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Abstract
A natural interaction with virtual environments is one of the key issues for the usability of Virtual Reality applica-
tions. Device-free, intuitive interactions with the virtual world can be achieved by capturing the movements of the
user with markerless motion capture. In this work we present a markerless motion capture approach which can be
used to estimate the human body pose in real-time with a single depth camera. The presented approach requires
neither a 3D shape model of the tracked person nor a training phase in which body shapes are learned a pri-
ori. Instead, it analyzes the curvature of the human body to estimate the symmetry axes of the body joints. These
symmetry axes are then used to calculate the pose of the tracked human in real-time. The presented approach
was evaluated qualitatively with a time-of-flight and a Kinect depth camera. Furthermore, quantitative simulation
results show that the proposed approach is promising for depth cameras which can reliably capture the surface
curvature (and thus the normals) of a person and which have a resolution of at least 320x240 pixel.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality H.5.2 [Computer Graphics]: User Interfaces—Input devices and strate-
gies I.4.8 [Computer Graphics]: Scene Analysis—Motion, Range Data, Tracking I.2.10 [Artificial Intelligence]:
Vision and Scene Understanding—Motion,Video Analysis

1. Introduction

One of the key issues for the usability of Virtual Reality
applications is a natural interaction with the virtual envi-
ronment. Most VR applications require the use of special-
ized interaction devices, for example a spacemouse or a fly-
stick [Zha98] [WPLP07] [Zim08]. On the other hand, a sys-
tem which could capture the gestures or body movements
of the user with motion capture technology would enable
device-free, intuitive interactions with the virtual worlds.
Current state-of-the-art motion capture technologies have
the drawback that they require the installation, calibration
and maintenance of complex and expensive multi-camera
systems [CMG∗10] [Org11]. Furthermore, most motion cap-
ture systems are marker-based [Nat11] [Vic11]. The attach-
ment of markers to the human body and the need to wear a
specialized marker suit or a data glove can be uncomfortable
and hinder a natural interaction with the virtual environment.

To overcome these limitations, a markerless system which
captures human movements in real-time with a minimal
hardware setup is required for an intuitive and deviceless in-
teraction with virtual worlds. The first system which fulfills
these requirements is Microsoft’s Kinect which estimates

Figure 1: Free-hand, deviceless VR interaction

the human pose from the depth images of a single depth
camera [SFC∗11]. Whereas the Kinect provides ready-to-
use markerless motion capture, it has the drawback that it
is a proprietary solution which can only be used with the
Kinect hardware and with software licenses from Prime-
Sense or Microsoft. The motion capture approach used for
the Kinect requires a computationally very expensive train-
ing step in which hundreds of thousands poses captured with

c© The Eurographics Association 2011.

DOI: 10.2312/PE/vriphys/vriphys11/073-082

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/vriphys/vriphys11/073-082


P. Hartmann & S.Kahn & U. Bockholt & A. Kuijper / Symmetry Axis based Markerless Motion Capture

marker-based motion capture are first acquired to simulate
and to analyze artificial depth images on a 1000-core clus-
ter [SFC∗11]. A motion capture method which requires such
an expensive preprocessing step can only be employed with
large financial investment: Microsoft spent hundreds of mil-
lions dollars for the development of the Kinect [Van11].

Real-time depth images can be captured with time-of-
flight cameras as well [OLB06] [KBKL09]. Whereas struc-
tured light cameras like the Kinect estimate the depth by pro-
jecting a a pattern onto the scene and by analyzing the distor-
tion of the pattern, time-of-flight cameras emit near-infrared
modulated light. The distance is calculated by the time it
took the light to return to the camera after it was reflected
by the scene. Several depth-image based motion capture ap-
proaches have been proposed for these depth cameras, either
for single body parts [JPL09] [BW09] [HCCL10], for the
upper body and the arms [GKK07] [ZDF08] or for full body
tracking [PG08]. For a deviceless interaction with virtual en-
vironments, the markerless motion capture method should
be able to track the overall movements of the user. Thus it
should be possible to track the upper body, the arms and the
legs. Approaches which track only the pose of single body
parts, for example the legs [JPL09] or the hands [BW09], are
not feasible for a deviceless, full-body controlled VR inter-
action. Another requirement is that the motion capture needs
to be real-time capable. Motion capture methods which re-
quire more than 1000ms per frame for full body tracking
[PG08] or more than 100ms per frame for a partial body
tracking (which tracks only the arms or the upper body, but
not the legs) [GKK07] [ZDF08] [BW09] cannot be used for
real-time VR interaction by full body pose estimation.

