghost

(b) During learning

4: Ghost’s trajectory

During that simulation, the classifier system made the fol-

lowing rules emerge (all the other classifiers involved in the

system are not significant as they are very weak):

b b b b b b b b b

-1.0 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00aoe

der

nbDeg

jumps

2

0

1

1

0

1

1

0

8

1

0

4

This rule base has some interesting features:

• At first, it does not involve all the possible ranges the an-

gle of embrace can belong to, but only the ones the system

met and should meet in the future. Such a characteristic

tends to become very useful when designers want to im-

plement those rules directly in their simulation engine. In-

deed, with fewer rules the system becomes easier to code,

the amount of possible bugs can also be reduced and per-

formance increased.

• Secondly, the rules obtained by the system are consistent

with [SC94] and [CLC99]’s results. Furthermore, our ap-

proach provides more precise rules as it takes finer inter-

vals into account.

5.2. Complex trajectory

In the following experiments, the simulated entity follows a

more complex trajectory that mixes smooth, bounce and jolt

motions [CLC99].

5.2.1. Minimizing deviation

The first experiment performed with such a trajectory is

aimed to try the ability of our system to adapt to different

kinds of entities and movements. Indeed, the only difference

between this experiment and the previous one comes from

the fact that the simulated entities do not follow the same

paths.

Figure 5 shows the way the ghost’s trajectory evolves and

shows that the system finds a way to reduce the amount of

emitted updates.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

X
 P

o
s
it
io

n

Time

High fidelity model
Low fidelity model

(a) At the beginning

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 96.5 96.55 96.6 96.65 96.7 96.75 96.8 96.85

X
 P

o
s
it
io

n

Time

High fidelity model
Low fidelity model

(b) During learning

5: Ghost’s trajectory - minimizing average deviation

Nevertheless, this experiment leads to rules that are quite

different from the ones found in section 5.1:

b b b b b b b b b

-1.0 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00aoe

der

nbDeg

jumps

2

0

1

2

0

4

1

0

4

2

0

4

1

0

4

2

0

4

1

0

1

1

0

8

It is worth noticing that all the rules determined by the

system have nbDer set to 0. This means that according to it,

the position history based approach is the most appropriate

one. Nevertheless, these rules do not exactly correspond to

c© The Eurographics Association 2007.

106

S. Torki & P. Torguet & C. Sanza / Adaptive αCS-Based Dead Reckoning

what [SC94] proposes as the larger values of aoe do not nec-

essarily require the use of a first order polynomial. However,

our approach tends to determine the values deg and jump

should take in a more precise manner.

5.2.2. Maximizing prediction stages’ duration

This section presents the results obtained using the same sys-

tem running with the same parameters except for the retribu-

tion model. Indeed, in this experiment, the system is aimed

to maximize the duration of prediction stages, which should

reduce the number of updates. The reward given to the sys-

tem at the end of every extrapolation phase is calculated in

about the same way as deviations were in the previous sec-

tions (i.e. by calculating a slope from the cumulative total of

stage durations).

As figure 6 shows, requesting the system to maximize

those durations leads to a decrease in updates.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

X
 P

o
s
it
io

n

Time

High fidelity model
Ghost

(a) At the beginning

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 390.3 390.4 390.5 390.6 390.7 390.8 390.9 391

X
 P

o
s
it
io

n

Time

High fidelity model
Ghost

(b) During learning

6: Ghost’s trajectory - maximizing prediction stage duration

The stronger classifiers that emerged during that simula-

tion are the following ones:

b b b b b b b b b

-1.0 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00aoe

der

nbDeg

jumps

2

1

8

2

0

1

1

1

2

0

8

2

0

4

1

1

1

0

1

1

0

8

Once again, those rules differ from the ones found before.

It is worth noticing that some classifiers trigger a DIS sim-

ilar approach (i.e. deg = nbDer) in some situations and a

PHBDR-like prediction when the angle of embrace belongs

to some other intervals. Those results tend to show the adap-

tive capabilities of our system as it is able to determine in-

teresting rules that fulfill different kinds of goals, without

requiring much work from designers.

5.3. Comparison with other prediction model selection

strategies

This final section is intended to compare our approach to

different prediction model selection strategies. Two experi-

ments were performed, the first one to determine the value

of the average deviation during prediction phases. The sec-

ond one took the stage duration criterion into account. These

experiments involve 6 prediction model strategies:

• “static” position history based dead reckoning;

• DIS’ dead reckoning;

• dynamic strategies;

To get relevant results, the classifier system approach only

involves four effectors corresponding to static PHBDR and

DIS’ strategies. These strategies are applied in a same sim-

ulation (different from the ones presented in previous sec-

tions), with exactly the same parameters. Furthermore, to

ensure that all models perform in the same conditions, the

ghost entity is forced to get at the real model’s position peri-

odically. This prevents us from having results biased by the

gap introduced by using different kinds of extrapolations.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5000 10000 15000 20000 25000

C
um

ul
at

iv
e

er
ro

r

Updates

deg=1/der=0
deg=1/der=1
deg=2/der=0
deg=2/der=2

PHBDR
CS

7: Comparison using the deviation criterion

Figure 7 shows that after 6000 updates, the classifier sys-

tem performs the best, giving at least a 10% better accuracy

than any other strategy. That figure also shows the correla-

tion between the average deviation and the number of up-

dates. Indeed, the curves related to strategies that lead to a

smaller deviation require fewer updates for the same num-

ber of simulation steps.

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0 5000 10000 15000 20000 25000

S
ta

ge
 d

ur
at

io
n

Updates

deg=1/der=0
deg=1/der=1
deg=2/der=0
deg=2/der=2

PHBDR
CS

8: Comparison using the prediction duration criterion

Figure 8 presents a comparison between the values of the

prediction stage durations using those strategies. As well as

it is the case with the average deviation, the longer predic-

tion lasts, the fewer updates are sent. Indeed, it can be seen

that the curves corresponding to strategies that give higher

durations also require fewer updates.