So far, apart from the approach used for the Kinect
[SFC∗11], only two methods have been proposed with
which the upper body, the arms and the legs can be tracked
in real-time and which could thus be suited for markerless
VR interaction [KVD09] [GPKT10]. The method proposed
by Knoop et al. uses the Iterative Closest Point algorithm to
geometrically align the depth image with an approximated
cylindrical 3D model of the person [KVD09]. Due to the fact
that the pose is estimated by aligning the surface of the cylin-
drical 3D model with the shape of the real person, the shape
of the cylindrical 3D model should match the real shape of
the tracked person as well as possible. This can be achieved
by adapting the scale factor of the 3D model and the sizes
and radii of the cylinders from which it is composed. How-
ever, an adaption of each cylinder radius of the 3D avatar
model would be tedious for virtual environments because
VR system are often used by persons with different sizes
and body shapes. In contrast, symmetry axis based motion
capture methods as proposed in this paper have the advan-
tage that the radii of the limbs do not need to be known ex-
actly for the specific tracked person. The approach proposed
by Ganapathi et al. [GPKT10] does not require a 3D model
of the tracked person. However, similar to the Kinect ap-
proach, it uses body part recognition for the pose estimation.

Therefore a preprocessing step is necessary in which differ-
ent possible appearances of the feet, the hands and the head
are learned. Furthermore, even with a GPU implementation
of this method, only 4-10 frames can be evaluated per sec-
ond, which is too slow for a smooth real-time VR interaction
via motion capture.

In this work we present a markerless motion capture ap-
proach which can be used to estimate the human body pose
in real-time, thus fulfilling this essential requirement for de-
viceless interaction with VR environments. The presented
motion capture method uses the depth image stream of a
single depth camera and requires neither a 3D shape model
of the tracked person nor a training phase in which body
shapes are learned a priori. Instead, it analyzes the curvature
of the human body to estimate the rotational symmetry axes
of the body joints. These rotational symmetry axes are used
to calculate the pose of the tracked human in real-time. In
the remainder of this paper we first describe symmetry axes
in section 2 and our new motion capture approach, which
uses rotational symmetry axes for real-time pose estimation,
in section 3. Evaluation results are presented in section 4 and
the paper ends with conclusions in section 5.

2. Symmetry Axes

Skeleton structures, for example the skeleton of the human
body, can be represented by symmetry axes. The most com-
monly used symmetry axis is the medial axis introduced by
Blum [Blu67]. In the three-dimensional case, the medial axis
of an object is the union of the centers of all maximal spheres
which fit inside the object. The medial axis corresponds to
a reflectional symmetry axis [BSTZ06]. Another symmetry
axis is the rotational symmetry axis of an object. Figure 2
visualizes the rotational symmetry axis of a cylinder.

Figure 2: Rotational axis of a cylinder

Most human body parts have a shape which is similar to a
cylinder: The arms and legs have a cylindrical shape and the
upper body can be approximated with a stretched cylinder.
The 3D rotational symmetry axes of the arms, legs and the
upper body have the same position as the bones of these body
parts and thus human movements can be tracked by calcu-
lating the 3D rotational symmetry axes of the body parts.
Whereas 2D medial axes have been previously used to esti-
mate the skeleton structure of the projection of human sil-
houettes to 2D images [BDP∗94] [CN08] [YK10], so far no
symmetry-axis based method has been proposed for human
motion capture in the 3D space.
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A symmetry axis based motion capture method for VR in-
teraction, which uses the video stream from a single depth
camera, needs to fulfill two major requirements: First, it
needs to be real-time capable. Second, it needs to compute
the symmetry axis from an incomplete point set with large
areas of missing data. When a single depth camera is used,
the surface of the tracked human is only captured from a
single viewpoint and large areas of the body surface are not
visible. Most approaches for the calculation of symmetry
axes from point clouds can only handle data sets with few
missing surface information [OI92] [SLSK07]. However, re-
cently Tagliasacchi et al. [TZCO09] presented a method for
the estimation of curve skeletons from imperfect and un-
ordered point clouds with large areas of missing data. This
is achieved by using normal information of the 3D points
to compensate for missing data (see Figure 3). Premises for
this method are that the object is composed from cylindrical
regions (except at the joints) and that the point normals are
known for the 3D point set. Both preconditions can be met
as human body parts have shapes similar to cylinders and as
point normals can be calculated for depth images.

Figure 3: Estimation of the rotational symmetry axis
(ROSA): The normals of 3D points can compensate for miss-
ing data (figure from [TZCO09], c©ACM).

To calculate the rotational symmetry axis (ROSA) of
a point set, the method proposed by Tagliasacchi et al.
[TZCO09] works on local subsets of the point cloud. To
localize the search for a point on the rotational symmetry
axis (a ROSA point), first one of the 3D points of the point
cloud is selected as an anchor point. Then recursive planar
cuts are used to calculate an optimal cutting plane in an it-
erative manner. An optimal cutting plane is a cutting plane
which intersects the anchor point and which is as rotation-
ally symmetric to the normals in its close neighborhood as
possible. Given an optimal cutting plane, the ROSA point of
this cutting plane is calculated by optimizing the quadratic
minimization problem stated in Equation (1) with differenti-
ation. Here r∗i is the rotational symmetry center, N∗i are the
3D input points in the local neighbourhood of the cutting
plane and n(p j) is the normal of point p j.

r∗i = argmin
x∈R3

∑
p j∈N∗

i

‖(x− p j)×n(p j)‖2 (1)

While the method presented by Tagliasacchi et al. fulfills

the requirement that the symmetry axis needs to be calcu-
lated from an incomplete point cloud [TZCO09], it has two
drawbacks which hinder its use for real-time motion capture:
First, it is not real-time capable. The skeleton reconstruction
of a point cloud with 10.000 points (which would correspond
to a depth image with a resolution of 100x100 pixel) takes
three minutes with a Matlab implementation. Furthermore,
it does not differentiate between the skeletons of different
body parts. Rather, it estimates a single skeleton curve for
the whole object. Therefore it is not obvious how to map
the arbitrary skeleton curve to the different rigid bones of a
human skeleton.

3. Motion Capture with Rotational Symmetry Axes

This section describes the new motion capture algorithm
which infers the human pose from the depth images of a sin-
gle depth camera. The presented motion capture algorithm
analyzes the shape of the tracked person to estimate the ro-
tational symmetry axis of each tracked skeleton part. It in-
corporates temporal and spatial knowledge as well as a priori
knowledge about the human shape to achieve real-time capa-
bility and to map the rotational symmetry axis to the bones of
corresponding body parts. Furthermore, our motion capture
method builds on the work of Tagliasacchi et al. [TZCO09]
by incorporating the estimation of rotational symmetry axis
(ROSA) points from incomplete 3D point sets. Our algo-
rithm is based on the following main concepts:

1. We incorporate a priori knowledge about the human
skeleton into our algorithm. Therefore, instead of calcu-
lating the complete symmetry axis for the whole input
point cloud, only a small number of rotational symmetry
centers needs to be calculated for each body part.

2. The calculated rotational symmetry axis points are
mapped to a human skeleton.

3. Neighbourhood information from the depth image speeds
up the point selection for the ROSA point calculations.

4. Significant further speed-up is achieved by incorporating
knowledge about the pose of the previous frame into our
algorithm.