This graph shows that our approach did not find rules that

would overcome all the other strategies. Nevertheless, it per-

formed quite well as its performance is equivalent to those

of the better other strategies.

c© The Eurographics Association 2007.

107

S. Torki & P. Torguet & C. Sanza / Adaptive αCS-Based Dead Reckoning

Anyway, those two experiments confirm the ability of our

system to find performing rule sets in order to fulfill different

goals. As it was the case in the previous sections, setting new

effectors or changing the system’s goals requires fewer work

and tends to be less tedious than having to redefine a whole

strategy by hand.

6. Conclusions and Future Work

In this paper, we have described a new means of defining

prediction model selection strategies for the dead reckoning

algorithm. The approach we presented consists in using clas-

sifier systems’ adaptive capabilities. It is aimed to provide

quite a generic system that can generate simulation specific

rules. Furthermore, our classifier system-based dead reckon-

ing requires less work from designers when new goals or

new criteria have to be taken into account. Indeed, it relieves

them of redefining all the rules by hand and of tedious de-

bugging.

The results presented in this paper showed that our system

is able to generate relevant rule sets and to adapt to different

kinds of motions. This paper also presented two criteria that

can be used in order to reduce the number of updates. The

experiments performed in order to compare our system to

existing ones, showed that the classifier system based dead

reckoning is able to provide good results whatever the crite-

rion to optimize is.

In our future work, we expect to extend our system to dif-

ferent kinds of extrapolation techniques. Our aim would be

to enable it to provide better results by generating even more

simulation-specific rules. Furthermore, we’re aiming to take

benefit from the αCS classifier systems multi-objective ca-

pabilities by asking the system to fulfill combinations of

goals.

References

[And05] S. Andrews. A neural network-based approach to

a dead reckoning predictor for haptic interfaces, 2005.

[BCL+04] Tom Beigbeder, Rory Coughlan, Corey Lusher,

John Plunkett, Emmanuel Agu, and Mark Claypool. The

effects of loss and latency on user performance in unreal

tournament 2003, 2004.

[CDG+93] James M. Calvin, Alan Dickens, Bob Gaines,

Paul Metzger, Dale Miller, and Dan Owen. The simnet

virtual world architecture. In VR, pages 450–455, 1993.

[CH01] Yim-Pan Chui and Pheng-Ann Heng. Adaptive at-

titude dead-reckoning by cumulative polynomial extrapo-

lation of quaternions. In DS-RT ’01, page 45, Washington,

DC, USA, 2001. IEEE Computer Society.

[CLC99] Wentong Cai, Francis B. S. Lee, and L. Chen. An

auto-adaptive dead reckoning algorithm for distributed in-

teractive simulation. In PADS ’99, pages 82–89, Washing-

ton, DC, USA, 1999. IEEE Computer Society.

[Dee89] S. E. Deering. RFC 1112: Host extensions for IP

multicasting, August 1989.

[DFW97] Judith S. Dahmann, Richard Fujimoto, and

Richard M. Weatherly. The department of defense high

level architecture. In Winter Simulation Conference,

pages 142–149, 1997.

[Gol85] Genetic Algorithms and Rules Learning in Dy-

namic System Control., 1985.

[HR78] John H. Holland and J. S. Reitman. Cognitive

systems based on adaptive algorithms. In D. A. Water-

man and F. Hayes-Roth, editors, Pattern-directed Infer-

ence Systems. New York: Academic Press, 1978.

[HY06] Dai Hanawa and Tatsuhiro Yonekura. A proposal

of dead reckoning protocol in distributed virtual environ-

ment based on the taylor expansion. In CW, pages 107–

114, 2006.

[LH05] Jeff Long and Michael C. Horsch. A bayesian

model to smooth telepointer jitter. In Canadian Confer-

ence on AI, pages 108–119, 2005.

[Mau00] Martin Mauve. How to keep a dead man from

shooting. In IDMS ’00, pages 199–204, London, UK,

2000. Springer-Verlag.

[Mor96] Katherine L. Morse. Interest management in

large-scale distributed simulations. Technical Report ICS-

TR-96-27, 1996.

[oISS95] Standards Comitee on Interactive Simula-

tion (SCIS). Ieee standard for distributed interactive

simulation - application protocols. Standard 1278.1-1995,

IEEE Computer Society, September 1995.

[San01] Cédric Sanza. Evolution d’entités virtuelles

coopératives par système de classifieurs . Phd thesis, Uni-

versité Paul Sabatier, Toulouse, France, june 2001.

[SC94] Sandeep K. Singhal and David R. Cheriton. Using

a position history-based protocol for distributed object vi-

sualization. Technical Report CS-TR-94-1505, 1994.

[SZ99] Sandeep Singhal and Michael Zyda. Networked

virtual environments: design and implementation. ACM

Press/Addison-Wesley Publishing Co., New York, NY,

USA, 1999.

[TL01] Georgios Theodoropoulos and Brian Logan. An

approach to interest management and dynamic load bal-

ancing in distributed simulation. In Proceedings of

the 2001 European Simulation Interoperability Workshop

(ESIW’01), pages 565–571, Harrow, London, UK, June

2001.

[ZGD04] Xiaoyu Zhang, Denis Gracanin, and Thomas P.

Duncan. Evaluation of a pre-reckoning algorithm for dis-

tributed virtual environments. In ICPADS ’04, page 445,

Washington, DC, USA, 2004. IEEE Computer Society.

c© The Eurographics Association 2007.

108