For the pose estimation, each depth image acquired by
the depth camera is first preprocessed (3.1). If the pose was
not initialized yet or if it was lost, the pose is (re-)initialized
(3.2). If the pose was already tracked in the previous frame,
the pose is updated to the current depth image (3.3).

3.1. Depth Image Preprocessing

The substeps of the preprocessing are noise reduction, back-
ground subtraction, conversion of depth values to euclidean
3D points and point normal estimation. In order to reduce
the noise in the depth images, the depth values are smoothed
with a bilateral gaussian filter [TM98]. In contrast to non-
bilateral filters, bilateral gaussian filters are edge-preserving.
This is particularly important for human motion capture
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(a) Simulated depth image (b) Time-of-flight depth image (c) Kinect depth image

Figure 4: Point normals, visualized as RGB values (x=red, y=green and z = blue)

(a) Input point cloud (b) Without background

Figure 5: Background subtraction

to avoid incorrect smoothing at the jump edges between
the person and the background. Then the depth measure-
ments on the surface of the tracked person are identified
by background subtraction [WAWB09]. The depth value of
each pixel is compared with the mean and the variance of
previously recorded background images in order to decide
whether the depth difference is significant enough to inter-
pret the depth measurement as a foreground pixel (the back-
ground images only need to be acquired once after the instal-
lation of the depth camera). Then a connected-component
merging is applied to find the largest connected segment. All
other depth measurements are discarded.

In the next step, each depth value dcam is converted to a
3D point PCCS in the camera coordinate system (CCS) with
Equation (2). Here (px, py) are the 2D coordinates of the
pixel in the pixel coordinate system of the depth image. The
focal length ( fx, fy) and the principal point (cx,cy) were esti-
mated with an offline calibration procedure [SBK08]. Figure
5 visualizes the 3D point cloud before and after the filtering
and the background subtraction.

The final preprocessing step is the calculation of the point
normals. The neighbourhood relations of the 3D points are

known from their pixel coordinates in the depth image: The
3D points of four neighboured pixels (forming a square) are
divided into two triangles. Then vertex and point normals
are calculated for each triangle. Figure 4 visualizes the point
normals of different depth images.

pCCS =

(px− cx) · 1
fx
·dcam

(py− cy) · 1
fy
·dcam

dcam

 (2)

3.2. Pose (Re-)Initialization

Internally, the estimated pose of the tracked person is repre-
sented by the joint angles of a human skeleton. An initializa-
tion pose helps to adapt the size of the skeleton to the person
and to initialize the tracking. The initalization pose corre-
sponds to a "T" pose in which the arms are stretched to the
side. For the initialization, the user should face the camera.
The size of the virtual skeleton is scaled such that its height
and the width of its outstreched arms correspond to the size
of the bounding box around the user. If the frame-to-frame
tracking gets lost, it can be reinitialized with the initializa-
tion pose.

3.3. Frame-to-Frame Tracking

The human pose estimated in the previous depth image is the
initial approximation for the pose of the current depth im-
age. To adapt the pose to the new depth image, it is updated
in two steps: First, symmetry axes are estimated for each
tracked body part. This is accomplished in a fast, real-time
capable manner by calculating several rotational symmetry
axis points for each body part and by fitting a straight line
through the ROSA points. In a second step, the skeleton is
aligned with the calculated symmetry axes. In the remainder
of this section, both steps are explained in more detail.
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3.3.1. Calculation of Symmetry Axes

On the bone of each tracked body part (upper body as well
as the upper and lower arms and legs), 2≤ ncheckpoints ≤ 10
equally distributed checkpoints are selected. Then a rota-
tional symmetry axis center point is calculated for each
checkpoint. This section first describes the conditions which
are used to select feasible 3D measurements for the ROSA
point calculation. Furthermore, it describes how temporal
and spatial relationships of depth image based frame-to-
frame tracking are exploited to speed up the selection of 3D
input points for the ROSA point calculation such that the
presented method gets real-time capable.

Selection of 3D Input Points for ROSA Estimation For
each checkpoint c, all neighboured 3D measurements s ∈ S
which fulfill the two conditions stated in Equation (3) and
(4) are selected as input points for the ROSA point estima-
tion. First, they should lie in the close neighbourhood of the
cutting plane which intersects the checkpoint and which is
perpendicular to the bone orientation o calculated in the pre-
vious frame (Equation (3)). To select enough 3D measure-
ments for a robust ROSA point estimation, all measurements
in a close neighbourhood to this optimal perpendicular cut-
ting plane are selected as input points. δ sets how much the
angle between the bone orientation o and the line from the
checkpoint c to the 3D measurement s may differ from the
perpendicular angle of the optimal cutting plane, which is
π

2 rad respectively 90◦.

π

2
rad−δ < |^(o,(s− c))|< π

2
rad +δ (3)

The second condition is stated in Equation (4): To avoid
that 3D measurements of other body parts influence the
ROSA point calculation, the distance of s to the control point
c may not exceed a maximal distance dmax = 1.5r to the
checkpoint c. Here r is the radius of the tracked body part.

|(s− c)| ≤ dmax (4)

Figure 6 visualizes the input points for the ROSA calcu-
lation. Five checkpoints were set on each tracked body part.
The 3D measurements which are highlighted in cyan fulfill
the criterions for a cutting plane and are thus used to calcu-
late the ROSA points. One ROSA point is calculated for each
checkpoint by minimizing the quadratic minimization prob-
lem stated in Equation (1). Then for each bone of the skele-
ton the symmetry axis is calculated with a best fit straight
line through its ROSA points.

Real-Time Selection of 3D Input Points The key to real-
time motion capture with symmetry axes is a fast selection of
the 3D input points which are used to calculate a ROSA point
on the symmetry axis. In order to achieve the desired real-
time capability, our algorithm builds on the fact that depth

Figure 6: For each checkpoint, all 3D measurements close to
the cutting plane which intersects the checkpoint and which
is perpendicular to the bone are selected. The selected 3D
measurements are highlighted in cyan.

cameras do not acquire unordered 3D point clouds, but struc-
tured depth images: For each 2D pixel (i, j) in the pixel co-
ordinate system (PCS) of the depth image the depth camera
measures a depth measurement dcam. Each depth measure-
ment can be converted to a 3D point PCCS in the camera co-
ordinate system with Equation (2) (see section 3.1). There-
fore neighboured 3D measurements in the camera coordi-
nate system can be found by selecting the 3D measurements
of pixels which are neighboured in the 2D pixel coordinate
system PCS.

A checkpoint c is not directly linked to 2D coordinates in
the pixel coordinate system because it is not a 3D measure-
ment but a 3D point on the symmetry axis calculated from
the previous frame. However, the projection of a checkpoint
c from the camera coordinate system to the pixel coordinate
system (cPCS) can be calculated with Equation (5).

cPCS = K · c (5)

K is the camera calibration matrix which is composed
from the focal length ( fx, fy), the principal point (cx,cy) and
the pixel skew, which equals "1" for depth cameras with rect-
angular pixels.

K =

 fx skew cx
0 fy cy
0 0 1

 (6)

After a checkpoint c was projected to the 2D image with
Equation (5), the search area S for input points of the ROSA
point calculation of this checkpoint is restricted to the 3D
measurements whose pixel coordinates are close to cPCS in
the 2D image.

c© The Eurographics Association 2011.

77



P. Hartmann & S.Kahn & U. Bockholt & A. Kuijper / Symmetry Axis based Markerless Motion Capture

3.3.2. Skeleton Alignment with Symmetry Axes

The final step of the frame-to-frame tracking is the align-
ment of the skeleton with the calculated symmetry axes. To
account for the hierarchical structure of the human body, the
alignment is carried out in a hierarchical manner. First the
upper body, then the upper arms and legs and finally the
forearms and the lower legs are aligned with the symmetry
axes. If the symmetry axis of a body part could not be cal-
culated due to severe occlusions, its symmetry axis remains
unchanged until it can be tracked again.

Upper body The first step is the alignment of the upper
body of the skeleton with the orientation of its calculated
symmetry axis. The position of the upper body on the sym-
metry axis has one degree of freedom, sliding along the axis.
Therefore also its exact position on the symmetry axis needs
to be estimated. The position of the upper body on the sym-
metry axis is unambiguously inferred from the uppermost
head position. An orthogonal projection is used to project
the uppermost 3D measurement to the closest point on the
symmetry axis, phead .

Shoulders For the calculation of the shoulder positions, the
upper body is approximated with a cylinder around the sym-
metry axis whose diameter corresponds to the distance be-
tween the shoulders of the human skeleton. Figure 7 and 8
visualize the calculation of the shoulder positions. To assure
a robust estimation, the algorithm chooses one of two shoul-
der position estimation methods. We observed a smooth
transition when the algorithm switched from one method to
the other. Which method is chosen depends on the angle be-
tween the symmetry axis of the upper arm and the symme-
try axis of the upper body. If this angle is greater than 45◦

respectively π

4 rad, the shoulder positions are calculated by
intersecting the symmetry axes of the upper arms with the
cylinder which approximates the upper body (Figure 7).

For postures where the arms are close to the body, the
method which intersects the symmetry axes is not stable: If
the arms hang limp, their symmetry axes are approximately
parallel to the symmetry axis of the upper body and thus the
symmetry axes do not intersect the cylinder at the shoulders.
Thus if the angle between the symmetry axis of the arm and
the upper body is smaller than 45◦, the shoulder positions are
estimated by intersecting the symmetry axis of the upper arm
with a plane which is perpendicular to the symmetry axis
of the upper body and which intersects the position pneck
of the neck (see Figure 8). The neck position pneck lies on
the symmetry axis of the upper body. Its distance to phead
corresponds to the head size.

Hip The intersection point of the symmetry axis of the up-
per body with the hip (phip) is the point on the symmetry
axis whose distance to phead is the sum of the length of the
head and the upper body. Similar to the second method for
the estimation of the shoulder positions, the hip positions

are calculated by intersecting the symmetry axes of the up-
per legs with a plane which is perpendicular to oupper body
and which intersects phip. Figure 9 visualizes the estimation
of the hip position.

Forearms and Lower Legs The final alignment step for
each depth image is the alignment of the forearms and the
lower legs to the calculated symmetry axes of these body
parts. The positions of the elbows are unambiguously de-
fined by the positions of the shoulders and the length and the
orientation of the upper arm. Therefore only the orientation
of the forearms needs to be set, which is the orientation of
their symmetry axes. The same applies to the lower legs.

4. Evaluation

The algorithm was evaluated with regard to its execution
time and the accuracy of the calculated pose. For the evalu-
ation of the pose accuracy a simulation was used, providing
artificial depth images for specified reference poses. Further-
more, the feasibility of current state-of-the-art depth cameras
for symmetry axis based motion capture was evaluated.

4.1. Execution time

The algorithm is implemented in C++. For the evaluation
of the processing time a 2.4 Ghz Intel Core 2 Duo pro-
cessor was used. The execution time of the initialization
is 0.74ms for a resolution of 176× 144 pixel, 1.97ms for
320×320 pixel, 7.78ms for 640×480 pixel and 30.17ms for
1280× 960 pixel. The processing time of the initialization
step is approximately linear to the number of depth measure-
ments in the depth image. It is fast enough for real-time pro-
cessing even for large depth images with 1280× 960 depth
measurements.

Table 1 gives the number of frames per second which can
be calculated with the proposed frame-to-frame tracking.
The processing time depends on the number of checkpoints
(and thus the number of ROSA points used for the symme-
try axis calculation) of each body part. If five checkpoints
are used to calculate the symmetry axis of each tracked
body part, the presented algorithm is real-time capable with
more than 30 frames per second for depth images with up to
640x480 depth measurements. The processing time given by
Table 1 is a single core CPU implementation. A further sig-
nificant speed-up could be achieved easily by parallelizing
the ROSA point calculation for each checkpoint.

4.2. Ground Truth Simulation

To evaluate the algorithm with known ground truth data, arti-
ficial depth images of an articulated 3D avatar were created.
The 3D avatar model is visualized in Figure 10. To create a
smooth 3D avatar animation, the joint rotations between the
poses of specified key frames were interpolated with spher-
ical linear interpolation. Equation (7) specifies the distance
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Figure 7: Shoulder estimation
(method 1): Intersection of the arm’s
symmetry axis with a cylinder

Figure 8: Shoulder estimation
(method 2): Intersection of the arm’s
symmetry axis with a plane

Figure 9: Calculation of hip posi-
tion: Intersection of the legs’ symme-
try axes with a plane

Resolution Checkpoints
2 3 5 7 10

176×144 345 243 163 121 82
320×320 149 106 65 47 34
640×480 73 51 30 21 15
1280×960 13 8 5 3 2

Table 1: Frames per second (frame-to-frame tracking)

metric used for the evaluation of the accuracy of the calcu-
lated pose x̃. The distance metric is the average positional
error. n is the number of evaluated body part positions, p(xi)
is the reference 3D position of body part xi and p(x̃i) is
the 3D position which was calculated by the motion cap-
ture algorithm. The 3D positions of the shoulders, elbows,
hands, hip, knees and feet were compared. For the evalua-
tion of the pose estimation accuracy, five checkpoints were
used for each limb. This choice was made because increas-
ing the number of checkpoints per limb up to this value also
increased the pose estimation accuracy. In our experiments,
the use of more than five checkpoints only caused a very
small further enhancement.

(a) Frame 90 (b) Frame 180

(c) Frame 270 (d) Frame 330

Figure 10: Avatar movements of the first sequence

D(x, x̃) = 1
n

n

∑
i=1
‖p(xi)− pi(x̃i)‖ (7)

The motion capture method was evaluated with two test
sequences. In the first sequence the avatar is moved with-
out occlusions. In the second sequence occlusions and chal-
lenging movements are simulated. As the accuracy of the
pose estimation increased when the number Figure 10 visu-
alizes four avatar poses of the first test sequence. The aver-
age positional error of this sequence is plotted in Figure 11.
The plot shows that the movements of the whole sequence
can be tracked well with depth image resolutions of at least
320×240 depth measurements. The tracking is significantly
less accurate for depth images with a resolution of 176×144
measurements. This is due to the fact that only a small num-
ber of 3D measurements is available for the calculation of
the ROSA points on the arms and the legs if the whole depth
image has such a low resolution. To evaluate the effect of
noise in the depth images, gaussian noise was added to the
depth measurements. Figure 12 visualizes how the accuracy
of the pose estimation is influenced by the amount of noise
in the depth measurements. σ is the standard deviation of the
gaussian noise. Current state-of-the-art depth cameras have
a standard deviation of about 1% of the measured distance.
A typical interaction setup in which the distance between the
camera and the user is 2m thus has a standard deviation of
0.02m. For 3m distance it is 0.03m. In the simulation, the
pose estimation seems to be slightly more accurate for light
noise (σ = 0.01m) than for noise-free depth images. How-
ever, this effect probably only occurs because the 3D avatar
model used for the simulation is approximated by planar
patches (3D vertex meshes). Adding slight noise to the sim-
ulated depth images reduces this planarity and thus seems
to result in a slightly more precise estimation of the medial
axes. For real depth images (or higher resolution 3D mod-
els used for the simulation), the accuracy can be expected to
decrease steadily with increasing measurement noise.

Figure 13 visualizes three poses of the second test se-
quence. In the first two poses the upper body respectively
the arms are tilted towards the camera. This makes it diffi-
cult to calculate their symmetry axes. In the third pose the
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Figure 11: Average positional error of first sequence
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Figure 12: Average positional error of first sequence, noisy depth images (resolution: 640×480 pixel)

upper body is partially occluded by the arms. To evaluate
these poses independently from each other, the avatar takes
up the initialization pose in frame 120 and in frame 180. The
average residual for this test sequence is plotted in Figure 14.

For a stable estimation of the poses of this sequence a higher
resolution is required than for the first sequence. The accu-
racy of the estimated pose significantly increases with the
resolution of the depth image. The second row of Figure 13
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(a) Frame 90 (b) Frame 150 (c) Frame 300

Figure 13: First row: Avatar movements of the second se-
quence. Second row: Calculated pose (1280×640 pixel).

shows the input points for the ROSA point calculation and
the estimated pose for depth images with a high resolution
of 1280×640 measurements.
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Figure 14: Average positional error of second sequence

4.3. State-of-the-Art Depth Cameras

Depth cameras are subject to fast technological advance-
ments. To evaluate whether the resolution and measure-
ment accuracy of current state-of-the-art depth cameras is
already suitable for markerless motion capture via symme-
try axes, we recorded test sequences with a SwissRanger
3000 [OLB06] and with a Kinect depth camera. Whereas
the SwissRanger 3000 is a time-of-flight camera, the Kinect
depth camera uses light coding for the distance measure-
ments. The SwissRanger 3000 measures 176× 144 depth
measurements and the Kinect depth camera has a resolu-
tion of 640× 480 pixel. Figure 4 visualizes the point nor-
mals of the tracked human. Whereas the surface curvature
is well captured with the time-of-flight camera, almost all
normals of the Kinect depth image are parallel to the view-
ing direction of the camera. The surface measured by the

Kinect exhibits a pyramidal effect: The measured distance
is strongly discretized into few planar layers which are par-
allel to the image plane of the camera. This effect can be
explained by the fact that the Kinect estimates depth values
with a depth resolution of only 211 bit. Therefore each depth
measurement is strongly discretized. Due to this discretiza-
tion effect, reliable point normals cannot be calculated and
thus the Kinect depth camera is not suited for depth image
based symmetry axis calculation. In contrast to the Kinect,
the SwissRanger time-of-flight camera measures distances
of up to 7.5m with a depth resolution of 214 bit and with an
accuracy which is high enough for a reliable normal estima-
tion. However, it has a very low resolution of only 176×144
pixel. Thus the number of measurements on the arms and
legs is very small. Even for the noise-free simulated data,
this resolution is too small for a robust estimation of the
symmetry axes (see Figure 11). We observed the same effect
with the depth images captured by the time-of-flight camera.
Nevertheless, the time-of-flight camera fulfills the important
criterion that reliable normals can be calculated based on its
depth images. Thus the future development of time-of-flight
cameras with a higher number of depth measurements can be
expected to provide suitable depth measurement technology
for symmetry axis based motion capture.

5. Conclusion

Real-time depth imaging is subject to rapid technological
improvements. Whereas current state-of-the-art depth cam-
eras either have a rather small image resolution or discretize
the depth measurements so significantly that normals can-
not be inferred from the depth values, the development of
depth cameras with a higher resolution and more reliable
depth measurements is to be expected in the near future.
In this paper we have presented a markerless motion cap-
ture algorithm which tracks human movements by estimat-
ing the symmetry axes of the human body from the depth im-
ages of a single depth camera. Just as real-time depth imag-
ing can enhance the realism of Mixed Reality applications
by realistic shadow and occlusion visualization [FKOJ11],
depth-image based markerless motion capture can contribute
to an intuitive interaction with virtual worlds. The evalua-
tion results of our algorithm show that symmetry axis based
motion capture has great potential for depth images with
at least 320x240 depth measurements. The presented algo-
rithm aligns body parts with their corresponding symmetry
axes. By incorporating knowledge about temporal and spa-
tial neighbourhood relations, the algorithm is able to track
human movements in real-time. Thus it fulfills the most im-
portant requirement for human motion capture for device-
less interaction with virtual environments. Furthermore, only
a single depth camera is required. Therefore the presented
algorithm can be used to track the human movements in
VR environments without the need to set up complex multi-
camera systems. In contrast to the algorithm which is used
for Microsoft’s Kinect, the presented algorithm is able to
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track human movements without a learning phase in which
hundreds of thousands depth images need to be analyzed.
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